Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
AlternateSkewAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File AlternateSkewAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Evaluation of the Navier Stokes advective term
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
37 
38 namespace Nektar
39 {
40 
43  "AlternateSkew", AlternateSkewAdvection::create);
44 
45 /**
46  * Constructor. Creates ...
47  *
48  * \param
49  * \param
50  */
52  : Advection()
53 {
54 }
55 
57 {
58 }
59 
63 {
64 }
65 
67  const int nConvectiveFields,
69  const Array<OneD, Array<OneD, NekDouble> > &advVel,
70  const Array<OneD, Array<OneD, NekDouble> > &inarray,
71  Array<OneD, Array<OneD, NekDouble> > &outarray,
72  const NekDouble &time)
73 {
74  for(int n = 0; n < nConvectiveFields; ++n)
75  {
76  // use dimension of Velocity vector to dictate dimension of operation
77  int ndim = advVel.num_elements();
78 
79  // ToDo: here we should add a check that V has right dimension
80 
81  int nPointsTot = fields[0]->GetNpoints();
82  Array<OneD, NekDouble> gradV0,gradV1,gradV2, tmp, Up;
83 
84  gradV0 = Array<OneD, NekDouble> (nPointsTot);
85  tmp = Array<OneD, NekDouble> (nPointsTot);
86 
87  // Evaluate V\cdot Grad(u)
88  switch(ndim)
89  {
90  case 1:
91  if(m_advectioncalls % 2 == 0)
92  {
93  fields[0]->PhysDeriv(inarray[n],gradV0);
94  Vmath::Vmul(nPointsTot,gradV0,1,advVel[0],1,outarray[n],1);
95  }
96  else
97  {
98  Vmath::Vmul(nPointsTot,inarray[n],1,advVel[0],1,gradV0,1);
99  fields[0]->PhysDeriv(gradV0,outarray[n]);
100  }
101  Vmath::Smul(nPointsTot,0.5,outarray[n],1,outarray[n],1); //must be mult by 0.5????
102  break;
103  case 2:
104  gradV1 = Array<OneD, NekDouble> (nPointsTot);
105  if(m_advectioncalls % 2 == 0)
106  {
107  fields[0]->PhysDeriv(inarray[n],gradV0,gradV1);
108  Vmath::Vmul (nPointsTot,gradV0,1,advVel[0],1,outarray[n],1);
109  Vmath::Vvtvp(nPointsTot,gradV1,1,advVel[1],1,outarray[n],1,outarray[n],1);
110  }
111  else
112  {
113  Vmath::Vmul(nPointsTot,inarray[n],1,advVel[0],1,gradV0,1);
114  Vmath::Vmul(nPointsTot,inarray[n],1,advVel[1],1,gradV1,1);
115  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,outarray[n]);
116  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);
117  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
118  }
119  Vmath::Smul(nPointsTot,1.0,outarray[n],1,outarray[n],1); //must be mult by 0.5????
120  break;
121  case 3:
122  gradV1 = Array<OneD, NekDouble> (nPointsTot);
123  gradV2 = Array<OneD, NekDouble> (nPointsTot);
124 
125  //outarray[n] = 1/2(u*du/dx + v*du/dy + w*du/dz + duu/dx + duv/dy + duw/dz)
126 
127  if(fields[0]->GetWaveSpace() == true)
128  {
129  if(m_advectioncalls % 2 == 0)
130  {
131  //vector reused to avoid even more memory requirements
132  //names may be misleading
133  fields[0]->PhysDeriv(inarray[n],gradV0,gradV1,gradV2);
134  fields[0]->HomogeneousBwdTrans(gradV0,tmp);
135  Vmath::Vmul(nPointsTot,tmp,1,advVel[0],1,outarray[n],1); // + u*du/dx
136  fields[0]->HomogeneousBwdTrans(gradV1,tmp);
137  Vmath::Vvtvp(nPointsTot,tmp,1,advVel[1],1,outarray[n],1,outarray[n],1);// + v*du/dy
138  fields[0]->HomogeneousBwdTrans(gradV2,tmp);
139  Vmath::Vvtvp(nPointsTot,tmp,1,advVel[2],1,outarray[n],1,outarray[n],1);// + w*du/dz
140  }
141  else
142  {
143  Up = Array<OneD, NekDouble> (nPointsTot);
144  fields[0]->HomogeneousBwdTrans(inarray[n],Up);
145  Vmath::Vmul(nPointsTot,Up,1,advVel[0],1,gradV0,1);
146  Vmath::Vmul(nPointsTot,Up,1,advVel[1],1,gradV1,1);
147  Vmath::Vmul(nPointsTot,Up,1,advVel[2],1,gradV2,1);
148 
149  fields[0]->SetWaveSpace(false);
150  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,outarray[n]);//duu/dx
151  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);//duv/dy
152  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
153  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],gradV2,tmp);//duw/dz
154  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
155  fields[0]->SetWaveSpace(true);
156  }
157 
158  Vmath::Smul(nPointsTot,1.0,outarray[n],1,tmp,1); //must be mult by 0.5????
159  fields[0]->HomogeneousFwdTrans(tmp,outarray[n]);
160  }
161  else
162  {
163  if(m_advectioncalls % 2 == 0)
164  {
165  fields[0]->PhysDeriv(inarray[n],gradV0,gradV1,gradV2);
166  Vmath::Vmul(nPointsTot,gradV0,1,advVel[0],1,outarray[n],1);
167  Vmath::Vvtvp(nPointsTot,gradV1,1,advVel[1],1,outarray[n],1,outarray[n],1);
168  Vmath::Vvtvp(nPointsTot,gradV2,1,advVel[2],1,outarray[n],1,outarray[n],1);
169  }
170  else
171  {
172  Vmath::Vmul(nPointsTot,inarray[n],1,advVel[0],1,gradV0,1);
173  Vmath::Vmul(nPointsTot,inarray[n],1,advVel[1],1,gradV1,1);
174  Vmath::Vmul(nPointsTot,inarray[n],1,advVel[2],1,gradV2,1);
175  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],gradV0,outarray[n]);
176  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],gradV1,tmp);
177  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
178  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],gradV2,tmp);
179  Vmath::Vadd(nPointsTot,tmp,1,outarray[n],1,outarray[n],1);
180  }
181  Vmath::Smul(nPointsTot,1.0,outarray[n],1,outarray[n],1); //must be mult by 0.5????
182  }
183  break;
184  default:
185  ASSERTL0(false,"dimension unknown");
186  }
187  }
188 }
189 
190 } //end of namespace
191 
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time)
Advects a vector field.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
static std::string className
Name of class.
static SolverUtils::AdvectionSharedPtr create(std::string)
Creates an instance of this class.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
double NekDouble
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:86
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215