38 #include <boost/algorithm/string.hpp> 
   48           "Linear shallow water equation in primitive variables.");
 
   67     ASSERTL0(
false, 
"Implicit SWE not set up.");
 
   90       m_session->LoadSolverInfo(
"AdvectionType", advName, 
"WeakDG");
 
  102       m_session->LoadSolverInfo(
"UpwindType", riemName, 
"NoSolver");
 
  105           ASSERTL0(
false,
"LinearHLL only valid for constant depth"); 
 
  126       int nTracePointsTot = 
m_fields[0]->GetTrace()->GetTotPoints();
 
  158       ASSERTL0(
false, 
"Unsupported projection type.");
 
  188       m_fields[0]->IProductWRTBase(tmp,mod);
 
  189       m_fields[0]->MultiplyByElmtInvMass(mod,mod);
 
  196       m_fields[0]->IProductWRTBase(tmp,mod);
 
  197       m_fields[0]->MultiplyByElmtInvMass(mod,mod);
 
  216     ASSERTL0(
false,
"Unknown projection scheme for the NonlinearSWE");
 
  229     int nvariables = inarray.num_elements();
 
  251       for(i = 0; i < nvariables; ++i)
 
  278         fluxvector(nvariables);
 
  280       for (i = 0; i < nvariables; ++i)
 
  283           for(j = 0; j < ndim; ++j)
 
  299       for(i = 0; i < nvariables; ++i)
 
  320     ASSERTL0(
false,
"Unknown projection scheme for the NonlinearSWE");
 
  331     int nvariables = inarray.num_elements();
 
  342       for(i = 0; i < nvariables; ++i)
 
  353       EquationSystem::SetBoundaryConditions(time);
 
  356       for(i = 0; i < nvariables; ++i)
 
  358               m_fields[i]->FwdTrans(inarray[i],coeffs);
 
  359           m_fields[i]->BwdTrans_IterPerExp(coeffs,outarray[i]);
 
  364     ASSERTL0(
false,
"Unknown projection scheme");
 
  376       int nvariables = 
m_fields.num_elements();
 
  383       for (
int i = 0; i < nvariables; ++i)
 
  386           m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
 
  390       for(
int n = 0; n < 
m_fields[0]->GetBndConditions().num_elements(); ++n)
 
  393           if (boost::iequals(
m_fields[0]->GetBndConditions()[n]->GetUserDefined(),
"Wall"))
 
  399           if (
m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
 
  401               for (
int i = 0; i < nvariables; ++i)
 
  404                   m_fields[i]->EvaluateBoundaryConditions(time, varName);
 
  407           cnt += 
m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
 
  422         int nvariables = physarray.num_elements();
 
  426         int e, id1, id2, 
npts;
 
  428         for (e = 0; e < 
m_fields[0]->GetBndCondExpansions()[bcRegion]
 
  431             npts = 
m_fields[0]->GetBndCondExpansions()[bcRegion]->
 
  432                 GetExp(e)->GetTotPoints();
 
  433             id1  = 
m_fields[0]->GetBndCondExpansions()[bcRegion]->
 
  435             id2  = 
m_fields[0]->GetTrace()->GetPhys_Offset(
 
  437                                     GetBndCondCoeffsToGlobalCoeffsMap(cnt+e));
 
  466             for (i = 0; i < nvariables; ++i)
 
  469                              &(
m_fields[i]->GetBndCondExpansions()[bcRegion]->
 
  470                              UpdatePhys())[id1], 1);
 
  480     int nvariables = physarray.num_elements();
 
  484     int e, id1, id2, 
npts;
 
  486     for(e = 0; e < 
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize(); ++e)
 
  488     npts = 
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExp(e)->GetNumPoints(0);
 
  489     id1  = 
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e) ;
 
  490     id2  = 
m_fields[0]->GetTrace()->GetPhys_Offset(
m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(cnt+e));
 
  523         ASSERTL0(
false,
"3D not implemented for Shallow Water Equations");
 
  526         ASSERTL0(
false,
"Illegal expansion dimension");
 
  532     for (i = 0; i < nvariables; ++i)
 
  534         Vmath::Vcopy(npts,&Fwd[i][id2], 1,&(
m_fields[i]->GetBndCondExpansions()[bcRegion]->UpdatePhys())[id1],1);
 
  546     int nq = 
m_fields[0]->GetTotPoints();
 
  570      Vmath::Vadd(nq, flux[i+1][i], 1, tmp, 1, flux[i+1][i], 1);
 
  580     if(physin.get() == physout.get())
 
  584     for (
int i = 0; i < 3; ++i)
 
  606     Vmath::Vdiv(nq,physin[1],1,physin[0],1,physout[1],1);
 
  609     Vmath::Vdiv(nq,physin[2],1,physin[0],1,physout[2],1);
 
  634     if(physin.get() == physout.get())
 
  638     for (
int i = 0; i < 3; ++i)
 
  649     Vmath::Vmul(nq,physout[0],1,tmp[1],1,physout[1],1);
 
  652     Vmath::Vmul(nq,physout[0],1,tmp[2],1,physout[2],1);
 
  661     Vmath::Vmul(nq,physout[0],1,physin[1],1,physout[1],1);
 
  664     Vmath::Vmul(nq,physout[0],1,physin[2],1,physout[2],1);
 
  696         const int npts = physfield[0].num_elements();
 
  708     if (
m_session->DefinesSolverInfo(
"UpwindType"))
 
  710         std::string UpwindType;
 
  711         UpwindType = 
m_session->GetSolverInfo(
"UpwindType");
 
  712         if (UpwindType == 
"LinearAverage")
 
  716         if (UpwindType == 
"LinearHLL")
 
Array< OneD, NekDouble > m_coriolis
Coriolis force. 
const Array< OneD, NekDouble > & GetDepthFwd()
virtual void v_InitObject()
Init object for UnsteadySystem class. 
#define ASSERTL0(condition, msg)
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters. 
void PrimitiveToConservative()
Base class for unsteady solvers. 
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey. 
Array< OneD, NekDouble > m_depth
Still water depth. 
Array< OneD, NekDouble > m_dFwd
Still water depth traces. 
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
virtual void v_PrimitiveToConservative()
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use. 
std::vector< std::pair< std::string, std::string > > SummaryList
int m_expdim
Expansion dimension. 
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y 
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous. 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
void AddCoriolis(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
SolverUtils::AdvectionSharedPtr m_advection
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
Creates an instance of this class. 
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y. 
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
SOLVER_UTILS_EXPORT int GetTotPoints()
virtual void v_ConservativeToPrimitive()
void ConservativeToPrimitive()
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction. 
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y. 
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used. 
void WallBoundary(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
Wall boundary condition. 
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
virtual void v_InitObject()
Init object for UnsteadySystem class. 
static std::string className
Name of class. 
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list. 
RiemannSolverFactory & GetRiemannSolverFactory()
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
int m_spacedim
Spatial dimension (>= expansion dim). 
void CopyBoundaryTrace(const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects. 
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters. 
void Neg(int n, T *x, const int incx)
Negate x = -x. 
Array< OneD, NekDouble > m_dBwd
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
EquationSystemFactory & GetEquationSystemFactory()
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y. 
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
LinearSWE(const LibUtilities::SessionReaderSharedPtr &pSession)
SOLVER_UTILS_EXPORT int GetPhys_Offset(int n)
MultiRegions::Direction const DirCartesianMap[]
void GetVelocityVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
Compute the velocity field  given the momentum . 
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables. 
LibUtilities::SessionReaderSharedPtr m_session
The session reader. 
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y 
SOLVER_UTILS_EXPORT int GetNcoeffs()
void WallBoundary2D(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
bool m_constantDepth
Indicates if constant depth case. 
const Array< OneD, NekDouble > & GetDepthBwd()
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void Zero(int n, T *x, const int incx)
Zero vector. 
NekDouble m_g
Acceleration of gravity. 
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y. 
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y. 
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.