Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
NonlinearPeregrine.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File NonlinearPeregrine.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Nonlinear Boussinesq equations of Peregrine in
33 // conservative variables (constant depth case)
34 //
35 ///////////////////////////////////////////////////////////////////////////////
36 
37 #include <iostream>
38 #include <iomanip>
39 #include <boost/algorithm/string.hpp>
40 
43 
44 namespace Nektar
45 {
46 
49  "NonlinearPeregrine", NonlinearPeregrine::create,
50  "Nonlinear Peregrine equations in conservative variables.");
51 
54  : ShallowWaterSystem(pSession), m_factors()
55 {
57  m_factors[StdRegions::eFactorTau] = 1000000.0;
58  // note: eFactorTau = 1.0 becomes unstable...
59  // we need to investigate the behaviuor w.r.t. tau
60 }
61 
63 {
65 
66  if (m_session->DefinesSolverInfo("PROBLEMTYPE"))
67  {
68  int i;
69  std::string ProblemTypeStr = m_session->GetSolverInfo("PROBLEMTYPE");
70  for (i = 0; i < (int) SIZE_ProblemType; ++i)
71  {
72  if (boost::iequals(ProblemTypeMap[i], ProblemTypeStr))
73  {
75  break;
76  }
77  }
78  }
79  else
80  {
82  }
83 
85  {
88  }
89  else
90  {
91  ASSERTL0(false, "Implicit Peregrine not set up.");
92  }
93 
94  // NB! At the moment only the constant depth case is
95  // supported for the Peregrine eq.
96  if (m_session->DefinesParameter("ConstDepth"))
97  {
98  m_const_depth = m_session->GetParameter("ConstDepth");
99  }
100  else
101  {
102  ASSERTL0(false, "Constant Depth not specified");
103  }
104 
105  // Type of advection class to be used
106  switch (m_projectionType)
107  {
108  // Continuous field
110  {
111  ASSERTL0(false,
112  "Continuous projection type not supported for Peregrine.");
113  break;
114  }
115  // Discontinuous field
117  {
118  string advName;
119  string diffName;
120  string riemName;
121 
122  //---------------------------------------------------------------
123  // Setting up advection and diffusion operators
124  // NB: diffusion not set up for SWE at the moment
125  // but kept here for future use ...
126  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
127  // m_session->LoadSolverInfo("DiffusionType", diffName, "LDG");
129  advName, advName);
130 
132  this);
133 
134  // Setting up Riemann solver for advection operator
135  m_session->LoadSolverInfo("UpwindType", riemName, "NoSolver");
136 
139  riemName);
140 
141  // Setting up parameters for advection operator Riemann solver
142  m_riemannSolver->SetParam("gravity",
144  m_riemannSolver->SetAuxVec("vecLocs",
147  this);
148  m_riemannSolver->SetScalar("depth", &NonlinearPeregrine::GetDepth,
149  this);
150 
151  // Concluding initialisation of advection / diffusion operators
152  m_advection->SetRiemannSolver(m_riemannSolver);
153  m_advection->InitObject(m_session, m_fields);
154  break;
155  }
156  default:
157  {
158  ASSERTL0(false, "Unsupported projection type.");
159  break;
160  }
161  }
162 
163 }
164 
166 {
167 
168 }
169 
170 // physarray contains the conservative variables
172  const Array<OneD, const Array<OneD, NekDouble> > &physarray,
173  Array<OneD, Array<OneD, NekDouble> > &outarray)
174 {
175 
176  int ncoeffs = GetNcoeffs();
177  int nq = GetTotPoints();
178 
179  Array<OneD, NekDouble> tmp(nq);
180  Array<OneD, NekDouble> mod(ncoeffs);
181 
182  switch (m_projectionType)
183  {
185  {
186  // add to hu equation
187  Vmath::Vmul(nq, m_coriolis, 1, physarray[2], 1, tmp, 1);
188  m_fields[0]->IProductWRTBase(tmp, mod);
189  m_fields[0]->MultiplyByElmtInvMass(mod, mod);
190  m_fields[0]->BwdTrans(mod, tmp);
191  Vmath::Vadd(nq, tmp, 1, outarray[1], 1, outarray[1], 1);
192 
193  // add to hv equation
194  Vmath::Vmul(nq, m_coriolis, 1, physarray[1], 1, tmp, 1);
195  Vmath::Neg(nq, tmp, 1);
196  m_fields[0]->IProductWRTBase(tmp, mod);
197  m_fields[0]->MultiplyByElmtInvMass(mod, mod);
198  m_fields[0]->BwdTrans(mod, tmp);
199  Vmath::Vadd(nq, tmp, 1, outarray[2], 1, outarray[2], 1);
200  break;
201  }
204  {
205  // add to hu equation
206  Vmath::Vmul(nq, m_coriolis, 1, physarray[2], 1, tmp, 1);
207  Vmath::Vadd(nq, tmp, 1, outarray[1], 1, outarray[1], 1);
208 
209  // add to hv equation
210  Vmath::Vmul(nq, m_coriolis, 1, physarray[1], 1, tmp, 1);
211  Vmath::Neg(nq, tmp, 1);
212  Vmath::Vadd(nq, tmp, 1, outarray[2], 1, outarray[2], 1);
213  break;
214  }
215  default:
216  ASSERTL0(false, "Unknown projection scheme for the NonlinearSWE");
217  break;
218  }
219 
220 }
221 
222 // physarray contains the conservative variables
224  const Array<OneD, const Array<OneD, NekDouble> > &physarray,
225  Array<OneD, Array<OneD, NekDouble> > &outarray)
226 {
227 
228  int ncoeffs = GetNcoeffs();
229  int nq = GetTotPoints();
230 
231  Array<OneD, NekDouble> tmp(nq);
232  Array<OneD, NekDouble> mod(ncoeffs);
233 
234  switch (m_projectionType)
235  {
237  {
238  for (int i = 0; i < m_spacedim; ++i)
239  {
240  Vmath::Vmul(nq, m_bottomSlope[i], 1, physarray[0], 1, tmp, 1);
241  Vmath::Smul(nq, m_g, tmp, 1, tmp, 1);
242  m_fields[0]->IProductWRTBase(tmp, mod);
243  m_fields[0]->MultiplyByElmtInvMass(mod, mod);
244  m_fields[0]->BwdTrans(mod, tmp);
245  Vmath::Vadd(nq, tmp, 1, outarray[i + 1], 1, outarray[i + 1], 1);
246  }
247  break;
248  }
251  {
252  for (int i = 0; i < m_spacedim; ++i)
253  {
254  Vmath::Vmul(nq, m_bottomSlope[i], 1, physarray[0], 1, tmp, 1);
255  Vmath::Smul(nq, m_g, tmp, 1, tmp, 1);
256  Vmath::Vadd(nq, tmp, 1, outarray[i + 1], 1, outarray[i + 1], 1);
257  }
258  break;
259  }
260  default:
261  ASSERTL0(false, "Unknown projection scheme for the NonlinearSWE");
262  break;
263  }
264 
265 }
266 
268  const Array<OneD, const Array<OneD, NekDouble> >&inarray,
269  Array<OneD, Array<OneD, NekDouble> >&outarray, const NekDouble time)
270 {
271  int i;
272  int nvariables = inarray.num_elements();
273  int ncoeffs = GetNcoeffs();
274  int nq = GetTotPoints();
275 
276  switch (m_projectionType)
277  {
279  {
280 
281  //-------------------------------------------------------
282  //inarray in physical space
283 
284  Array<OneD, Array<OneD, NekDouble> > modarray(nvariables);
285  for (i = 0; i < nvariables; ++i)
286  {
287  modarray[i] = Array<OneD, NekDouble>(ncoeffs, 0.0);
288  }
289  //-------------------------------------------------------
290 
291  //-------------------------------------------------------
292  // Compute the DG advection including the numerical flux
293  // by using SolverUtils/Advection
294  // Input and output in physical space
296 
297  m_advection->Advect(nvariables - 1, m_fields, advVel, inarray,
298  outarray, time);
299  //-------------------------------------------------------
300 
301  //-------------------------------------------------------
302  // negate the outarray since moving terms to the rhs
303  for (i = 0; i < nvariables - 1; ++i)
304  {
305  Vmath::Neg(nq, outarray[i], 1);
306  }
307  //-------------------------------------------------------
308 
309  //-------------------------------------------------
310  // Add "source terms"
311  // Input and output in physical space
312 
313  // Coriolis forcing
314  if (m_coriolis.num_elements() != 0)
315  {
316  AddCoriolis(inarray, outarray);
317  }
318 
319  // Variable Depth
320  if (m_constantDepth != true)
321  {
322  ASSERTL0(false,
323  "Variable depth not supported for the Peregrine "
324  "equations");
325  }
326 
327  //-------------------------------------------------
328 
329  //---------------------------------------
330  // As no more terms is required for the
331  // continuity equation and we have aleady evaluated
332  // the values for h_t we are done for h
333  //---------------------------------------
334 
335  //-------------------------------------------------
336  // go to modal space
337  m_fields[0]->IProductWRTBase(outarray[1], modarray[1]);
338  m_fields[0]->IProductWRTBase(outarray[2], modarray[2]);
339 
340  // store f1 and f2 for later use (modal space)
341  Array<OneD, NekDouble> f1(ncoeffs);
342  Array<OneD, NekDouble> f2(ncoeffs);
343 
344  Vmath::Vcopy(ncoeffs, modarray[1], 1, f1, 1); // f1
345  Vmath::Vcopy(ncoeffs, modarray[2], 1, f2, 1); // f2
346 
347  // Solve the remaining block-diagonal systems
348  m_fields[0]->MultiplyByElmtInvMass(modarray[1], modarray[1]);
349  m_fields[0]->MultiplyByElmtInvMass(modarray[2], modarray[2]);
350  //---------------------------------------------
351 
352  //---------------------------------------------
353 
354  //-------------------------------------------------
355  // create tmp fields to be used during
356  // the dispersive section
357 
358  Array<OneD, Array<OneD, NekDouble> > coeffsfield(2);
359  Array<OneD, Array<OneD, NekDouble> > physfield(2);
360 
361  for (i = 0; i < 2; ++i)
362  {
363  coeffsfield[i] = Array<OneD, NekDouble>(ncoeffs);
364  physfield[i] = Array<OneD, NekDouble>(nq);
365  }
366  //---------------------------------------------
367 
368  //---------------------------------------------
369  // Go from modal to physical space
370  Vmath::Vcopy(nq, outarray[1], 1, physfield[0], 1);
371  Vmath::Vcopy(nq, outarray[2], 1, physfield[1], 1);
372  //---------------------------------------
373 
374  //---------------------------------------
375  // Start for solve of mixed dispersive terms
376  // using the 'WCE method'
377  // (Eskilsson & Sherwin, JCP 2006)
378 
379  // constant depth case
380  // \nabla \cdot (\nabla z) - invgamma z
381  // = - invgamma (\nabla \cdot {\bf f}_(2,3)
382 
383  NekDouble gamma = (m_const_depth * m_const_depth) * (1.0 / 3.0);
384  NekDouble invgamma = 1.0 / gamma;
385 
386  int nTraceNumPoints = GetTraceTotPoints();
389  upwindX[0] = Array<OneD, NekDouble>(nTraceNumPoints);
390  upwindY[0] = Array<OneD, NekDouble>(nTraceNumPoints);
391  //--------------------------------------------
392 
393  //--------------------------------------------
394  // Compute the forcing function for the
395  // wave continuity equation
396 
397  // Set boundary condidtions for z
398  SetBoundaryConditionsForcing(physfield, time);
399 
400  // \nabla \phi \cdot f_{2,3}
401  m_fields[0]->IProductWRTDerivBase(0, physfield[0], coeffsfield[0]);
402  m_fields[0]->IProductWRTDerivBase(1, physfield[1], coeffsfield[1]);
403  Vmath::Vadd(ncoeffs, coeffsfield[0], 1, coeffsfield[1], 1,
404  coeffsfield[0], 1);
405  Vmath::Neg(ncoeffs, coeffsfield[0], 1);
406 
407  // Evaluate upwind numerical flux (physical space)
408  NumericalFluxForcing(physfield, upwindX[0], upwindY[0]);
409 
410  m_fields[0]->AddTraceIntegral(upwindX[0], upwindY[0],
411  coeffsfield[0]);
412  m_fields[0]->MultiplyByElmtInvMass(coeffsfield[0], coeffsfield[0]);
413  m_fields[0]->BwdTrans(coeffsfield[0], physfield[0]);
414 
415  Vmath::Smul(nq, -invgamma, physfield[0], 1, physfield[0], 1);
416 
417  // ok: forcing function for HelmSolve... done!
418  //--------------------------------------
419 
420  //--------------------------------------
421  // Solve the Helmhotz-type equation
422  // for the wave continuity equation
423  // (missing slope terms...)
424 
425  // note: this is just valid for the constant depth case:
426 
427  // as of now we need not to specify any
428  // BC routine for the WCE: periodic
429  // and zero Neumann (for walls)
430 
431  WCESolve(physfield[0], invgamma);
432 
433  Vmath::Vcopy(nq, physfield[0], 1, outarray[3], 1); // store z
434 
435  // ok: Wave Continuity Equation... done!
436  //------------------------------------
437 
438  //------------------------------------
439  // Return to the primary variables
440 
441  // (h {\bf u})_t = gamma \nabla z + {\bf f}_{2,3}
442 
443  Vmath::Smul(nq, gamma, physfield[0], 1, physfield[0], 1);
444 
445  // Set boundary conditions
446  SetBoundaryConditionsContVariables(physfield[0], time);
447 
448  m_fields[0]->IProductWRTDerivBase(0, physfield[0], coeffsfield[0]);
449  m_fields[1]->IProductWRTDerivBase(1, physfield[0], coeffsfield[1]);
450 
451  Vmath::Neg(ncoeffs, coeffsfield[0], 1);
452  Vmath::Neg(ncoeffs, coeffsfield[1], 1);
453 
454  // Evaluate upwind numerical flux (physical space)
455  NumericalFluxConsVariables(physfield[0], upwindX[0], upwindY[0]);
456 
457  {
458  Array<OneD, NekDouble> uptemp(nTraceNumPoints, 0.0);
459 
460  m_fields[0]->AddTraceIntegral(upwindX[0], uptemp,
461  coeffsfield[0]);
462  m_fields[0]->AddTraceIntegral(uptemp, upwindY[0],
463  coeffsfield[1]);
464  }
465 
466  Vmath::Vadd(ncoeffs, f1, 1, coeffsfield[0], 1, modarray[1], 1);
467  Vmath::Vadd(ncoeffs, f2, 1, coeffsfield[1], 1, modarray[2], 1);
468 
469  m_fields[1]->MultiplyByElmtInvMass(modarray[1], modarray[1]);
470  m_fields[2]->MultiplyByElmtInvMass(modarray[2], modarray[2]);
471 
472  m_fields[1]->BwdTrans(modarray[1], outarray[1]);
473  m_fields[2]->BwdTrans(modarray[2], outarray[2]);
474 
475  // ok: returned to conservative variables... done!
476  //---------------------
477 
478  break;
479  }
482  ASSERTL0(false, "Unknown projection scheme for the Peregrine");
483  break;
484  default:
485  ASSERTL0(false, "Unknown projection scheme for the NonlinearSWE");
486  break;
487  }
488 }
489 
491  const Array<OneD, const Array<OneD, NekDouble> >&inarray,
492  Array<OneD, Array<OneD, NekDouble> >&outarray,
493  const NekDouble time)
494 {
495  int i;
496  int nvariables = inarray.num_elements();
497 
498  switch (m_projectionType)
499  {
501  {
502 
503  // Just copy over array
504  int npoints = GetNpoints();
505 
506  for (i = 0; i < nvariables; ++i)
507  {
508  Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
509  }
510 
511  SetBoundaryConditions(outarray, time);
512  break;
513  }
516  {
517 
518  EquationSystem::SetBoundaryConditions(time);
520 
521  for (i = 0; i < nvariables; ++i)
522  {
523  m_fields[i]->FwdTrans(inarray[i], coeffs);
524  m_fields[i]->BwdTrans_IterPerExp(coeffs, outarray[i]);
525  }
526  break;
527  }
528  default:
529  ASSERTL0(false, "Unknown projection scheme");
530  break;
531  }
532 }
533 
534 //----------------------------------------------------
536  Array<OneD, Array<OneD, NekDouble> > &inarray,
537  NekDouble time)
538 {
539 
540  int nvariables = m_fields.num_elements();
541  int cnt = 0;
542  int nTracePts = GetTraceTotPoints();
543 
544  // Extract trace for boundaries. Needs to be done on all processors to avoid
545  // deadlock.
546  Array<OneD, Array<OneD, NekDouble> > Fwd(nvariables);
547  for (int i = 0; i < nvariables; ++i)
548  {
549  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
550  m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
551  }
552 
553  // loop over Boundary Regions
554  for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
555  {
556 
557  // Wall Boundary Condition
558  if (boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
559  {
560  WallBoundary2D(n, cnt, Fwd, inarray);
561  }
562 
563  // Time Dependent Boundary Condition (specified in meshfile)
564  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
565  {
566  for (int i = 0; i < nvariables; ++i)
567  {
568  m_fields[i]->EvaluateBoundaryConditions(time);
569  }
570  }
571  cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
572  }
573 }
574 
575 //----------------------------------------------------
576 /**
577  * @brief Wall boundary condition.
578  */
579 void NonlinearPeregrine::WallBoundary(int bcRegion, int cnt,
581  Array<OneD, Array<OneD, NekDouble> > &physarray)
582 {
583  int i;
584  int nvariables = physarray.num_elements();
585 
586  // Adjust the physical values of the trace to take
587  // user defined boundaries into account
588  int e, id1, id2, npts;
590  m_fields[0]->GetBndCondExpansions()[bcRegion];
591  for (e = 0; e < bcexp->GetExpSize(); ++e)
592  {
593  npts = bcexp->GetExp(e)->GetTotPoints();
594  id1 = bcexp->GetPhys_Offset(e);
595  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
596  m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(
597  cnt + e));
598 
599  // For 2D/3D, define: v* = v - 2(v.n)n
600  Array<OneD, NekDouble> tmp(npts, 0.0);
601 
602  // Calculate (v.n)
603  for (i = 0; i < m_spacedim; ++i)
604  {
605  Vmath::Vvtvp(npts, &Fwd[1 + i][id2], 1, &m_traceNormals[i][id2], 1,
606  &tmp[0], 1, &tmp[0], 1);
607  }
608 
609  // Calculate 2.0(v.n)
610  Vmath::Smul(npts, -2.0, &tmp[0], 1, &tmp[0], 1);
611 
612  // Calculate v* = v - 2.0(v.n)n
613  for (i = 0; i < m_spacedim; ++i)
614  {
615  Vmath::Vvtvp(npts, &tmp[0], 1, &m_traceNormals[i][id2], 1,
616  &Fwd[1 + i][id2], 1, &Fwd[1 + i][id2], 1);
617  }
618 
619  // copy boundary adjusted values into the boundary expansion
620  for (i = 0; i < nvariables; ++i)
621  {
622  bcexp = m_fields[i]->GetBndCondExpansions()[bcRegion];
623  Vmath::Vcopy(npts, &Fwd[i][id2], 1, &(bcexp->UpdatePhys())[id1], 1);
624  }
625  }
626 }
627 
629  int bcRegion,
630  int cnt,
632  Array<OneD, Array<OneD, NekDouble> > &physarray)
633 {
634 
635  int i;
636  int nvariables = 3;
637 
638  // Adjust the physical values of the trace to take
639  // user defined boundaries into account
640  int e, id1, id2, npts;
642  m_fields[0]->GetBndCondExpansions()[bcRegion];
643 
644  for (e = 0; e < bcexp->GetExpSize();
645  ++e)
646  {
647  npts = bcexp->GetExp(e)->GetNumPoints(0);
648  id1 = bcexp->GetPhys_Offset(e);
649  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
650  m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(
651  cnt + e));
652 
653  switch (m_expdim)
654  {
655  case 1:
656  {
657  // negate the forward flux
658  Vmath::Neg(npts, &Fwd[1][id2], 1);
659  break;
660  }
661  case 2:
662  {
663  Array<OneD, NekDouble> tmp_n(npts);
664  Array<OneD, NekDouble> tmp_t(npts);
665 
666  Vmath::Vmul (npts, &Fwd[1][id2], 1, &m_traceNormals[0][id2], 1,
667  &tmp_n[0], 1);
668  Vmath::Vvtvp(npts, &Fwd[2][id2], 1, &m_traceNormals[1][id2], 1,
669  &tmp_n[0], 1, &tmp_n[0], 1);
670 
671  Vmath::Vmul (npts, &Fwd[1][id2], 1, &m_traceNormals[1][id2], 1,
672  &tmp_t[0], 1);
673  Vmath::Vvtvm(npts, &Fwd[2][id2], 1, &m_traceNormals[0][id2], 1,
674  &tmp_t[0], 1, &tmp_t[0], 1);
675 
676  // negate the normal flux
677  Vmath::Neg(npts, tmp_n, 1);
678 
679  // rotate back to Cartesian
680  Vmath::Vmul (npts, &tmp_t[0], 1, &m_traceNormals[1][id2], 1,
681  &Fwd[1][id2], 1);
682  Vmath::Vvtvm(npts, &tmp_n[0], 1, &m_traceNormals[0][id2], 1,
683  &Fwd[1][id2], 1, &Fwd[1][id2], 1);
684 
685  Vmath::Vmul(npts, &tmp_t[0], 1, &m_traceNormals[0][id2], 1,
686  &Fwd[2][id2], 1);
687  Vmath::Vvtvp(npts, &tmp_n[0], 1, &m_traceNormals[1][id2], 1,
688  &Fwd[2][id2], 1, &Fwd[2][id2], 1);
689  break;
690  }
691  case 3:
692  ASSERTL0(false,
693  "3D not implemented for Shallow Water Equations");
694  break;
695  default:
696  ASSERTL0(false, "Illegal expansion dimension");
697  }
698 
699  // copy boundary adjusted values into the boundary expansion
700  for (i = 0; i < nvariables; ++i)
701  {
702  bcexp = m_fields[i]->GetBndCondExpansions()[bcRegion];
703  Vmath::Vcopy(npts, &Fwd[i][id2], 1, &(bcexp->UpdatePhys())[id1], 1);
704  }
705  }
706 }
707 
708 // Physfield in conservative Form
710  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
712 {
713  int i, j;
714  int nq = m_fields[0]->GetTotPoints();
715 
716  NekDouble g = m_g;
718 
719  // Flux vector for the mass equation
720  for (i = 0; i < m_spacedim; ++i)
721  {
722  velocity[i] = Array<OneD, NekDouble>(nq);
723  Vmath::Vcopy(nq, physfield[i + 1], 1, flux[0][i], 1);
724  }
725 
726  GetVelocityVector(physfield, velocity);
727 
728  // Put (0.5 g h h) in tmp
729  Array<OneD, NekDouble> tmp(nq);
730  Vmath::Vmul(nq, physfield[0], 1, physfield[0], 1, tmp, 1);
731  Vmath::Smul(nq, 0.5 * g, tmp, 1, tmp, 1);
732 
733  // Flux vector for the momentum equations
734  for (i = 0; i < m_spacedim; ++i)
735  {
736  for (j = 0; j < m_spacedim; ++j)
737  {
738  Vmath::Vmul(nq, velocity[j], 1, physfield[i + 1], 1,
739  flux[i + 1][j], 1);
740  }
741 
742  // Add (0.5 g h h) to appropriate field
743  Vmath::Vadd(nq, flux[i + 1][i], 1, tmp, 1, flux[i + 1][i], 1);
744  }
745 
746 }
747 
749  const Array<OneD, const Array<OneD, NekDouble> >&physin,
750  Array<OneD, Array<OneD, NekDouble> >&physout)
751 {
752  int nq = GetTotPoints();
753 
754  if (physin.get() == physout.get())
755  {
756  // copy indata and work with tmp array
758  for (int i = 0; i < 3; ++i)
759  {
760  // deep copy
761  tmp[i] = Array<OneD, NekDouble>(nq);
762  Vmath::Vcopy(nq, physin[i], 1, tmp[i], 1);
763  }
764 
765  // \eta = h - d
766  Vmath::Vsub(nq, tmp[0], 1, m_depth, 1, physout[0], 1);
767 
768  // u = hu/h
769  Vmath::Vdiv(nq, tmp[1], 1, tmp[0], 1, physout[1], 1);
770 
771  // v = hv/ v
772  Vmath::Vdiv(nq, tmp[2], 1, tmp[0], 1, physout[2], 1);
773  }
774  else
775  {
776  // \eta = h - d
777  Vmath::Vsub(nq, physin[0], 1, m_depth, 1, physout[0], 1);
778 
779  // u = hu/h
780  Vmath::Vdiv(nq, physin[1], 1, physin[0], 1, physout[1], 1);
781 
782  // v = hv/ v
783  Vmath::Vdiv(nq, physin[2], 1, physin[0], 1, physout[2], 1);
784  }
785 }
786 
788 {
789  int nq = GetTotPoints();
790 
791  // u = hu/h
792  Vmath::Vdiv(nq, m_fields[1]->GetPhys(), 1, m_fields[0]->GetPhys(), 1,
793  m_fields[1]->UpdatePhys(), 1);
794 
795  // v = hv/ v
796  Vmath::Vdiv(nq, m_fields[2]->GetPhys(), 1, m_fields[0]->GetPhys(), 1,
797  m_fields[2]->UpdatePhys(), 1);
798 
799  // \eta = h - d
800  Vmath::Vsub(nq, m_fields[0]->GetPhys(), 1, m_depth, 1,
801  m_fields[0]->UpdatePhys(), 1);
802 }
803 
805  const Array<OneD, const Array<OneD, NekDouble> >&physin,
806  Array<OneD, Array<OneD, NekDouble> >&physout)
807 {
808 
809  int nq = GetTotPoints();
810 
811  if (physin.get() == physout.get())
812  {
813  // copy indata and work with tmp array
815  for (int i = 0; i < 3; ++i)
816  {
817  // deep copy
818  tmp[i] = Array<OneD, NekDouble>(nq);
819  Vmath::Vcopy(nq, physin[i], 1, tmp[i], 1);
820  }
821 
822  // h = \eta + d
823  Vmath::Vadd(nq, tmp[0], 1, m_depth, 1, physout[0], 1);
824 
825  // hu = h * u
826  Vmath::Vmul(nq, physout[0], 1, tmp[1], 1, physout[1], 1);
827 
828  // hv = h * v
829  Vmath::Vmul(nq, physout[0], 1, tmp[2], 1, physout[2], 1);
830 
831  }
832  else
833  {
834  // h = \eta + d
835  Vmath::Vadd(nq, physin[0], 1, m_depth, 1, physout[0], 1);
836 
837  // hu = h * u
838  Vmath::Vmul(nq, physout[0], 1, physin[1], 1, physout[1], 1);
839 
840  // hv = h * v
841  Vmath::Vmul(nq, physout[0], 1, physin[2], 1, physout[2], 1);
842 
843  }
844 
845 }
846 
848 {
849  int nq = GetTotPoints();
850 
851  // h = \eta + d
852  Vmath::Vadd(nq, m_fields[0]->GetPhys(), 1, m_depth, 1,
853  m_fields[0]->UpdatePhys(), 1);
854 
855  // hu = h * u
856  Vmath::Vmul(nq, m_fields[0]->GetPhys(), 1, m_fields[1]->GetPhys(), 1,
857  m_fields[1]->UpdatePhys(), 1);
858 
859  // hv = h * v
860  Vmath::Vmul(nq, m_fields[0]->GetPhys(), 1, m_fields[2]->GetPhys(), 1,
861  m_fields[2]->UpdatePhys(), 1);
862 }
863 
864 /**
865  * @brief Compute the velocity field \f$ \mathbf{v} \f$ given the momentum
866  * \f$ h\mathbf{v} \f$.
867  *
868  * @param physfield Momentum field.
869  * @param velocity Velocity field.
870  */
872  const Array<OneD, Array<OneD, NekDouble> > &physfield,
873  Array<OneD, Array<OneD, NekDouble> > &velocity)
874 {
875  const int npts = physfield[0].num_elements();
876 
877  for (int i = 0; i < m_spacedim; ++i)
878  {
879  Vmath::Vdiv(npts, physfield[1 + i], 1, physfield[0], 1, velocity[i], 1);
880  }
881 }
882 
884 {
886  SolverUtils::AddSummaryItem(s, "Variables", "h should be in field[0]");
887  SolverUtils::AddSummaryItem(s, "", "hu should be in field[1]");
888  SolverUtils::AddSummaryItem(s, "", "hv should be in field[2]");
889  SolverUtils::AddSummaryItem(s, "", "z should be in field[3]");
890 }
891 
894  NekDouble lambda)
895 {
896  int nq = GetTotPoints();
897 
899 
900  for (int j = 0; j < nq; j++)
901  {
902  (m_fields[3]->UpdatePhys())[j] = fce[j];
903  }
904 
905  m_fields[3]->SetPhysState(true);
906 
907  m_fields[3]->HelmSolve(m_fields[3]->GetPhys(),
908  m_fields[3]->UpdateCoeffs(),
909  NullFlagList,
910  m_factors);
911 
912  m_fields[3]->BwdTrans(m_fields[3]->GetCoeffs(), m_fields[3]->UpdatePhys());
913 
914  m_fields[3]->SetPhysState(true);
915 
916  Vmath::Vcopy(nq, m_fields[3]->GetPhys(), 1, fce, 1);
917 }
918 
920  const Array<OneD, const Array<OneD, NekDouble> > &inarray,
921  Array<OneD, NekDouble> &numfluxX,
922  Array<OneD, NekDouble> &numfluxY)
923 {
924  int i;
925  int nTraceNumPoints = GetTraceTotPoints();
926 
927  //-----------------------------------------------------
928  // get temporary arrays
931 
932  for (i = 0; i < 2; ++i)
933  {
934  Fwd[i] = Array<OneD, NekDouble>(nTraceNumPoints);
935  Bwd[i] = Array<OneD, NekDouble>(nTraceNumPoints);
936  }
937  //-----------------------------------------------------
938 
939  //-----------------------------------------------------
940  // get the physical values at the trace
941  // (any time-dependent BC previuosly put in fields[1] and [2]
942 
943  m_fields[1]->GetFwdBwdTracePhys(inarray[0], Fwd[0], Bwd[0]);
944  m_fields[2]->GetFwdBwdTracePhys(inarray[1], Fwd[1], Bwd[1]);
945  //-----------------------------------------------------
946 
947  //-----------------------------------------------------
948  // use centred fluxes for the numerical flux
949  for (i = 0; i < nTraceNumPoints; ++i)
950  {
951  numfluxX[i] = 0.5 * (Fwd[0][i] + Bwd[0][i]);
952  numfluxY[i] = 0.5 * (Fwd[1][i] + Bwd[1][i]);
953  }
954  //-----------------------------------------------------
955 }
956 
958  Array<OneD, Array<OneD, NekDouble> > &inarray,
959  NekDouble time)
960 {
961  int cnt = 0;
962 
963  // loop over Boundary Regions
964  for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
965  {
966  // Use wall for all BC...
967  // Wall Boundary Condition
968  if (boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
969  {
970  WallBoundaryForcing(n, cnt, inarray);
971  }
972 
973  //Timedependent Boundary Condition
974  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
975  {
976  ASSERTL0(false, "time-dependent BC not implemented for Boussinesq");
977  }
978  cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
979  }
980 }
981 
982 // fills up boundary expansion for field[1] and [2]
984  int bcRegion,
985  int cnt,
986  Array<OneD, Array<OneD, NekDouble> >&inarray)
987 {
988 
989  //std::cout << " WallBoundaryForcing" << std::endl;
990 
991  int nTraceNumPoints = GetTraceTotPoints();
992  int nvariables = 2;
993 
994  // get physical values of f1 and f2 for the forward trace
995  Array<OneD, Array<OneD, NekDouble> > Fwd(nvariables);
996  for (int i = 0; i < nvariables; ++i)
997  {
998  Fwd[i] = Array<OneD, NekDouble>(nTraceNumPoints);
999  m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
1000  }
1001 
1002  // Adjust the physical values of the trace to take
1003  // user defined boundaries into account
1004  int e, id1, id2, npts;
1006  m_fields[0]->GetBndCondExpansions()[bcRegion];
1007  for (e = 0; e < bcexp->GetExpSize(); ++e)
1008  {
1009  npts = bcexp->GetExp(e)->GetTotPoints();
1010  id1 = bcexp->GetPhys_Offset(e);
1011  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
1012  m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(
1013  cnt + e));
1014 
1015  switch (m_expdim)
1016  {
1017  case 1:
1018  {
1019  ASSERTL0(false, "1D not yet implemented for Boussinesq");
1020  break;
1021  }
1022  case 2:
1023  {
1024  Array<OneD, NekDouble> tmp_n(npts);
1025  Array<OneD, NekDouble> tmp_t(npts);
1026 
1027  Vmath::Vmul (npts, &Fwd[0][id2], 1, &m_traceNormals[0][id2], 1,
1028  &tmp_n[0], 1);
1029  Vmath::Vvtvp(npts, &Fwd[1][id2], 1, &m_traceNormals[1][id2], 1,
1030  &tmp_n[0], 1, &tmp_n[0], 1);
1031 
1032  Vmath::Vmul (npts, &Fwd[0][id2], 1, &m_traceNormals[1][id2], 1,
1033  &tmp_t[0], 1);
1034  Vmath::Vvtvm(npts, &Fwd[1][id2], 1, &m_traceNormals[0][id2], 1,
1035  &tmp_t[0], 1, &tmp_t[0], 1);
1036 
1037  // negate the normal flux
1038  Vmath::Neg(npts, tmp_n, 1);
1039 
1040  // rotate back to Cartesian
1041  Vmath::Vmul (npts, &tmp_t[0], 1, &m_traceNormals[1][id2], 1,
1042  &Fwd[0][id2], 1);
1043  Vmath::Vvtvm(npts, &tmp_n[0], 1, &m_traceNormals[0][id2], 1,
1044  &Fwd[0][id2], 1, &Fwd[0][id2], 1);
1045 
1046  Vmath::Vmul (npts, &tmp_t[0], 1, &m_traceNormals[0][id2], 1,
1047  &Fwd[1][id2], 1);
1048  Vmath::Vvtvp(npts, &tmp_n[0], 1, &m_traceNormals[1][id2], 1,
1049  &Fwd[1][id2], 1, &Fwd[1][id2], 1);
1050  break;
1051  }
1052  case 3:
1053  ASSERTL0(false, "3D not implemented for Boussinesq equations");
1054  break;
1055  default:
1056  ASSERTL0(false, "Illegal expansion dimension");
1057  }
1058 
1059  // copy boundary adjusted values into the boundary expansion
1060  bcexp = m_fields[1]->GetBndCondExpansions()[bcRegion];
1061  Vmath::Vcopy(npts, &Fwd[0][id2], 1, &(bcexp->UpdatePhys())[id1], 1);
1062 
1063  bcexp = m_fields[2]->GetBndCondExpansions()[bcRegion];
1064  Vmath::Vcopy(npts, &Fwd[1][id2], 1, &(bcexp->UpdatePhys())[id1], 1);
1065  }
1066 }
1067 
1069  Array<OneD, NekDouble> &inarray,
1070  NekDouble time)
1071 {
1072  int cnt = 0;
1073 
1074  // loop over Boundary Regions
1075  for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
1076  {
1077  // Use wall for all
1078  // Wall Boundary Condition
1079  if(boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
1080  {
1081  WallBoundaryContVariables(n, cnt, inarray);
1082  }
1083 
1084  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
1085  {
1086  WallBoundaryContVariables(n, cnt, inarray);
1087  }
1088 
1089  cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize() - 1;
1090  }
1091 }
1092 
1094  int bcRegion,
1095  int cnt,
1096  Array<OneD, NekDouble>&inarray)
1097 {
1098  int nTraceNumPoints = GetTraceTotPoints();
1099 
1100  // get physical values of z for the forward trace
1101  Array<OneD, NekDouble> z(nTraceNumPoints);
1102  m_fields[0]->ExtractTracePhys(inarray, z);
1103 
1104  // Adjust the physical values of the trace to take
1105  // user defined boundaries into account
1106  int e, id1, id2, npts;
1108  m_fields[0]->GetBndCondExpansions()[bcRegion];
1109 
1110  for (e = 0; e < bcexp->GetExpSize(); ++e)
1111  {
1112  npts = bcexp->GetExp(e)->GetTotPoints();
1113  id1 = bcexp->GetPhys_Offset(e);
1114  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
1115  m_fields[0]->GetTraceMap()->GetBndCondCoeffsToGlobalCoeffsMap(
1116  cnt + e));
1117 
1118  // copy boundary adjusted values into the boundary expansion field[1] and field[2]
1119  bcexp = m_fields[1]->GetBndCondExpansions()[bcRegion];
1120  Vmath::Vcopy(npts, &z[id2], 1, &(bcexp->UpdatePhys())[id1], 1);
1121 
1122  }
1123 }
1124 
1127  Array<OneD, NekDouble> &outY)
1128 {
1129  int i;
1130  int nTraceNumPoints = GetTraceTotPoints();
1131 
1132  //-----------------------------------------------------
1133  // get temporary arrays
1136 
1137  Fwd[0] = Array<OneD, NekDouble>(nTraceNumPoints);
1138  Bwd[0] = Array<OneD, NekDouble>(nTraceNumPoints);
1139  //-----------------------------------------------------
1140 
1141  //-----------------------------------------------------
1142  // get the physical values at the trace
1143  // (we have put any time-dependent BC in field[1])
1144 
1145  m_fields[1]->GetFwdBwdTracePhys(physfield, Fwd[0], Bwd[0]);
1146  //-----------------------------------------------------
1147 
1148  //-----------------------------------------------------
1149  // use centred fluxes for the numerical flux
1150  for (i = 0; i < nTraceNumPoints; ++i)
1151  {
1152  outX[i] = 0.5 * (Fwd[0][i] + Bwd[0][i]);
1153  outY[i] = 0.5 * (Fwd[0][i] + Bwd[0][i]);
1154  }
1155  //-----------------------------------------------------
1156 }
1157 
1158 // initial condition Laitone's first order solitary wave
1160  NekDouble amp,
1161  NekDouble d,
1162  NekDouble time,
1163  NekDouble x_offset)
1164 {
1165  int nq = GetTotPoints();
1166 
1167  NekDouble A = 1.0;
1168  NekDouble C = sqrt(m_g * d) * (1.0 + 0.5 * (amp / d));
1169 
1170  Array<OneD, NekDouble> x0(nq);
1171  Array<OneD, NekDouble> x1(nq);
1172  Array<OneD, NekDouble> zeros(nq, 0.0);
1173 
1174  // get the coordinates (assuming all fields have the same
1175  // discretisation)
1176  m_fields[0]->GetCoords(x0, x1);
1177 
1178  for (int i = 0; i < nq; i++)
1179  {
1180  (m_fields[0]->UpdatePhys())[i] = amp * pow((1.0 / cosh(
1181  sqrt(0.75 * (amp / (d * d * d))) *
1182  (A * (x0[i] + x_offset) - C * time))), 2.0);
1183  (m_fields[1]->UpdatePhys())[i] = (amp / d) * pow((1.0 / cosh(
1184  sqrt(0.75 * (amp / (d * d * d))) *
1185  (A * (x0[i] + x_offset) - C * time)
1186  )), 2.0) * sqrt(m_g * d);
1187  }
1188 
1189  Vmath::Sadd(nq, d, m_fields[0]->GetPhys(), 1, m_fields[0]->UpdatePhys(), 1);
1190  Vmath::Vmul(nq, m_fields[0]->GetPhys(), 1, m_fields[1]->GetPhys(), 1,
1191  m_fields[1]->UpdatePhys(), 1);
1192  Vmath::Vcopy(nq, zeros, 1, m_fields[2]->UpdatePhys(), 1);
1193  Vmath::Vcopy(nq, zeros, 1, m_fields[3]->UpdatePhys(), 1);
1194 
1195  // Forward transform to fill the coefficient space
1196  for (int i = 0; i < 4; ++i)
1197  {
1198  m_fields[i]->SetPhysState(true);
1199  m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
1200  m_fields[i]->UpdateCoeffs());
1201  }
1202 
1203 }
1204 
1205 /**
1206  * @brief Set the initial conditions.
1207  */
1209  NekDouble initialtime,
1210  bool dumpInitialConditions,
1211  const int domain)
1212 {
1213 
1214  switch (m_problemType)
1215  {
1216  case eSolitaryWave:
1217  {
1218  LaitoneSolitaryWave(0.1, m_const_depth, 0.0, 0.0);
1219  break;
1220  }
1221  default:
1222  {
1223  EquationSystem::v_SetInitialConditions(initialtime, false);
1224  break;
1225  }
1226  }
1227 
1228  if (dumpInitialConditions)
1229  {
1230  // Dump initial conditions to file
1231  Checkpoint_Output(0);
1232  }
1233 }
1234 
1235 } //end of namespace
1236 
Array< OneD, NekDouble > m_coriolis
Coriolis force.
void SetBoundaryConditionsContVariables(Array< OneD, NekDouble > &inarray, NekDouble time)
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void NumericalFluxForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &numfluxX, Array< OneD, NekDouble > &numfluxY)
Base class for unsteady solvers.
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
Array< OneD, NekDouble > m_depth
Still water depth.
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
void WallBoundaryForcing(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &inarray)
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:47
int m_expdim
Expansion dimension.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
SolverUtils::AdvectionSharedPtr m_advection
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
NonlinearPeregrine(const LibUtilities::SessionReaderSharedPtr &pSession)
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
const Array< OneD, NekDouble > & GetDepth()
SOLVER_UTILS_EXPORT int GetTotPoints()
StdRegions::ConstFactorMap m_factors
virtual void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Set the initial conditions.
void NumericalFluxConsVariables(Array< OneD, NekDouble > &physfield, Array< OneD, NekDouble > &outX, Array< OneD, NekDouble > &outY)
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
Array< OneD, Array< OneD, NekDouble > > m_bottomSlope
virtual ~NonlinearPeregrine()
problem type selector
virtual void v_InitObject()
Init object for UnsteadySystem class.
void WallBoundary(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
Wall boundary condition.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
virtual void v_InitObject()
Init object for UnsteadySystem class.
static std::string className
Name of class.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:50
RiemannSolverFactory & GetRiemannSolverFactory()
void WCESolve(Array< OneD, NekDouble > &fce, NekDouble lambda)
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
boost::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
static std::string npts
Definition: InputFld.cpp:43
int m_spacedim
Spatial dimension (>= expansion dim).
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
double NekDouble
Length of enum list.
Definition: EulerADCFE.h:47
void SetBoundaryConditionsForcing(Array< OneD, Array< OneD, NekDouble > > &inarray, NekDouble time)
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:301
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()
void AddVariableDepth(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
void WallBoundary2D(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
SOLVER_UTILS_EXPORT int GetNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void GetVelocityVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
Compute the velocity field given the momentum .
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y
Definition: Vmath.cpp:451
SOLVER_UTILS_EXPORT int GetNcoeffs()
First order Laitone solitary wave.
bool m_constantDepth
Indicates if constant depth case.
ProblemType
Definition: EulerADCFE.h:44
void WallBoundaryContVariables(int bcRegion, int cnt, Array< OneD, NekDouble > &inarray)
void AddCoriolis(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
NekDouble m_g
Acceleration of gravity.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
static FlagList NullFlagList
An empty flag list.
void LaitoneSolitaryWave(NekDouble amp, NekDouble d, NekDouble time, NekDouble x_offset)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215
const char *const ProblemTypeMap[]
Definition: EulerADCFE.h:50