Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::MultiRegions::ExpList1D Class Reference

This class is the abstraction of a one-dimensional multi-elemental expansions which is merely a collection of local expansions. More...

#include <ExpList1D.h>

Inheritance diagram for Nektar::MultiRegions::ExpList1D:
Inheritance graph
[legend]
Collaboration diagram for Nektar::MultiRegions::ExpList1D:
Collaboration graph
[legend]

Public Member Functions

 ExpList1D ()
 The default constructor. More...
 
 ExpList1D (const ExpList1D &In, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
 ExpList1D (const ExpList1D &In, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Constructor copying only elements defined in eIds. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const LibUtilities::BasisKey &Ba, const SpatialDomains::MeshGraphSharedPtr &graph1D, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct an ExpList1D from a given graph. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 This constructor sets up a list of local expansions based on an input graph1D. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const bool DeclareCoeffPhysArrays=true, const std::string var="DefaultVar", bool SetToOneSpaceDimension=false, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 This constructor sets up a list of local expansions based on an input compositeMap. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph2D, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Specialised constructor for Neumann boundary conditions in DisContField2D and ContField2D. More...
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph1D, int i, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType)
 
 ExpList1D (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, const ExpListSharedPtr > &bndConstraint, const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > &bndCond, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph2D, const PeriodicMap &periodicEdges, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType)
 Specialised constructor for trace expansions. More...
 
virtual ~ExpList1D ()
 Destructor. More...
 
void PostProcess (LibUtilities::KernelSharedPtr kernel, Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray, NekDouble h, int elmId=0)
 Performs the post-processing on a specified element. More...
 
void PeriodicEval (Array< OneD, NekDouble > &inarray1, Array< OneD, NekDouble > &inarray2, NekDouble h, int nmodes, Array< OneD, NekDouble > &outarray)
 Evaluates the global spectral/hp expansion at some arbitray set of points. More...
 
void ParNormalSign (Array< OneD, NekDouble > &normsign)
 Set up the normals on each expansion. More...
 
- Public Member Functions inherited from Nektar::MultiRegions::ExpList
 ExpList ()
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession)
 The default constructor. More...
 
 ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 The default constructor. More...
 
 ExpList (const ExpList &in, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true)
 Constructor copying only elements defined in eIds. More...
 
 ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true)
 The copy constructor. More...
 
virtual ~ExpList ()
 The default destructor. More...
 
int GetNcoeffs (void) const
 Returns the total number of local degrees of freedom $N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m$. More...
 
int GetNcoeffs (const int eid) const
 Returns the total number of local degrees of freedom for element eid. More...
 
ExpansionType GetExpType (void)
 Returns the type of the expansion. More...
 
void SetExpType (ExpansionType Type)
 Returns the type of the expansion. More...
 
int EvalBasisNumModesMax (void) const
 Evaulates the maximum number of modes in the elemental basis order over all elements. More...
 
const Array< OneD, int > EvalBasisNumModesMaxPerExp (void) const
 Returns the vector of the number of modes in the elemental basis order over all elements. More...
 
int GetTotPoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$. More...
 
int GetTotPoints (const int eid) const
 Returns the total number of quadrature points for eid's element $=Q_{\mathrm{tot}}$. More...
 
int GetNpoints (void) const
 Returns the total number of quadrature points m_npoints $=Q_{\mathrm{tot}}$. More...
 
int Get1DScaledTotPoints (const NekDouble scale) const
 Returns the total number of qudature points scaled by the factor scale on each 1D direction. More...
 
void SetWaveSpace (const bool wavespace)
 Sets the wave space to the one of the possible configuration true or false. More...
 
void SetModifiedBasis (const bool modbasis)
 Set Modified Basis for the stability analysis. More...
 
void SetPhys (int i, NekDouble val)
 Set the i th value of m_phys to value val. More...
 
bool GetWaveSpace (void) const
 This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More...
 
void SetPhys (const Array< OneD, const NekDouble > &inarray)
 Fills the array m_phys. More...
 
void SetPhysArray (Array< OneD, NekDouble > &inarray)
 Sets the array m_phys. More...
 
void SetPhysState (const bool physState)
 This function manually sets whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not. More...
 
bool GetPhysState (void) const
 This function indicates whether the array of physical values $\boldsymbol{u}_l$ (implemented as m_phys) is filled or not. More...
 
NekDouble PhysIntegral (void)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion. More...
 
NekDouble PhysIntegral (const Array< OneD, const NekDouble > &inarray)
 This function integrates a function $f(\boldsymbol{x})$ over the domain consisting of all the elements of the expansion. More...
 
void IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to all {local} expansion modes $\phi_n^e(\boldsymbol{x})$. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction. More...
 
void IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray)
 This function calculates the inner product of a function $f(\boldsymbol{x})$ with respect to the derivative (in direction. More...
 
void FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the forward transformation of a function $u(\boldsymbol{x})$ onto the global spectral/hp expansion. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More...
 
void MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void SmoothField (Array< OneD, NekDouble > &field)
 Smooth a field across elements. More...
 
void HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const bool PhysSpaceForcing=true)
 Solve helmholtz problem. More...
 
void LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 Solve Advection Diffusion Reaction. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More...
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 This function calculates the coordinates of all the elemental quadrature points $\boldsymbol{x}_i$. More...
 
void HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
void DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
void DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
 
void GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
void NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
void ApplyGeomInfo ()
 Apply geometry information to each expansion. More...
 
void Reset ()
 Reset geometry information and reset matrices. More...
 
void WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
void WriteTecplotZone (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotField (std::ostream &outfile, int expansion=-1)
 
void WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1)
 
void WriteVtkHeader (std::ostream &outfile)
 
void WriteVtkFooter (std::ostream &outfile)
 
void WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0)
 
void WriteVtkPieceFooter (std::ostream &outfile, int expansion)
 
void WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v")
 
int GetCoordim (int eid)
 This function returns the dimension of the coordinates of the element eid. More...
 
void SetCoeff (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffs (int i, NekDouble val)
 Set the i th coefficiient in m_coeffs to value val. More...
 
void SetCoeffsArray (Array< OneD, NekDouble > &inarray)
 Set the m_coeffs array to inarray. More...
 
const Array< OneD, const
NekDouble > & 
GetCoeffs () const
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients. More...
 
void ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 Impose Dirichlet Boundary Conditions onto Array. More...
 
void FillBndCondFromField (void)
 Fill Bnd Condition expansion from the values stored in expansion. More...
 
void FillBndCondFromField (const int nreg)
 Fill Bnd Condition expansion in nreg from the values stored in expansion. More...
 
void LocalToGlobal (bool useComm=true)
 Gathers the global coefficients $\boldsymbol{\hat{u}}_g$ from the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
void LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm=true)
 
void GlobalToLocal (void)
 Scatters from the global coefficients $\boldsymbol{\hat{u}}_g$ to the local coefficients $\boldsymbol{\hat{u}}_l$. More...
 
void GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble GetCoeff (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
NekDouble GetCoeffs (int i)
 Get the i th value (coefficient) of m_coeffs. More...
 
const Array< OneD, const
NekDouble > & 
GetPhys () const
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points. More...
 
NekDouble Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_\infty$ error of the global spectral/hp element approximation. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 This function calculates the $L_2$ error with respect to soln of the global spectral/hp element approximation. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 Calculates the $H^1$ error of the global spectral/hp element approximation. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 
Array< OneD, const NekDoubleHomogeneousEnergy (void)
 This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More...
 
void SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc)
 This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More...
 
Array< OneD, const unsigned int > GetZIDs (void)
 This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
LibUtilities::TranspositionSharedPtr GetTransposition (void)
 This function returns the transposition class associaed with the homogeneous expansion. More...
 
NekDouble GetHomoLen (void)
 This function returns the Width of homogeneous direction associaed with the homogeneous expansion. More...
 
Array< OneD, const unsigned int > GetYIDs (void)
 This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More...
 
void PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
void PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More...
 
int GetExpSize (void)
 This function returns the number of elements in the expansion. More...
 
int GetNumElmts (void)
 This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More...
 
const boost::shared_ptr
< LocalRegions::ExpansionVector
GetExp () const
 This function returns the vector of elements in the expansion. More...
 
LocalRegions::ExpansionSharedPtrGetExp (int n) const
 This function returns (a shared pointer to) the local elemental expansion of the $n^{\mathrm{th}}$ element. More...
 
LocalRegions::ExpansionSharedPtrGetExp (const Array< OneD, const NekDouble > &gloCoord)
 This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More...
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false)
 
int GetCoeff_Offset (int n) const
 Get the start offset position for a global list of m_coeffs correspoinding to element n. More...
 
int GetPhys_Offset (int n) const
 Get the start offset position for a global list of m_phys correspoinding to element n. More...
 
Array< OneD, NekDouble > & UpdateCoeffs ()
 This function returns (a reference to) the array $\boldsymbol{\hat{u}}_l$ (implemented as m_coeffs) containing all local expansion coefficients. More...
 
Array< OneD, NekDouble > & UpdatePhys ()
 This function returns (a reference to) the array $\boldsymbol{u}_l$ (implemented as m_phys) containing the function $u^{\delta}(\boldsymbol{x})$ evaluated at the quadrature points. More...
 
void PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 This function discretely evaluates the derivative of a function $f(\boldsymbol{x})$ on the domain consisting of all elements of the expansion. More...
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
void CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q)
 
const Array< OneD, const
boost::shared_ptr< ExpList > > & 
GetBndCondExpansions ()
 
boost::shared_ptr< ExpList > & UpdateBndCondExpansion (int i)
 
void Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
void Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 
boost::shared_ptr< ExpList > & GetTrace ()
 
boost::shared_ptr
< AssemblyMapDG > & 
GetTraceMap (void)
 
const Array< OneD, const int > & GetTraceBndMap (void)
 
void GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
void GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
void GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
const std::vector< bool > & GetLeftAdjacentFaces (void) const
 
void ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
void ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
const Array< OneD, const
SpatialDomains::BoundaryConditionShPtr > & 
GetBndConditions ()
 
Array< OneD,
SpatialDomains::BoundaryConditionShPtr > & 
UpdateBndConditions ()
 
void EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble)
 
void GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More...
 
void GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SetUpPhysNormals ()
 
void GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
void GetBndElmtExpansion (int i, boost::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays=true)
 
void ExtractElmtToBndPhys (int i, Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
void ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
void ExtractPhysToBnd (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
void GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
void GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, bool homoStrips=false, std::vector< unsigned int > &HomoSIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector)
 
const
NekOptimize::GlobalOptParamSharedPtr
GetGlobalOptParam (void)
 
std::map< int,
RobinBCInfoSharedPtr
GetRobinBCInfo ()
 
void GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap)
 
std::vector
< LibUtilities::FieldDefinitionsSharedPtr
GetFieldDefinitions ()
 
void GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More...
 
void ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More...
 
void ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract the data in fielddata into the coeffs. More...
 
boost::shared_ptr< ExpListGetSharedThisPtr ()
 Returns a shared pointer to the current object. More...
 
boost::shared_ptr
< LibUtilities::SessionReader
GetSession () const
 Returns the session object. More...
 
boost::shared_ptr
< LibUtilities::Comm
GetComm ()
 Returns the comm object. More...
 
SpatialDomains::MeshGraphSharedPtr GetGraph ()
 
LibUtilities::BasisSharedPtr GetHomogeneousBasis (void)
 
boost::shared_ptr< ExpList > & GetPlane (int n)
 
void CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType)
 Construct collections of elements containing a single element type and polynomial order from the list of expansions. More...
 
void ClearGlobalLinSysManager (void)
 

Protected Member Functions

void v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the velocity field given by Vec. More...
 
void v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind)
 Upwind the Fwd and Bwd states based on the one- dimensional normal velocity field given by Vn. More...
 
void v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals)
 Populate normals with the normals of all expansions. More...
 
- Protected Member Functions inherited from Nektar::MultiRegions::ExpList
void SetCoeffPhysOffsets ()
 Definition of the total number of degrees of freedom and quadrature points and offsets to access data. More...
 
boost::shared_ptr< DNekMatGenGlobalMatrixFull (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 
const DNekScalBlkMatSharedPtr GenBlockMatrix (const GlobalMatrixKey &gkey)
 This function assembles the block diagonal matrix of local matrices of the type mtype. More...
 
const DNekScalBlkMatSharedPtrGetBlockMatrix (const GlobalMatrixKey &gkey)
 
void MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
boost::shared_ptr< GlobalMatrixGenGlobalMatrix (const GlobalMatrixKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 Generates a global matrix from the given key and map. More...
 
void GlobalEigenSystem (const boost::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray)
 
boost::shared_ptr< GlobalLinSysGenGlobalLinSys (const GlobalLinSysKey &mkey, const boost::shared_ptr< AssemblyMapCG > &locToGloMap)
 This operation constructs the global linear system of type mkey. More...
 
boost::shared_ptr< GlobalLinSysGenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap)
 Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More...
 
void ReadGlobalOptimizationParameters ()
 
virtual int v_GetNumElmts (void)
 
virtual const Array< OneD,
const boost::shared_ptr
< ExpList > > & 
v_GetBndCondExpansions (void)
 
virtual boost::shared_ptr
< ExpList > & 
v_UpdateBndCondExpansion (int i)
 
virtual boost::shared_ptr
< ExpList > & 
v_GetTrace ()
 
virtual boost::shared_ptr
< AssemblyMapDG > & 
v_GetTraceMap ()
 
virtual const Array< OneD,
const int > & 
v_GetTraceBndMap ()
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual void v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
virtual const std::vector< bool > & v_GetLeftAdjacentFaces (void) const
 
virtual void v_ExtractTracePhys (Array< OneD, NekDouble > &outarray)
 
virtual void v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const FlagList &flags, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing)
 
virtual void v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, CoeffState coeffstate=eLocal, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray)
 
virtual void v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray)
 
virtual void v_FillBndCondFromField ()
 
virtual void v_FillBndCondFromField (const int nreg)
 
virtual void v_Reset ()
 Reset geometry information, metrics, matrix managers and geometry information. More...
 
virtual void v_LocalToGlobal (bool UseComm)
 
virtual void v_LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseComm)
 
virtual void v_GlobalToLocal (void)
 
virtual void v_GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SmoothField (Array< OneD, NekDouble > &field)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray)
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2)
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d)
 
virtual void v_CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q)
 
virtual void v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal, bool Shuff=true, bool UnShuff=true)
 
virtual void v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray, CoeffState coeffstate=eLocal)
 
virtual void v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID)
 
virtual void v_NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID)
 
virtual void v_GetBndElmtExpansion (int i, boost::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays)
 
virtual void v_ExtractElmtToBndPhys (int i, Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary)
 
virtual void v_ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt)
 
virtual void v_ExtractPhysToBnd (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd)
 
virtual void v_GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals)
 
virtual std::vector
< LibUtilities::FieldDefinitionsSharedPtr
v_GetFieldDefinitions (void)
 
virtual void v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata)
 
virtual void v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs)
 
virtual void v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs)
 Extract data from raw field data into expansion list. More...
 
virtual void v_ExtractCoeffsToCoeffs (const boost::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs)
 
virtual void v_WriteTecplotHeader (std::ostream &outfile, std::string var="")
 
virtual void v_WriteTecplotZone (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotField (std::ostream &outfile, int expansion)
 
virtual void v_WriteTecplotConnectivity (std::ostream &outfile, int expansion)
 
virtual void v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var)
 
virtual NekDouble v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray)
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 
virtual Array< OneD, const
NekDouble
v_HomogeneousEnergy (void)
 
virtual
LibUtilities::TranspositionSharedPtr 
v_GetTransposition (void)
 
virtual NekDouble v_GetHomoLen (void)
 
virtual Array< OneD, const
unsigned int > 
v_GetZIDs (void)
 
virtual Array< OneD, const
unsigned int > 
v_GetYIDs (void)
 
virtual void v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ClearGlobalLinSysManager (void)
 
void ExtractFileBCs (const std::string &fileName, LibUtilities::CommSharedPtr comm, const std::string &varName, const boost::shared_ptr< ExpList > locExpList)
 

Private Member Functions

virtual void v_ReadGlobalOptimizationParameters ()
 
virtual void v_SetUpPhysNormals ()
 Set up the normals on each expansion. More...
 
virtual void v_WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip)
 const StdRegions::StdExpansionVector &locexp); More...
 

Private Attributes

int m_firstIntEl
 
Array< OneD, NekDoublem_normSign
 

Additional Inherited Members

- Public Attributes inherited from Nektar::MultiRegions::ExpList
ExpansionType m_expType
 
- Static Protected Member Functions inherited from Nektar::MultiRegions::ExpList
static
SpatialDomains::BoundaryConditionShPtr 
GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable)
 
- Protected Attributes inherited from Nektar::MultiRegions::ExpList
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Mesh associated with this expansion list. More...
 
int m_ncoeffs
 The total number of local degrees of freedom. m_ncoeffs $=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l$. More...
 
int m_npoints
 
Array< OneD, NekDoublem_coeffs
 Concatenation of all local expansion coefficients. More...
 
Array< OneD, NekDoublem_phys
 The global expansion evaluated at the quadrature points. More...
 
bool m_physState
 The state of the array m_phys. More...
 
boost::shared_ptr
< LocalRegions::ExpansionVector
m_exp
 The list of local expansions. More...
 
Collections::CollectionVector m_collections
 
std::vector< int > m_coll_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
std::vector< int > m_coll_phys_offset
 Offset of elemental data into the array m_phys. More...
 
Array< OneD, int > m_coeff_offset
 Offset of elemental data into the array m_coeffs. More...
 
Array< OneD, int > m_phys_offset
 Offset of elemental data into the array m_phys. More...
 
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
 
BlockMatrixMapShPtr m_blockMat
 
bool m_WaveSpace
 
boost::unordered_map< int, int > m_elmtToExpId
 Mapping from geometry ID of element to index inside m_exp. More...
 

Detailed Description

This class is the abstraction of a one-dimensional multi-elemental expansions which is merely a collection of local expansions.

This multi-elemental expansion, which does not exhibit any coupling between the expansion on the separate elements, can be formulated as,

\[u^{\delta}(x_i)=\sum_{e=1}^{{N_{\mathrm{el}}}} \sum_{n=0}^{N^{e}_m-1}\hat{u}_n^e\phi_n^e(x_i).\]

where ${N_{\mathrm{el}}}$ is the number of elements and $N^{e}_m$ is the local elemental number of expansion modes.

Instances of this class may be optionally constructed which use generalised segment expansions (LocalRegions::GenSegExp), rather than the standard segment expansions (LocalRegions::SegExp). LocalRegions::GenSegExp provides additional spatial data including segment normals and is enabled using the UseGenSegExp flag.

This class inherits all its variables and member functions from the base class MultiRegions::ExpList.

Definition at line 61 of file ExpList1D.h.

Constructor & Destructor Documentation

Nektar::MultiRegions::ExpList1D::ExpList1D ( )

The default constructor.

Assumes use of standard segment expansions only. All data storage areas are initialised to empty arrays by the default ExpList constructor.

Definition at line 77 of file ExpList1D.cpp.

References Nektar::MultiRegions::e1D, and Nektar::MultiRegions::ExpList::SetExpType().

77  :
78  ExpList()
79  {
80  SetExpType(e1D);
81  }
ExpList()
The default constructor.
Definition: ExpList.cpp:95
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
Nektar::MultiRegions::ExpList1D::ExpList1D ( const ExpList1D In,
const bool  DeclareCoeffPhysArrays = true 
)

The copy constructor.

Creates an identical copy of another ExpList1D object.

Definition at line 87 of file ExpList1D.cpp.

References Nektar::MultiRegions::e1D, and Nektar::MultiRegions::ExpList::SetExpType().

87  :
88  ExpList(In,DeclareCoeffPhysArrays)
89  {
90  SetExpType(e1D);
91  }
ExpList()
The default constructor.
Definition: ExpList.cpp:95
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
Nektar::MultiRegions::ExpList1D::ExpList1D ( const ExpList1D In,
const std::vector< unsigned int > &  eIDs,
const bool  DeclareCoeffPhysArrays = true,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

Constructor copying only elements defined in eIds.

Definition at line 96 of file ExpList1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::ExpList::CreateCollections(), Nektar::MultiRegions::e1D, Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::ReadGlobalOptimizationParameters(), Nektar::MultiRegions::ExpList::SetCoeffPhysOffsets(), and Nektar::MultiRegions::ExpList::SetExpType().

99  :
100  ExpList(In, eIDs, DeclareCoeffPhysArrays)
101  {
102  SetExpType(e1D);
103 
104  // Setup Default optimisation information.
105  int nel = GetExpSize();
108 
109  // Allocate storage for data and populate element offset lists.
111 
113  CreateCollections(ImpType);
114  }
ExpList()
The default constructor.
Definition: ExpList.cpp:95
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1052
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
void SetCoeffPhysOffsets()
Definition of the total number of degrees of freedom and quadrature points and offsets to access data...
Definition: ExpList.cpp:247
void CreateCollections(Collections::ImplementationType ImpType=Collections::eNoImpType)
Construct collections of elements containing a single element type and polynomial order from the list...
Definition: ExpList.cpp:3151
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
Nektar::MultiRegions::ExpList1D::ExpList1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const LibUtilities::BasisKey Ba,
const SpatialDomains::MeshGraphSharedPtr graph1D,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

Construct an ExpList1D from a given graph.

After initialising the data inherited through MultiRegions::ExpList, populate the expansion list from the segments defined in the supplied SpatialDomains::MeshGraph1D. All expansions in the graph are defined using the same LibUtilities::BasisKey which overrides that specified in graph1D.

See also
ExpList1D::ExpList1D(SpatialDomains::MeshGraph1D&, bool) for details.
Deprecated:
This constructor is no longer required since the basis key is now available from the graph.
Parameters
BaBasisKey describing quadrature points and number of modes.
graph1DDomain and expansion definitions.

Definition at line 132 of file ExpList1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::MultiRegions::ExpList::CreateCollections(), Nektar::MultiRegions::e1D, Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_coeffs, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::ExpList::m_npoints, Nektar::MultiRegions::ExpList::m_phys, Nektar::MultiRegions::ExpList::ReadGlobalOptimizationParameters(), Nektar::MultiRegions::ExpList::SetCoeffPhysOffsets(), and Nektar::MultiRegions::ExpList::SetExpType().

135  :
136  ExpList(pSession,graph1D)
137  {
138  SetExpType(e1D);
139 
140  int id=0;
143 
144  const SpatialDomains::ExpansionMap &expansions
145  = graph1D->GetExpansions();
146 
147  // For each element in the mesh, create a segment expansion using
148  // the supplied BasisKey and segment geometry.
149  SpatialDomains::ExpansionMap::const_iterator expIt;
150  for (expIt = expansions.begin(); expIt != expansions.end(); ++expIt)
151  {
152  if ((SegmentGeom = boost::dynamic_pointer_cast<
153  SpatialDomains::SegGeom>(
154  expIt->second->m_geomShPtr)))
155  {
157  ::AllocateSharedPtr(Ba,SegmentGeom);
158  seg->SetElmtId(id++);
159  (*m_exp).push_back(seg);
160  }
161  else
162  {
163  ASSERTL0(false,"dynamic cast to a SegGeom failed");
164  }
165  }
166 
167  // Setup Default optimisation information.
168  int nel = GetExpSize();
171 
172  // Allocate storage for data and populate element offset lists.
174 
175  m_coeffs = Array<OneD, NekDouble>(m_ncoeffs);
176  m_phys = Array<OneD, NekDouble>(m_npoints);
177 
179  CreateCollections(ImpType);
180  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
ExpList()
The default constructor.
Definition: ExpList.cpp:95
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1052
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:270
boost::shared_ptr< SegGeom > SegGeomSharedPtr
Definition: Geometry2D.h:60
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
void SetCoeffPhysOffsets()
Definition of the total number of degrees of freedom and quadrature points and offsets to access data...
Definition: ExpList.cpp:247
void CreateCollections(Collections::ImplementationType ImpType=Collections::eNoImpType)
Construct collections of elements containing a single element type and polynomial order from the list...
Definition: ExpList.cpp:3151
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
std::map< int, ExpansionShPtr > ExpansionMap
Definition: MeshGraph.h:174
Nektar::MultiRegions::ExpList1D::ExpList1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr graph1D,
const bool  DeclareCoeffPhysArrays = true,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

This constructor sets up a list of local expansions based on an input graph1D.

Given a mesh graph1D, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions {m_exp} with the proper expansions, calculates the total number of quadrature points $x_i$ and local expansion coefficients $\hat{u}^e_n$ and allocates memory for the arrays m_coeffs and m_phys.

For each element its corresponding LibUtilities::BasisKey is retrieved and this is used to construct either a standard segment (LocalRegions::SegExp) or a generalised segment (LocalRegions::GenSegExp) which is stored in the list m_exp. Finally, ExpList::SetCoeffPhys is called to initialise the data storage areas and set up the offset arrays.

Parameters
graph1DA mesh, containing information about the domain and the spectral/hp element expansion.
UseGenSegExpIf true, create general segment expansions instead of just normal segment expansions.

Definition at line 203 of file ExpList1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::MultiRegions::ExpList::CreateCollections(), Nektar::MultiRegions::e1D, Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_coeffs, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::ExpList::m_npoints, Nektar::MultiRegions::ExpList::m_phys, Nektar::MultiRegions::ExpList::ReadGlobalOptimizationParameters(), Nektar::MultiRegions::ExpList::SetCoeffPhysOffsets(), and Nektar::MultiRegions::ExpList::SetExpType().

206  :
207  ExpList(pSession,graph1D)
208  {
209  SetExpType(e1D);
210 
211  int id=0;
214 
215  // Retrieve the list of expansions
216  const SpatialDomains::ExpansionMap &expansions
217  = graph1D->GetExpansions();
218 
219  // Process each expansion in the graph
220  SpatialDomains::ExpansionMap::const_iterator expIt;
221  for (expIt = expansions.begin(); expIt != expansions.end(); ++expIt)
222  {
223  // Retrieve basis key from expansion
224  LibUtilities::BasisKey bkey = expIt->second->m_basisKeyVector[0];
225 
226  if ((SegmentGeom = boost::dynamic_pointer_cast<
227  SpatialDomains::SegGeom>(
228  expIt->second->m_geomShPtr)))
229  {
231  ::AllocateSharedPtr(bkey, SegmentGeom);
232 
233  // Assign next ID
234  seg->SetElmtId(id++);
235 
236  // Add the expansion
237  (*m_exp).push_back(seg);
238  }
239  else
240  {
241  ASSERTL0(false,"dynamic cast to a SegGeom failed");
242  }
243  }
244 
245  // Setup Default optimisation information.
246  int nel = GetExpSize();
249 
250  // set up offset arrays.
252 
253  if(DeclareCoeffPhysArrays)
254  {
255  // Set up m_coeffs, m_phys.
256  m_coeffs = Array<OneD, NekDouble>(m_ncoeffs);
257  m_phys = Array<OneD, NekDouble>(m_npoints);
258  }
259 
261  CreateCollections(ImpType);
262  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
ExpList()
The default constructor.
Definition: ExpList.cpp:95
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1052
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:270
boost::shared_ptr< SegGeom > SegGeomSharedPtr
Definition: Geometry2D.h:60
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
void SetCoeffPhysOffsets()
Definition of the total number of degrees of freedom and quadrature points and offsets to access data...
Definition: ExpList.cpp:247
void CreateCollections(Collections::ImplementationType ImpType=Collections::eNoImpType)
Construct collections of elements containing a single element type and polynomial order from the list...
Definition: ExpList.cpp:3151
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
std::map< int, ExpansionShPtr > ExpansionMap
Definition: MeshGraph.h:174
Nektar::MultiRegions::ExpList1D::ExpList1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr graph1D,
const SpatialDomains::CompositeMap domain,
const bool  DeclareCoeffPhysArrays = true,
const std::string  var = "DefaultVar",
bool  SetToOneSpaceDimension = false,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

This constructor sets up a list of local expansions based on an input compositeMap.

Given a mesh graph1D, and the spectral/hp element expansion as well as and separate information about a domain, this constructor fills the list of local expansions {m_exp} with the proper expansions, calculates the total number of quadrature points $x_i$ and local expansion coefficients $\hat{u}^e_n$ and allocates memory for the arrays m_coeffs and m_phys.

For each element its corresponding LibUtilities::BasisKey is retrieved and this is used to construct either a standard segment (LocalRegions::SegExp) or a generalised segment (LocalRegions::GenSegExp) which is stored in the list m_exp. Finally, ExpList::SetCoeffPhys is called to initialise the data storage areas and set up the offset arrays.

Parameters
graph1DA mesh, containing information about the domain and the spectral/hp element expansion.
UseGenSegExpIf true, create general segment expansions instead of just normal segment expansions.

Definition at line 287 of file ExpList1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::MultiRegions::ExpList::CreateCollections(), Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_coeffs, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::ExpList::m_npoints, Nektar::MultiRegions::ExpList::m_phys, Nektar::MultiRegions::ExpList::ReadGlobalOptimizationParameters(), and Nektar::MultiRegions::ExpList::SetCoeffPhysOffsets().

293  :
294  ExpList(pSession,graph1D)
295  {
296  int j,id=0;
300  SpatialDomains::CompositeMap::const_iterator compIt;
301 
302  // Retrieve the list of expansions
303  const SpatialDomains::ExpansionMap &expansions
304  = graph1D->GetExpansions(var);
305 
306  // Process each composite region in domain
307  for(compIt = domain.begin(); compIt != domain.end(); ++compIt)
308  {
309  comp = compIt->second;
310 
311  // Process each expansion in the graph
312  for(j = 0; j < compIt->second->size(); ++j)
313  {
314  SpatialDomains::ExpansionMap::const_iterator expIt;
315 
316  if((SegmentGeom = boost::dynamic_pointer_cast<
317  SpatialDomains::SegGeom>(
318  (*compIt->second)[j])))
319  {
320  // Retrieve basis key from expansion and define expansion
321  if((expIt = expansions.find(SegmentGeom->GetGlobalID())) != expansions.end())
322  {
323  LibUtilities::BasisKey bkey = expIt->second->m_basisKeyVector[0];
324 
325  if(SetToOneSpaceDimension)
326  {
327  SpatialDomains::SegGeomSharedPtr OneDSegmentGeom =
328  SegmentGeom->GenerateOneSpaceDimGeom();
329 
331  ::AllocateSharedPtr(bkey, OneDSegmentGeom);
332  }
333  else
334  {
336  ::AllocateSharedPtr(bkey, SegmentGeom);
337  }
338  }
339  else
340  {
341  ASSERTL0(false,"Failed to find basis key");
342  }
343  }
344  else
345  {
346  ASSERTL0(false,"Failed to dynamic cast geometry to SegGeom");
347  }
348 
349  // Assign next ID
350  seg->SetElmtId(id++);
351 
352  // Add the expansion
353  (*m_exp).push_back(seg);
354  }
355  }
356 
357  // Setup Default optimisation information.
358  int nel = GetExpSize();
361 
362  // set up offset arrays.
364 
365  if(DeclareCoeffPhysArrays)
366  {
367  // Set up m_coeffs, m_phys.
368  m_coeffs = Array<OneD, NekDouble>(m_ncoeffs);
369  m_phys = Array<OneD, NekDouble>(m_npoints);
370  }
371 
373  CreateCollections(ImpType);
374  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
ExpList()
The default constructor.
Definition: ExpList.cpp:95
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1052
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:270
boost::shared_ptr< SegGeom > SegGeomSharedPtr
Definition: Geometry2D.h:60
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
void SetCoeffPhysOffsets()
Definition of the total number of degrees of freedom and quadrature points and offsets to access data...
Definition: ExpList.cpp:247
boost::shared_ptr< GeometryVector > Composite
Definition: MeshGraph.h:114
void CreateCollections(Collections::ImplementationType ImpType=Collections::eNoImpType)
Construct collections of elements containing a single element type and polynomial order from the list...
Definition: ExpList.cpp:3151
std::map< int, ExpansionShPtr > ExpansionMap
Definition: MeshGraph.h:174
Nektar::MultiRegions::ExpList1D::ExpList1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::CompositeMap domain,
const SpatialDomains::MeshGraphSharedPtr graph2D,
const bool  DeclareCoeffPhysArrays = true,
const std::string  variable = "DefaultVar",
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

Specialised constructor for Neumann boundary conditions in DisContField2D and ContField2D.

Fills the list of local expansions with the segments from the 2D mesh specified by domain. This CompositeMap contains a list of Composites which define the Neumann boundary.

See also
ExpList1D::ExpList1D(SpatialDomains::MeshGraph1D&, bool) for details.
Parameters
domainA domain, comprising of one or more composite regions,
graph2DA mesh, containing information about the domain and the spectral/hp element expansion.
UseGenSegExpIf true, create general segment expansions instead of just normal segment expansions.

Definition at line 390 of file ExpList1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::MultiRegions::ExpList::CreateCollections(), Nektar::MultiRegions::e1D, Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::MultiRegions::ExpList::m_coeffs, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::m_graph, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::ExpList::m_npoints, Nektar::MultiRegions::ExpList::m_phys, Nektar::MultiRegions::ExpList::SetCoeffPhysOffsets(), and Nektar::MultiRegions::ExpList::SetExpType().

395  :
396  ExpList(pSession,graph2D)
397  {
398  SetExpType(e1D);
399 
400  m_graph = graph2D;
401 
402  int j, id=0;
404  SpatialDomains::CompositeMap::const_iterator compIt;
407 
408  // Process each composite region.
409  for(compIt = domain.begin(); compIt != domain.end(); ++compIt)
410  {
411  comp = compIt->second;
412  // Process each expansion in the region.
413  for(j = 0; j < compIt->second->size(); ++j)
414  {
415  if((SegmentGeom = boost::dynamic_pointer_cast<
416  SpatialDomains::SegGeom>(
417  (*compIt->second)[j])))
418  {
419  // Retrieve the basis key from the expansion.
420  LibUtilities::BasisKey bkey
421  = boost::dynamic_pointer_cast<SpatialDomains::MeshGraph2D>(graph2D)->GetEdgeBasisKey(SegmentGeom, variable);
422 
424  ::AllocateSharedPtr(bkey, SegmentGeom);
425 
426  // Add the segment to the expansion list.
427  seg->SetElmtId(id++);
428  (*m_exp).push_back(seg);
429  }
430  else
431  {
432  ASSERTL0(false,"dynamic cast to a SegGeom failed");
433  }
434  }
435 
436  }
437 
438  // Setup Default optimisation information.
439  int nel = GetExpSize();
442 
443  // Allocate storage for data and populate element offset lists.
445 
446  // Set up m_coeffs, m_phys.
447  if(DeclareCoeffPhysArrays)
448  {
449  m_coeffs = Array<OneD, NekDouble>(m_ncoeffs);
450  m_phys = Array<OneD, NekDouble>(m_npoints);
451  }
452 
453  CreateCollections(ImpType);
454  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
ExpList()
The default constructor.
Definition: ExpList.cpp:95
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1052
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:270
boost::shared_ptr< SegGeom > SegGeomSharedPtr
Definition: Geometry2D.h:60
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
void SetCoeffPhysOffsets()
Definition of the total number of degrees of freedom and quadrature points and offsets to access data...
Definition: ExpList.cpp:247
SpatialDomains::MeshGraphSharedPtr m_graph
Mesh associated with this expansion list.
Definition: ExpList.h:972
boost::shared_ptr< GeometryVector > Composite
Definition: MeshGraph.h:114
void CreateCollections(Collections::ImplementationType ImpType=Collections::eNoImpType)
Construct collections of elements containing a single element type and polynomial order from the list...
Definition: ExpList.cpp:3151
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
Nektar::MultiRegions::ExpList1D::ExpList1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::CompositeMap domain,
const SpatialDomains::MeshGraphSharedPtr graph1D,
int  i,
const bool  DeclareCoeffPhysArrays = true,
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)
Nektar::MultiRegions::ExpList1D::ExpList1D ( const LibUtilities::SessionReaderSharedPtr pSession,
const Array< OneD, const ExpListSharedPtr > &  bndConstraint,
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > &  bndCond,
const LocalRegions::ExpansionVector locexp,
const SpatialDomains::MeshGraphSharedPtr graph2D,
const PeriodicMap periodicEdges,
const bool  DeclareCoeffPhysArrays = true,
const std::string  variable = "DefaultVar",
const Collections::ImplementationType  ImpType = Collections::eNoImpType 
)

Specialised constructor for trace expansions.

Store expansions for the trace space expansions used in DisContField2D.

Parameters
bndConstraintArray of ExpList1D objects each containing a 1D spectral/hp element expansion on a single boundary region.
bndCondArray of BoundaryCondition objects which contain information about the boundary conditions on the different boundary regions.
locexpComplete domain expansion list.
graph2D2D mesh corresponding to the expansion list.
periodicEdgesList of periodic edges.
UseGenSegExpIf true, create general segment expansions instead of just normal segment expansions.

Definition at line 472 of file ExpList1D.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::MultiRegions::ExpList::CreateCollections(), Nektar::MultiRegions::e1D, Nektar::SpatialDomains::eDirichlet, Nektar::LibUtilities::BasisKey::GetBasisType(), Nektar::MultiRegions::ExpList::GetExpSize(), Nektar::LocalRegions::Expansion2D::GetGeom2D(), Nektar::StdRegions::StdExpansion::GetNedges(), Nektar::LibUtilities::BasisKey::GetNumModes(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsType(), Nektar::iterator, Nektar::MultiRegions::ExpList::m_coeffs, Nektar::MultiRegions::ExpList::m_globalOptParam, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::ExpList::m_npoints, Nektar::MultiRegions::ExpList::m_phys, Nektar::LibUtilities::ReduceSum, Nektar::MultiRegions::ExpList::SetCoeffPhysOffsets(), Nektar::MultiRegions::ExpList::SetExpType(), and Vmath::Vsum().

481  :
482  ExpList(pSession,graph2D)
483  {
484  int i, j, id, elmtid = 0;
485  set<int> edgesDone;
486 
493 
494  SetExpType(e1D);
495 
496  map<int,int> EdgeDone;
497  map<int,int> NormalSet;
498 
500 
501  // First loop over boundary conditions to renumber
502  // Dirichlet boundaries
503  for(i = 0; i < bndCond.num_elements(); ++i)
504  {
505  if(bndCond[i]->GetBoundaryConditionType()
507  {
508  for(j = 0; j < bndConstraint[i]->GetExpSize(); ++j)
509  {
510  LibUtilities::BasisKey bkey = bndConstraint[i]
511  ->GetExp(j)->GetBasis(0)->GetBasisKey();
512  exp1D = bndConstraint[i]->GetExp(j)->
513  as<LocalRegions::Expansion1D>();
514  segGeom = exp1D->GetGeom1D();
515 
517  ::AllocateSharedPtr(bkey, segGeom);
518  edgesDone.insert(segGeom->GetEid());
519 
520  seg->SetElmtId(elmtid++);
521  (*m_exp).push_back(seg);
522  }
523  }
524  }
525 
527  LibUtilities::BasisKey> > edgeOrders;
529  LibUtilities::BasisKey> >::iterator it;
530 
531  for(i = 0; i < locexp.size(); ++i)
532  {
533  exp2D = locexp[i]->as<LocalRegions::Expansion2D>();
534 
535  for(j = 0; j < locexp[i]->GetNedges(); ++j)
536  {
537  segGeom = exp2D->GetGeom2D()->GetEdge(j);
538  id = segGeom->GetEid();
539  // Ignore Dirichlet edges
540  if (edgesDone.count(id) != 0)
541  {
542  continue;
543  }
544 
545  it = edgeOrders.find(id);
546 
547  if (it == edgeOrders.end())
548  {
549  edgeOrders.insert(std::make_pair(id, std::make_pair(
550  segGeom, locexp[i]->DetEdgeBasisKey(j))));
551  }
552  else // variable modes/points
553  {
554  LibUtilities::BasisKey edge
555  = locexp[i]->DetEdgeBasisKey(j);
556  LibUtilities::BasisKey existing
557  = it->second.second;
558 
559  int np1 = edge .GetNumPoints();
560  int np2 = existing.GetNumPoints();
561  int nm1 = edge .GetNumModes ();
562  int nm2 = existing.GetNumModes ();
563 
564  if (np2 >= np1 && nm2 >= nm1)
565  {
566  continue;
567  }
568  else if (np2 < np1 && nm2 < nm1)
569  {
570  it->second.second = edge;
571  }
572  else
573  {
574  ASSERTL0(false,
575  "inappropriate number of points/modes (max "
576  "num of points is not set with max order)");
577  }
578  }
579  }
580  }
581 
583  pSession->GetComm()->GetRowComm();
584  int nproc = vComm->GetSize(); // number of processors
585  int edgepr = vComm->GetRank(); // ID processor
586 
587  if (nproc > 1)
588  {
589  int eCnt = 0;
590 
591  // Count the number of edges on each partition
592  for(i = 0; i < locexp.size(); ++i)
593  {
594  eCnt += locexp[i]->GetNedges();
595  }
596 
597  // Set up the offset and the array that will contain the list of
598  // edge IDs, then reduce this across processors.
599  Array<OneD, int> edgesCnt(nproc, 0);
600  edgesCnt[edgepr] = eCnt;
601  vComm->AllReduce(edgesCnt, LibUtilities::ReduceSum);
602 
603  // Set up offset array.
604  int totEdgeCnt = Vmath::Vsum(nproc, edgesCnt, 1);
605  Array<OneD, int> eTotOffsets(nproc,0);
606  for (i = 1; i < nproc; ++i)
607  {
608  eTotOffsets[i] = eTotOffsets[i-1] + edgesCnt[i-1];
609  }
610 
611  // Local list of the edges per element
612  Array<OneD, int> EdgesTotID(totEdgeCnt, 0);
613  Array<OneD, int> EdgesTotNm(totEdgeCnt, 0);
614  Array<OneD, int> EdgesTotPnts(totEdgeCnt, 0);
615 
616  int cntr = eTotOffsets[edgepr];
617 
618  for(i = 0; i < locexp.size(); ++i)
619  {
620  exp2D = locexp[i]->as<LocalRegions::Expansion2D>();
621 
622  int nedges = locexp[i]->GetNedges();
623 
624  for(j = 0; j < nedges; ++j, ++cntr)
625  {
626  LibUtilities::BasisKey bkeyEdge =
627  locexp[i]->DetEdgeBasisKey(j);
628  EdgesTotID [cntr] = exp2D->GetGeom2D()->GetEid(j);
629  EdgesTotNm [cntr] = bkeyEdge.GetNumModes();
630  EdgesTotPnts[cntr] = bkeyEdge.GetNumPoints();
631  }
632  }
633 
634  vComm->AllReduce(EdgesTotID, LibUtilities::ReduceSum);
635  vComm->AllReduce(EdgesTotNm, LibUtilities::ReduceSum);
636  vComm->AllReduce(EdgesTotPnts, LibUtilities::ReduceSum);
637 
638  for (i = 0; i < totEdgeCnt; ++i)
639  {
640  it = edgeOrders.find(EdgesTotID[i]);
641 
642  if (it == edgeOrders.end())
643  {
644  continue;
645  }
646 
647  LibUtilities::BasisKey existing
648  = it->second.second;
649  LibUtilities::BasisKey edge(
650  existing.GetBasisType(), EdgesTotNm[i],
651  LibUtilities::PointsKey(EdgesTotPnts[i],
652  existing.GetPointsType()));
653 
654 
655  int np1 = edge .GetNumPoints();
656  int np2 = existing.GetNumPoints();
657  int nm1 = edge .GetNumModes ();
658  int nm2 = existing.GetNumModes ();
659 
660  if (np2 >= np1 && nm2 >= nm1)
661  {
662  continue;
663  }
664  else if (np2 < np1 && nm2 < nm1)
665  {
666  it->second.second = edge;
667  }
668  else
669  {
670  ASSERTL0(false,
671  "inappropriate number of points/modes (max "
672  "num of points is not set with max order)");
673  }
674  }
675  }
676 
677  for (it = edgeOrders.begin(); it != edgeOrders.end(); ++it)
678  {
680  ::AllocateSharedPtr(it->second.second, it->second.first);
681  seg->SetElmtId(elmtid++);
682  (*m_exp).push_back(seg);
683  }
684 
685  // Setup Default optimisation information.
686  int nel = GetExpSize();
689 
690  // Set up offset information and array sizes
692 
693  // Set up m_coeffs, m_phys.
694  if(DeclareCoeffPhysArrays)
695  {
696  m_coeffs = Array<OneD, NekDouble>(m_ncoeffs);
697  m_phys = Array<OneD, NekDouble>(m_npoints);
698  }
699 
700  CreateCollections(ImpType);
701  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
ExpList()
The default constructor.
Definition: ExpList.cpp:95
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
NekOptimize::GlobalOptParamSharedPtr m_globalOptParam
Definition: ExpList.h:1052
Array< OneD, NekDouble > m_phys
The global expansion evaluated at the quadrature points.
Definition: ExpList.h:1015
Array< OneD, NekDouble > m_coeffs
Concatenation of all local expansion coefficients.
Definition: ExpList.h:998
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:270
boost::shared_ptr< Comm > CommSharedPtr
Pointer to a Communicator object.
Definition: Comm.h:55
int m_ncoeffs
The total number of local degrees of freedom. m_ncoeffs .
Definition: ExpList.h:976
void SetCoeffPhysOffsets()
Definition of the total number of degrees of freedom and quadrature points and offsets to access data...
Definition: ExpList.cpp:247
boost::shared_ptr< Geometry2D > Geometry2DSharedPtr
Definition: Geometry2D.h:59
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs typedef NekMatrix< LhsDataType, StandardMatrixTag >::iterator iterator
boost::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry1D.h:48
void CreateCollections(Collections::ImplementationType ImpType=Collections::eNoImpType)
Construct collections of elements containing a single element type and polynomial order from the list...
Definition: ExpList.cpp:3151
void SetExpType(ExpansionType Type)
Returns the type of the expansion.
Definition: ExpList.cpp:277
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:737
boost::shared_ptr< Expansion1D > Expansion1DSharedPtr
Definition: Expansion1D.h:53
boost::shared_ptr< Expansion2D > Expansion2DSharedPtr
Definition: Expansion1D.h:49
Nektar::MultiRegions::ExpList1D::~ExpList1D ( )
virtual

Destructor.

Definition at line 706 of file ExpList1D.cpp.

707  {
708  }

Member Function Documentation

void Nektar::MultiRegions::ExpList1D::ParNormalSign ( Array< OneD, NekDouble > &  normsign)

Set up the normals on each expansion.

void Nektar::MultiRegions::ExpList1D::PeriodicEval ( Array< OneD, NekDouble > &  inarray1,
Array< OneD, NekDouble > &  inarray2,
NekDouble  h,
int  nmodes,
Array< OneD, NekDouble > &  outarray 
)

Evaluates the global spectral/hp expansion at some arbitray set of points.

Given the elemental coefficients $\hat{u}_n^e$ of an expansion, periodically evaluate the spectral/hp expansion $u^{\delta}(\boldsymbol{x})$ at arbitrary points.

Parameters
inarray1An array of size $N_{\mathrm{eof}}$ containing the local coefficients $\hat{u}_n^e$.
inarray2Contains the set of evaluation points.
hThe mesh spacing.
nmodesThe number of polynomial modes for each element (we consider that each element has the same number of polynomial modes).
outarrayContains the resulting values at the evaluation points

Definition at line 819 of file ExpList1D.cpp.

References Nektar::MultiRegions::ExpList::GetExpSize(), and Polylib::jacobfd().

Referenced by PostProcess().

823  {
824  int i,j,r;
825 
826  // Get the number of elements in the domain
827  int num_elm = GetExpSize();
828 
829  // initializing the outarray
830  for(i = 0; i < outarray.num_elements(); i++)
831  {
832  outarray[i] = 0.0;
833  }
834 
835  // Make a copy for further modification
836  int x_size = inarray2.num_elements();
837  Array<OneD,NekDouble> x_values_cp(x_size);
838 
839  // Determining the element to which the x belongs
840  Array<OneD,int> x_elm(x_size);
841  for(i = 0; i < x_size; i++ )
842  {
843  x_elm[i] = (int)floor(inarray2[i]/h);
844  }
845 
846  // Clamp indices periodically
847  for(i = 0; i < x_size; i++)
848  {
849  while(x_elm[i] < 0)
850  {
851  x_elm[i] += num_elm;
852  }
853  while(x_elm[i] >= num_elm)
854  {
855  x_elm[i] -= num_elm ;
856  }
857  }
858 
859  // Map the values of x to [-1 1] on its interval
860  for(i = 0; i < x_size; i++)
861  {
862  x_values_cp[i] = (inarray2[i]/h - floor(inarray2[i]/h))*2 - 1.0;
863  }
864 
865  // Evaluate the jocobi polynomials
866  // (Evaluating the base at some points other than the quadrature
867  // points). Should it be added to the base class????
868  Array<TwoD,NekDouble> jacobi_poly(nmodes,x_size);
869  for(i = 0; i < nmodes; i++)
870  {
871  Polylib::jacobfd(x_size,x_values_cp.get(),
872  jacobi_poly.get()+i*x_size,NULL,i,0.0,0.0);
873  }
874 
875  // Evaluate the function values
876  for(r = 0; r < nmodes; r++)
877  {
878  for(j = 0; j < x_size; j++)
879  {
880  int index = ((x_elm[j])*nmodes)+r;
881  outarray[j] += inarray1[index]*jacobi_poly[r][j];
882  }
883  }
884 
885  }
int GetExpSize(void)
This function returns the number of elements in the expansion.
Definition: ExpList.h:2046
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1920
void Nektar::MultiRegions::ExpList1D::PostProcess ( LibUtilities::KernelSharedPtr  kernel,
Array< OneD, NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
NekDouble  h,
int  elmId = 0 
)

Performs the post-processing on a specified element.

To perform post-processing on the entire domain use elmtId = 0.

Parameters
kernelThe post-processing kernel.
inarrayThe set of evaluation points.
outarrayContains the resulting post-processed solution for element elmId.
hThe mesh spacing.
elmIdOptionally specifies which element to perform the post-processing on (0=whole domain).

Definition at line 720 of file ExpList1D.cpp.

References Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetExp(), PeriodicEval(), and Nektar::LibUtilities::PointsManager().

726  {
727  int i,j,r;
728 
729  // get the local element expansion of the elmId element
731 
732  // Get the quadrature points and weights required for integration
733  int quad_npoints = elmExp->GetTotPoints();
734  LibUtilities::PointsKey quadPointsKey(quad_npoints,
735  elmExp->GetPointsType(0));
736  Array<OneD,NekDouble> quad_points
737  = LibUtilities::PointsManager()[quadPointsKey]->GetZ();
738  Array<OneD,NekDouble> quad_weights
739  = LibUtilities::PointsManager()[quadPointsKey]->GetW();
740 
741  // Declare variable for the local kernel breaks
742  int kernel_width = kernel->GetKernelWidth();
743  Array<OneD,NekDouble> local_kernel_breaks(kernel_width+1);
744 
745  // Declare variable for the transformed quadrature points
746  Array<OneD,NekDouble> mapped_quad_points(quad_npoints);
747 
748  // For each evaluation point
749  for(i = 0; i < inarray.num_elements(); i++)
750  {
751  // Move the center of the kernel to the current point
752  kernel->MoveKernelCenter(inarray[i],local_kernel_breaks);
753 
754  // Find the mesh breaks under the kernel support
755  Array<OneD,NekDouble> mesh_breaks;
756  kernel->FindMeshUnderKernel(local_kernel_breaks,h,mesh_breaks);
757 
758  // Sort the total breaks for integration purposes
759  int total_nbreaks = local_kernel_breaks.num_elements() +
760  mesh_breaks.num_elements();
761  // number of the total breaks
762  Array<OneD,NekDouble> total_breaks(total_nbreaks);
763  kernel->Sort(local_kernel_breaks,mesh_breaks,total_breaks);
764 
765  // Integrate the product of kernel and function over the total
766  // breaks
767  NekDouble integral_value = 0.0;
768  for(j = 0; j < total_breaks.num_elements()-1; j++)
769  {
770  NekDouble a = total_breaks[j];
771  NekDouble b = total_breaks[j+1];
772 
773  // Map the quadrature points to the appropriate interval
774  for(r = 0; r < quad_points.num_elements(); r++)
775  {
776  mapped_quad_points[r]
777  = (quad_points[r] + 1.0) * 0.5 * (b - a) + a;
778  }
779 
780  // Evaluate the function at the transformed quadrature
781  // points
782  Array<OneD,NekDouble> u_value(quad_npoints);
783  Array<OneD,NekDouble> coeffs = GetCoeffs();
784 
785  PeriodicEval(coeffs,mapped_quad_points,h,
786  elmExp->GetBasisNumModes(0),u_value);
787 
788  // Evaluate the kernel at the transformed quadrature points
789  Array<OneD,NekDouble> k_value(quad_npoints);
790  kernel->EvaluateKernel(mapped_quad_points,h,k_value);
791 
792  // Integrate
793  for(r = 0; r < quad_npoints; r++)
794  {
795  integral_value += (b - a) * 0.5 * k_value[r]
796  * u_value[r] * quad_weights[r];
797  }
798  }
799  outarray[i] = integral_value/h;
800  }
801  }
const Array< OneD, const NekDouble > & GetCoeffs() const
This function returns (a reference to) the array (implemented as m_coeffs) containing all local expa...
Definition: ExpList.h:1938
const boost::shared_ptr< LocalRegions::ExpansionVector > GetExp() const
This function returns the vector of elements in the expansion.
Definition: ExpList.h:2067
void PeriodicEval(Array< OneD, NekDouble > &inarray1, Array< OneD, NekDouble > &inarray2, NekDouble h, int nmodes, Array< OneD, NekDouble > &outarray)
Evaluates the global spectral/hp expansion at some arbitray set of points.
Definition: ExpList1D.cpp:819
PointsManagerT & PointsManager(void)
double NekDouble
boost::shared_ptr< StdExpansion > StdExpansionSharedPtr
void Nektar::MultiRegions::ExpList1D::v_GetNormals ( Array< OneD, Array< OneD, NekDouble > > &  normals)
protectedvirtual

Populate normals with the normals of all expansions.

For each local element, copy the normals stored in the element list into the array normals.

Parameters
normalsMultidimensional array in which to copy normals to. Must have dimension equal to or larger than the spatial dimension of the elements.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1047 of file ExpList1D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::GetCoordim(), Nektar::LocalRegions::Expansion1D::GetLeftAdjacentElementExp(), Nektar::LibUtilities::Interp1D(), Nektar::MultiRegions::ExpList::m_exp, Nektar::MultiRegions::ExpList::m_phys_offset, and CellMLToNektar.cellml_metadata::p.

1049  {
1050  int i,j,k,e_npoints,offset;
1052  Array<OneD,Array<OneD,NekDouble> > locnormals;
1053  Array<OneD,Array<OneD,NekDouble> > locnormals2;
1054  Array<OneD,Array<OneD,NekDouble> > Norms;
1055  // Assume whole array is of same coordinate dimension
1056  int coordim = GetCoordim(0);
1057 
1058  ASSERTL1(normals.num_elements() >= coordim,
1059  "Output vector does not have sufficient dimensions to "
1060  "match coordim");
1061 
1062  for (i = 0; i < m_exp->size(); ++i)
1063  {
1064  LocalRegions::Expansion1DSharedPtr loc_exp = (*m_exp)[i]->as<LocalRegions::Expansion1D>();
1065 
1067  loc_exp->GetLeftAdjacentElementExp();
1068 
1069  int edgeNumber = loc_exp->GetLeftAdjacentElementEdge();
1070 
1071  // Get the number of points and normals for this expansion.
1072  e_npoints = (*m_exp)[i]->GetNumPoints(0);
1073 
1074  locnormals = loc_elmt->GetEdgeNormal(edgeNumber);
1075  int e_nmodes = loc_exp->GetBasis(0)->GetNumModes();
1076  int loc_nmodes = loc_elmt->GetBasis(0)->GetNumModes();
1077 
1078  if (e_nmodes != loc_nmodes)
1079  {
1080  if (loc_exp->GetRightAdjacentElementEdge() >= 0)
1081  {
1083  loc_exp->GetRightAdjacentElementExp();
1084 
1085  int EdgeNumber = loc_exp->GetRightAdjacentElementEdge();
1086  // Serial case: right element is connected so we can
1087  // just grab that normal.
1088  locnormals = loc_elmt->GetEdgeNormal(EdgeNumber);
1089 
1090  offset = m_phys_offset[i];
1091 
1092  // Process each point in the expansion.
1093  for (j = 0; j < e_npoints; ++j)
1094  {
1095  // Process each spatial dimension and copy the values
1096  // into the output array.
1097  for (k = 0; k < coordim; ++k)
1098  {
1099  normals[k][offset + j] = -locnormals[k][j];
1100  }
1101  }
1102  }
1103  else
1104  {
1105  // Parallel case: need to interpolate normal.
1106  Array<OneD, Array<OneD, NekDouble> > normal(coordim);
1107 
1108  for (int p = 0; p < coordim; ++p)
1109  {
1110  normal[p] = Array<OneD, NekDouble>(e_npoints,0.0);
1111  LibUtilities::PointsKey to_key =
1112  loc_exp->GetBasis(0)->GetPointsKey();
1113  LibUtilities::PointsKey from_key =
1114  loc_elmt->GetBasis(0)->GetPointsKey();
1115  LibUtilities::Interp1D(from_key,
1116  locnormals[p],
1117  to_key,
1118  normal[p]);
1119  }
1120 
1121  offset = m_phys_offset[i];
1122 
1123  // Process each point in the expansion.
1124  for (j = 0; j < e_npoints; ++j)
1125  {
1126  // Process each spatial dimension and copy the values
1127  // into the output array.
1128  for (k = 0; k < coordim; ++k)
1129  {
1130  normals[k][offset + j] = normal[k][j];
1131  }
1132  }
1133  }
1134  }
1135  else
1136  {
1137  // Get the physical data offset for this expansion.
1138  offset = m_phys_offset[i];
1139 
1140  // Process each point in the expansion.
1141  for (j = 0; j < e_npoints; ++j)
1142  {
1143  // Process each spatial dimension and copy the values
1144  // into the output array.
1145  for (k = 0; k < coordim; ++k)
1146  {
1147  normals[k][offset + j] = locnormals[k][j];
1148  }
1149  }
1150  }
1151  }
1152  }
boost::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Definition: ExpList.h:1036
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1050
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
boost::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry1D.h:48
int GetCoordim(int eid)
This function returns the dimension of the coordinates of the element eid.
Definition: ExpList.h:1898
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
boost::shared_ptr< Expansion1D > Expansion1DSharedPtr
Definition: Expansion1D.h:53
boost::shared_ptr< Expansion2D > Expansion2DSharedPtr
Definition: Expansion1D.h:49
void Nektar::MultiRegions::ExpList1D::v_ReadGlobalOptimizationParameters ( )
privatevirtual

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1157 of file ExpList1D.cpp.

1158  {
1159 // Array<OneD, int> NumShape(1,0);
1160 // NumShape[0] = GetExpSize();
1161 //
1162 // int one = 1;
1163 // m_globalOptParam = MemoryManager<NekOptimize::GlobalOptParam>
1164 // ::AllocateSharedPtr(m_session,one,NumShape);
1165  }
void Nektar::MultiRegions::ExpList1D::v_SetUpPhysNormals ( )
privatevirtual

Set up the normals on each expansion.

Sets up the normals on all edges of expansions in the domain.

Parameters
locexpComplete list of domain expansions.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 922 of file ExpList1D.cpp.

References Nektar::MultiRegions::ExpList::m_exp.

923  {
924  int i, j;
925  for (i = 0; i < m_exp->size(); ++i)
926  {
927  for (j = 0; j < (*m_exp)[i]->GetNverts(); ++j)
928  {
929  (*m_exp)[i]->ComputeVertexNormal(j);
930  }
931  }
932  }
boost::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Definition: ExpList.h:1036
void Nektar::MultiRegions::ExpList1D::v_Upwind ( const Array< OneD, const Array< OneD, NekDouble > > &  Vec,
const Array< OneD, const NekDouble > &  Fwd,
const Array< OneD, const NekDouble > &  Bwd,
Array< OneD, NekDouble > &  Upwind 
)
protectedvirtual

Upwind the Fwd and Bwd states based on the velocity field given by Vec.

Upwind the left and right states given by the Arrays Fwd and Bwd using the vector quantity Vec and ouput the upwinded value in the array upwind.

Parameters
VecVelocity field.
FwdLeft state.
BwdRight state.
UpwindOutput vector.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 944 of file ExpList1D.cpp.

References ASSERTL1, Nektar::MultiRegions::ExpList::GetCoordim(), Nektar::MultiRegions::ExpList::m_exp, and Nektar::MultiRegions::ExpList::m_phys_offset.

949  {
950  int i,j,k,e_npoints,offset;
951  Array<OneD,NekDouble> normals;
952  NekDouble Vn;
953 
954  // Assume whole array is of same coordimate dimension
955  int coordim = GetCoordim(0);
956 
957  ASSERTL1(Vec.num_elements() >= coordim,
958  "Input vector does not have sufficient dimensions to "
959  "match coordim");
960 
961  // Process each expansion
962  for(i = 0; i < m_exp->size(); ++i)
963  {
964  // Get the number of points in the expansion and the normals.
965  e_npoints = (*m_exp)[i]->GetNumPoints(0);
966  normals = (*m_exp)[i]->GetPhysNormals();
967 
968  // Get the physical data offset of the expansion in m_phys.
969  offset = m_phys_offset[i];
970 
971  // Compute each data point.
972  for(j = 0; j < e_npoints; ++j)
973  {
974  // Calculate normal velocity.
975  Vn = 0.0;
976  for(k = 0; k < coordim; ++k)
977  {
978  Vn += Vec[k][offset+j]*normals[k*e_npoints + j];
979  }
980 
981  // Upwind based on direction of normal velocity.
982  if(Vn > 0.0)
983  {
984  Upwind[offset + j] = Fwd[offset + j];
985  }
986  else
987  {
988  Upwind[offset + j] = Bwd[offset + j];
989  }
990  }
991  }
992  }
boost::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Definition: ExpList.h:1036
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1050
double NekDouble
int GetCoordim(int eid)
This function returns the dimension of the coordinates of the element eid.
Definition: ExpList.h:1898
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
void Nektar::MultiRegions::ExpList1D::v_Upwind ( const Array< OneD, const NekDouble > &  Vn,
const Array< OneD, const NekDouble > &  Fwd,
const Array< OneD, const NekDouble > &  Bwd,
Array< OneD, NekDouble > &  Upwind 
)
protectedvirtual

Upwind the Fwd and Bwd states based on the one- dimensional normal velocity field given by Vn.

One-dimensional upwind.

See also
ExpList1D::Upwind( const Array<OneD, const Array<OneD, NekDouble> >, const Array<OneD, const NekDouble>, const Array<OneD, const NekDouble>, Array<OneD, NekDouble>, int)
Parameters
VnVelocity field.
FwdLeft state.
BwdRight state.
UpwindOutput vector.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1007 of file ExpList1D.cpp.

References Nektar::MultiRegions::ExpList::m_exp, and Nektar::MultiRegions::ExpList::m_phys_offset.

1012  {
1013  int i,j,e_npoints,offset;
1014  Array<OneD,NekDouble> normals;
1015 
1016  // Process each expansion.
1017  for(i = 0; i < m_exp->size(); ++i)
1018  {
1019  // Get the number of points and the data offset.
1020  e_npoints = (*m_exp)[i]->GetNumPoints(0);
1021  offset = m_phys_offset[i];
1022 
1023  // Process each point in the expansion.
1024  for(j = 0; j < e_npoints; ++j)
1025  {
1026  // Upwind based on one-dimensional velocity.
1027  if(Vn[offset + j] > 0.0)
1028  {
1029  Upwind[offset + j] = Fwd[offset + j];
1030  }
1031  else
1032  {
1033  Upwind[offset + j] = Bwd[offset + j];
1034  }
1035  }
1036  }
1037  }
boost::shared_ptr< LocalRegions::ExpansionVector > m_exp
The list of local expansions.
Definition: ExpList.h:1036
Array< OneD, int > m_phys_offset
Offset of elemental data into the array m_phys.
Definition: ExpList.h:1050
void Nektar::MultiRegions::ExpList1D::v_WriteVtkPieceHeader ( std::ostream &  outfile,
int  expansion,
int  istrip 
)
privatevirtual

const StdRegions::StdExpansionVector &locexp);

Writes out the header for a <PIECE> VTK XML segment describing the geometric information which comprises this element. This includes vertex coordinates for each quadrature point, vertex connectivity information, cell types and cell offset data.

Parameters
outfileOutput stream to write data to.

Reimplemented from Nektar::MultiRegions::ExpList.

Definition at line 1176 of file ExpList1D.cpp.

1177  {
1178  int i,j;
1179  int nquad0 = (*m_exp)[expansion]->GetNumPoints(0);
1180  int ntot = nquad0;
1181  int ntotminus = (nquad0-1);
1182 
1183  Array<OneD,NekDouble> coords[3];
1184  coords[0] = Array<OneD,NekDouble>(ntot, 0.0);
1185  coords[1] = Array<OneD,NekDouble>(ntot, 0.0);
1186  coords[2] = Array<OneD,NekDouble>(ntot, 0.0);
1187  (*m_exp)[expansion]->GetCoords(coords[0],coords[1],coords[2]);
1188 
1189  outfile << " <Piece NumberOfPoints=\""
1190  << ntot << "\" NumberOfCells=\""
1191  << ntotminus << "\">" << endl;
1192  outfile << " <Points>" << endl;
1193  outfile << " <DataArray type=\"Float64\" "
1194  << "NumberOfComponents=\"3\" format=\"ascii\">" << endl;
1195  outfile << " ";
1196  for (i = 0; i < ntot; ++i)
1197  {
1198  for (j = 0; j < 3; ++j)
1199  {
1200  outfile << setprecision(8) << scientific
1201  << (float)coords[j][i] << " ";
1202  }
1203  outfile << endl;
1204  }
1205  outfile << endl;
1206  outfile << " </DataArray>" << endl;
1207  outfile << " </Points>" << endl;
1208  outfile << " <Cells>" << endl;
1209  outfile << " <DataArray type=\"Int32\" "
1210  << "Name=\"connectivity\" format=\"ascii\">" << endl;
1211  for (i = 0; i < nquad0-1; ++i)
1212  {
1213  outfile << i << " " << i+1 << endl;
1214  }
1215  outfile << endl;
1216  outfile << " </DataArray>" << endl;
1217  outfile << " <DataArray type=\"Int32\" "
1218  << "Name=\"offsets\" format=\"ascii\">" << endl;
1219  for (i = 0; i < ntotminus; ++i)
1220  {
1221  outfile << i*2+2 << " ";
1222  }
1223  outfile << endl;
1224  outfile << " </DataArray>" << endl;
1225  outfile << " <DataArray type=\"UInt8\" "
1226  << "Name=\"types\" format=\"ascii\">" << endl;
1227  for (i = 0; i < ntotminus; ++i)
1228  {
1229  outfile << "3 ";
1230  }
1231  outfile << endl;
1232  outfile << " </DataArray>" << endl;
1233  outfile << " </Cells>" << endl;
1234  outfile << " <PointData>" << endl;
1235  }

Member Data Documentation

int Nektar::MultiRegions::ExpList1D::m_firstIntEl
private

Definition at line 202 of file ExpList1D.h.

Array<OneD, NekDouble> Nektar::MultiRegions::ExpList1D::m_normSign
private

Definition at line 204 of file ExpList1D.h.