43 namespace LocalRegions
65 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
69 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
71 StdRegions::StdTetExp(Ba,Bb,Bc),
75 boost::bind(&
TetExp::CreateMatrix, this, _1),
76 std::string(
"TetExpMatrix")),
77 m_staticCondMatrixManager(
78 boost::bind(&
TetExp::CreateStaticCondMatrix, this, _1),
79 std::string(
"TetExpStaticCondMatrix"))
90 StdRegions::StdTetExp(T),
93 m_matrixManager(T.m_matrixManager),
94 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
123 int nquad0 =
m_base[0]->GetNumPoints();
124 int nquad1 =
m_base[1]->GetNumPoints();
125 int nquad2 =
m_base[2]->GetNumPoints();
143 retrunVal = StdTetExp::v_Integral(tmp);
167 int TotPts =
m_base[0]->GetNumPoints()*
m_base[1]->GetNumPoints()*
168 m_base[2]->GetNumPoints();
176 StdTetExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
180 if(out_d0.num_elements())
182 Vmath::Vmul (TotPts,&df[0][0],1,&Diff0[0],1, &out_d0[0], 1);
183 Vmath::Vvtvp (TotPts,&df[1][0],1,&Diff1[0],1, &out_d0[0], 1,&out_d0[0],1);
184 Vmath::Vvtvp (TotPts,&df[2][0],1,&Diff2[0],1, &out_d0[0], 1,&out_d0[0],1);
187 if(out_d1.num_elements())
189 Vmath::Vmul (TotPts,&df[3][0],1,&Diff0[0],1, &out_d1[0], 1);
190 Vmath::Vvtvp (TotPts,&df[4][0],1,&Diff1[0],1, &out_d1[0], 1,&out_d1[0],1);
191 Vmath::Vvtvp (TotPts,&df[5][0],1,&Diff2[0],1, &out_d1[0], 1,&out_d1[0],1);
194 if(out_d2.num_elements())
196 Vmath::Vmul (TotPts,&df[6][0],1,&Diff0[0],1, &out_d2[0], 1);
197 Vmath::Vvtvp (TotPts,&df[7][0],1,&Diff1[0],1, &out_d2[0], 1, &out_d2[0],1);
198 Vmath::Vvtvp (TotPts,&df[8][0],1,&Diff2[0],1, &out_d2[0], 1, &out_d2[0],1);
203 if(out_d0.num_elements())
205 Vmath::Smul (TotPts,df[0][0],&Diff0[0],1, &out_d0[0], 1);
206 Blas::Daxpy (TotPts,df[1][0],&Diff1[0],1, &out_d0[0], 1);
207 Blas::Daxpy (TotPts,df[2][0],&Diff2[0],1, &out_d0[0], 1);
210 if(out_d1.num_elements())
212 Vmath::Smul (TotPts,df[3][0],&Diff0[0],1, &out_d1[0], 1);
213 Blas::Daxpy (TotPts,df[4][0],&Diff1[0],1, &out_d1[0], 1);
214 Blas::Daxpy (TotPts,df[5][0],&Diff2[0],1, &out_d1[0], 1);
217 if(out_d2.num_elements())
219 Vmath::Smul (TotPts,df[6][0],&Diff0[0],1, &out_d2[0], 1);
220 Blas::Daxpy (TotPts,df[7][0],&Diff1[0],1, &out_d2[0], 1);
221 Blas::Daxpy (TotPts,df[8][0],&Diff2[0],1, &out_d2[0], 1);
243 if((
m_base[0]->Collocation())&&(
m_base[1]->Collocation())&&(
m_base[2]->Collocation()))
303 bool multiplybyweights)
305 const int nquad0 =
m_base[0]->GetNumPoints();
306 const int nquad1 =
m_base[1]->GetNumPoints();
307 const int nquad2 =
m_base[2]->GetNumPoints();
308 const int order0 =
m_base[0]->GetNumModes();
309 const int order1 =
m_base[1]->GetNumModes();
311 nquad2*order0*(order1+1)/2);
313 if(multiplybyweights)
329 inarray,outarray,wsp,
369 const int nquad0 =
m_base[0]->GetNumPoints();
370 const int nquad1 =
m_base[1]->GetNumPoints();
371 const int nquad2 =
m_base[2]->GetNumPoints();
372 const int order0 =
m_base[0]->GetNumModes ();
373 const int order1 =
m_base[1]->GetNumModes ();
374 const int nqtot = nquad0*nquad1*nquad2;
392 nquad2*order0*(order1+1)/2);
401 Vmath::Vmul(nqtot,&df[3*dir][0], 1,tmp1.get(),1,tmp2.get(),1);
402 Vmath::Vmul(nqtot,&df[3*dir+1][0],1,tmp1.get(),1,tmp3.get(),1);
403 Vmath::Vmul(nqtot,&df[3*dir+2][0],1,tmp1.get(),1,tmp4.get(),1);
407 Vmath::Smul(nqtot, df[3*dir ][0],tmp1.get(),1,tmp2.get(), 1);
408 Vmath::Smul(nqtot, df[3*dir+1][0],tmp1.get(),1,tmp3.get(), 1);
409 Vmath::Smul(nqtot, df[3*dir+2][0],tmp1.get(),1,tmp4.get(), 1);
412 const int nq01 = nquad0*nquad1;
413 const int nq12 = nquad1*nquad2;
415 for(j = 0; j < nquad2; ++j)
417 for(i = 0; i < nquad1; ++i)
420 &h0[0]+i*nquad0 + j*nq01,1);
422 &h1[0]+i*nquad0 + j*nq01,1);
424 &h2[0]+i*nquad0 + j*nq01,1);
426 &h3[0]+i*nquad0 + j*nq01,1);
430 for(i = 0; i < nquad0; i++)
432 Blas::Dscal(nq12, 1+z0[i], &h1[0]+i, nquad0);
437 &tmp3[0], 1, &h1[0], 1,
440 &tmp5[0], 1, &tmp5[0], 1);
450 &tmp4[0], 1, &h3[0], 1,
486 return StdTetExp::v_PhysEvaluate(Lcoord,physvals);
502 m_geom->GetLocCoords(coord,Lcoord);
505 return StdTetExp::v_PhysEvaluate(Lcoord,physvals);
517 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 &&
518 Lcoords[1] <= -1.0 && Lcoords[1] >= 1.0 &&
519 Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
520 "Local coordinates are not in region [-1,1]");
524 for(i = 0; i <
m_geom->GetCoordim(); ++i)
526 coords[i] =
m_geom->GetCoord(i,Lcoords);
556 m_base[2]->GetBasisKey());
561 return m_geom->GetCoordim();
566 const std::vector<unsigned int > &nummodes,
567 const int mode_offset,
570 int data_order0 = nummodes[mode_offset];
571 int fillorder0 = min(
m_base[0]->GetNumModes(),data_order0);
572 int data_order1 = nummodes[mode_offset+1];
573 int order1 =
m_base[1]->GetNumModes();
574 int fillorder1 = min(order1,data_order1);
575 int data_order2 = nummodes[mode_offset+2];
576 int order2 =
m_base[2]->GetNumModes();
577 int fillorder2 = min(order2,data_order2);
589 "Extraction routine not set up for this basis");
592 "Extraction routine not set up for this basis");
595 for(j = 0; j < fillorder0; ++j)
597 for(i = 0; i < fillorder1-j; ++i)
601 cnt += data_order2-j-i;
606 for(i = fillorder1-j; i < data_order1-j; ++i)
608 cnt += data_order2-j-i;
611 for(i = fillorder1-j; i < order1-j; ++i)
620 ASSERTL0(
false,
"basis is either not set up or not "
631 int nquad0 =
m_base[0]->GetNumPoints();
632 int nquad1 =
m_base[1]->GetNumPoints();
633 int nquad2 =
m_base[2]->GetNumPoints();
645 if(outarray.num_elements()!=nq0*nq1)
650 for (
int i = 0; i < nquad0*nquad1; ++i)
661 if(outarray.num_elements()!=nq0*nq1)
667 for (
int k=0; k<nquad2; k++)
669 for(
int i = 0; i < nquad0; ++i)
671 outarray[k*nquad0+i] = (nquad0*nquad1*k)+i;
680 if(outarray.num_elements()!=nq0*nq1)
686 for(
int j = 0; j < nquad1*nquad2; ++j)
688 outarray[j] = nquad0-1 + j*nquad0;
696 if(outarray.num_elements() != nq0*nq1)
702 for(
int j = 0; j < nquad1*nquad2; ++j)
704 outarray[j] = j*nquad0;
709 ASSERTL0(
false,
"face value (> 3) is out of range");
738 for (i = 0; i < vCoordDim; ++i)
754 for (i = 0; i < vCoordDim; ++i)
756 normal[i][0] = -df[3*i+2][0];
763 for (i = 0; i < vCoordDim; ++i)
765 normal[i][0] = -df[3*i+1][0];
772 for (i = 0; i < vCoordDim; ++i)
774 normal[i][0] = df[3*i][0]+df[3*i+1][0]+
782 for(i = 0; i < vCoordDim; ++i)
784 normal[i][0] = -df[3*i][0];
789 ASSERTL0(
false,
"face is out of range (edge < 3)");
794 for (i = 0; i < vCoordDim; ++i)
796 fac += normal[i][0]*normal[i][0];
800 for (i = 0; i < vCoordDim; ++i)
810 int nq0 = ptsKeys[0].GetNumPoints();
811 int nq1 = ptsKeys[1].GetNumPoints();
812 int nq2 = ptsKeys[2].GetNumPoints();
843 for(j = 0; j < nq01; ++j)
845 normals[j] = -df[2][j]*jac[j];
846 normals[nqtot+j] = -df[5][j]*jac[j];
847 normals[2*nqtot+j] = -df[8][j]*jac[j];
851 points0 = ptsKeys[0];
852 points1 = ptsKeys[1];
858 for (j = 0; j < nq0; ++j)
860 for(k = 0; k < nq2; ++k)
864 -df[1][tmp]*jac[tmp];
865 normals[nqtot+j+k*nq0] =
866 -df[4][tmp]*jac[tmp];
867 normals[2*nqtot+j+k*nq0] =
868 -df[7][tmp]*jac[tmp];
869 faceJac[j+k*nq0] = jac[tmp];
873 points0 = ptsKeys[0];
874 points1 = ptsKeys[2];
880 for (j = 0; j < nq1; ++j)
882 for(k = 0; k < nq2; ++k)
884 int tmp = nq0-1+nq0*j+nq01*k;
886 (df[0][tmp]+df[1][tmp]+df[2][tmp])*
888 normals[nqtot+j+k*nq1] =
889 (df[3][tmp]+df[4][tmp]+df[5][tmp])*
891 normals[2*nqtot+j+k*nq1] =
892 (df[6][tmp]+df[7][tmp]+df[8][tmp])*
894 faceJac[j+k*nq1] = jac[tmp];
898 points0 = ptsKeys[1];
899 points1 = ptsKeys[2];
905 for (j = 0; j < nq1; ++j)
907 for(k = 0; k < nq2; ++k)
909 int tmp = j*nq0+nq01*k;
911 -df[0][tmp]*jac[tmp];
912 normals[nqtot+j+k*nq1] =
913 -df[3][tmp]*jac[tmp];
914 normals[2*nqtot+j+k*nq1] =
915 -df[6][tmp]*jac[tmp];
916 faceJac[j+k*nq1] = jac[tmp];
920 points0 = ptsKeys[1];
921 points1 = ptsKeys[2];
926 ASSERTL0(
false,
"face is out of range (face < 3)");
935 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
938 for(i = 0; i < vCoordDim; ++i)
945 Vmath::Vmul(nq_face,work,1,normal[i],1,normal[i],1);
952 Vmath::Vvtvp(nq_face,normal[i],1,normal[i],1,work,1,work,1);
960 Vmath::Vmul(nq_face,normal[i],1,work,1,normal[i],1);
992 StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,
1019 StdTetExp::v_SVVLaplacianFilter( array, mkey);
1046 returnval = StdTetExp::v_GenMatrix(mkey);
1144 int rows = deriv0.GetRows();
1145 int cols = deriv1.GetColumns();
1149 (*WeakDeriv) = df[3*dir][0]*deriv0
1150 + df[3*dir+1][0]*deriv1
1151 + df[3*dir+2][0]*deriv2;
1195 int rows = lap00.GetRows();
1196 int cols = lap00.GetColumns();
1201 (*lap) = gmat[0][0]*lap00
1206 + gmat[7][0]*(lap12 +
Transpose(lap12));
1221 int rows = LapMat.GetRows();
1222 int cols = LapMat.GetColumns();
1227 (*helm) = LapMat + factor*MassMat;
1371 unsigned int nint = (
unsigned int)(
m_ncoeffs - nbdry);
1372 unsigned int exp_size[] = {nbdry, nint};
1373 unsigned int nblks = 2;
1385 goto UseLocRegionsMatrix;
1392 goto UseLocRegionsMatrix;
1397 factor = mat->Scale();
1398 goto UseStdRegionsMatrix;
1401 UseStdRegionsMatrix:
1416 UseLocRegionsMatrix:
1432 for(i = 0; i < nbdry; ++i)
1434 for(j = 0; j < nbdry; ++j)
1436 (*A)(i,j) = mat(bmap[i],bmap[j]);
1439 for(j = 0; j < nint; ++j)
1441 (*B)(i,j) = mat(bmap[i],imap[j]);
1445 for(i = 0; i < nint; ++i)
1447 for(j = 0; j < nbdry; ++j)
1449 (*C)(i,j) = mat(imap[i],bmap[j]);
1452 for(j = 0; j < nint; ++j)
1454 (*D)(i,j) = mat(imap[i],imap[j]);
1463 (*A) = (*A) - (*B)*(*C);
1488 return tmp->GetStdMatrix(mkey);
1513 if(inarray.get() == outarray.get())
1518 Blas::Dgemv(
'N',
m_ncoeffs,
m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1519 m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1523 Blas::Dgemv(
'N',
m_ncoeffs,
m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1524 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1541 int nquad0 =
m_base[0]->GetNumPoints();
1542 int nquad1 =
m_base[1]->GetNumPoints();
1543 int nquad2 =
m_base[2]->GetNumPoints();
1544 int nqtot = nquad0*nquad1*nquad2;
1546 ASSERTL1(wsp.num_elements() >= 6*nqtot,
1547 "Insufficient workspace size.");
1549 "Workspace not set up for ncoeffs > nqtot");
1576 StdExpansion3D::PhysTensorDeriv(inarray,wsp0,wsp1,wsp2);
1582 Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp0[0],1,&metric01[0],1,&wsp1[0],1,&wsp3[0],1);
1583 Vmath::Vvtvp (nqtot,&metric02[0],1,&wsp2[0],1,&wsp3[0],1,&wsp3[0],1);
1584 Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp0[0],1,&metric11[0],1,&wsp1[0],1,&wsp4[0],1);
1585 Vmath::Vvtvp (nqtot,&metric12[0],1,&wsp2[0],1,&wsp4[0],1,&wsp4[0],1);
1586 Vmath::Vvtvvtp(nqtot,&metric02[0],1,&wsp0[0],1,&metric12[0],1,&wsp1[0],1,&wsp5[0],1);
1587 Vmath::Vvtvp (nqtot,&metric22[0],1,&wsp2[0],1,&wsp5[0],1,&wsp5[0],1);
1608 const unsigned int dim = 3;
1614 for (
unsigned int i = 0; i < dim; ++i)
1616 for (
unsigned int j = i; j < dim; ++j)
1649 const unsigned int nquad0 =
m_base[0]->GetNumPoints();
1650 const unsigned int nquad1 =
m_base[1]->GetNumPoints();
1651 const unsigned int nquad2 =
m_base[2]->GetNumPoints();
1653 for(j = 0; j < nquad2; ++j)
1655 for(i = 0; i < nquad1; ++i)
1657 Vmath::Fill(nquad0, 4.0/(1.0-z1[i])/(1.0-z2[j]), &h0[0]+i*nquad0 + j*nquad0*nquad1,1);
1658 Vmath::Fill(nquad0, 2.0/(1.0-z1[i])/(1.0-z2[j]), &h1[0]+i*nquad0 + j*nquad0*nquad1,1);
1659 Vmath::Fill(nquad0, 2.0/(1.0-z2[j]), &h2[0]+i*nquad0 + j*nquad0*nquad1,1);
1660 Vmath::Fill(nquad0, (1.0+z1[i])/(1.0-z2[j]), &h3[0]+i*nquad0 + j*nquad0*nquad1,1);
1663 for(i = 0; i < nquad0; i++)
1665 Blas::Dscal(nquad1*nquad2, 1+z0[i], &h1[0]+i, nquad0);
1674 Vmath::Vadd(nqtot, &df[1][0], 1, &df[2][0], 1, &wsp4[0], 1);
1675 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &wsp4[0], 1, &h1[0], 1, &wsp4[0], 1);
1677 Vmath::Vadd(nqtot, &df[4][0], 1, &df[5][0], 1, &wsp5[0], 1);
1678 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &wsp5[0], 1, &h1[0], 1, &wsp5[0], 1);
1680 Vmath::Vadd(nqtot, &df[7][0], 1, &df[8][0], 1, &wsp6[0], 1);
1681 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &wsp6[0], 1, &h1[0], 1, &wsp6[0], 1);
1684 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1685 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1688 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0], 1, &g4[0], 1);
1689 Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1693 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h2[0], 1, &df[2][0], 1, &h3[0], 1, &wsp7[0], 1);
1695 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h2[0], 1, &df[5][0], 1, &h3[0], 1, &wsp8[0], 1);
1697 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h2[0], 1, &df[8][0], 1, &h3[0], 1, &wsp9[0], 1);
1700 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0], 1, &g3[0], 1);
1701 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1705 Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0], 1, &g1[0], 1);
1706 Vmath::Vvtvp (nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1709 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp7[0], 1, &df[5][0], 1, &wsp8[0], 1, &g5[0], 1);
1710 Vmath::Vvtvp (nqtot, &df[8][0], 1, &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1713 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1, &df[5][0], 1, &g2[0], 1);
1714 Vmath::Vvtvp (nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1719 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[1][0] + df[2][0], &h1[0], 1, &wsp4[0], 1);
1721 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[4][0] + df[5][0], &h1[0], 1, &wsp5[0], 1);
1723 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[7][0] + df[8][0], &h1[0], 1, &wsp6[0], 1);
1726 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0], 1, &g0[0], 1);
1727 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1730 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1, &g4[0], 1);
1731 Vmath::Svtvp (nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1735 Vmath::Svtsvtp(nqtot, df[1][0], &h2[0], 1, df[2][0], &h3[0], 1, &wsp7[0], 1);
1737 Vmath::Svtsvtp(nqtot, df[4][0], &h2[0], 1, df[5][0], &h3[0], 1, &wsp8[0], 1);
1739 Vmath::Svtsvtp(nqtot, df[7][0], &h2[0], 1, df[8][0], &h3[0], 1, &wsp9[0], 1);
1742 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0], 1, &g3[0], 1);
1743 Vmath::Vvtvp (nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1747 Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0], 1, &g1[0], 1);
1748 Vmath::Vvtvp (nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1751 Vmath::Svtsvtp(nqtot, df[2][0], &wsp7[0], 1, df[5][0], &wsp8[0], 1, &g5[0], 1);
1752 Vmath::Svtvp (nqtot, df[8][0], &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1755 Vmath::Fill(nqtot, df[2][0]*df[2][0] + df[5][0]*df[5][0] + df[8][0]*df[8][0], &g2[0], 1);
1758 for (
unsigned int i = 0; i < dim; ++i)
1760 for (
unsigned int j = i; j < dim; ++j)
void ComputeLaplacianMetric()
const LibUtilities::PointsKeyVector GetPointsKeys() const
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey)
NekDouble GetConstFactor(const ConstFactorType &factor) const
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
#define ASSERTL0(condition, msg)
const ConstFactorMap & GetConstFactors() const
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray)
Integrate the physical point list inarray over region.
const VarCoeffMap & GetVarCoeffs() const
void GeneralMatrixOp_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Principle Modified Functions .
DNekMatSharedPtr BuildTransformationMatrix(const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
MatrixType GetMatrixType() const
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
virtual NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Principle Modified Functions .
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put in...
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
LibUtilities::ShapeType GetShapeType() const
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
virtual void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
SpatialDomains::GeometrySharedPtr m_geom
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
boost::shared_ptr< DNekMat > DNekMatSharedPtr
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
LibUtilities::ShapeType DetShapeType() const
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
bool ConstFactorExists(const ConstFactorType &factor) const
virtual void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis...
int NumBndryCoeffs(void) const
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
Unpack data from input file assuming it comes from the same expansion type.
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
int getNumberOfCoefficients(int Na)
Principle Modified Functions .
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
int GetNumPoints() const
Return points order at which basis is defined.
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
Defines a specification for a set of points.
void v_ComputeFaceNormal(const int face)
Compute the normal of a triangular face.
virtual void v_GetFacePhysMap(const int face, Array< OneD, int > &outarray)
Returns the physical values at the quadrature points of a face.
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
std::map< int, NormalVector > m_faceNormals
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey)
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
virtual int v_GetCoordim()
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
PointsKey GetPointsKey() const
Return distribution of points.
SpatialDomains::GeometrySharedPtr GetGeom() const
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
virtual void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculates the inner product .
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Geometry is straight-sided with constant geometric factors.
void ComputeQuadratureMetric()
boost::shared_ptr< TetGeom > TetGeomSharedPtr
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
Get the coordinates "coords" at the local coordinates "Lcoords".
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
const LibUtilities::BasisKey DetFaceBasisKey(const int i, const int k) const
boost::shared_ptr< StdTetExp > StdTetExpSharedPtr
GeomType
Indicates the type of element geometry.
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
Differentiate inarray in the three coordinate directions.
void Zero(int n, T *x, const int incx)
Zero vector.
boost::shared_ptr< StdExpansion > StdExpansionSharedPtr
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Geometry is curved or has non-constant factors.
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
void v_DropLocStaticCondMatrix(const MatrixKey &mkey)
Describes the specification for a Basis.
virtual void v_ComputeLaplacianMetric()
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
virtual LibUtilities::ShapeType v_DetShapeType() const
Return Shape of region, using ShapeType enum list.