Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::TriExp Class Reference

#include <TriExp.h>

Inheritance diagram for Nektar::LocalRegions::TriExp:
[legend]

Public Member Functions

 TriExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const SpatialDomains::TriGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 TriExp (const TriExp &T)
 
 ~TriExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdTriExp
 StdTriExp ()
 
 StdTriExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdTriExp (const StdTriExp &T)
 
 ~StdTriExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion2D
 StdExpansion2D ()
 
 StdExpansion2D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdExpansion2D (const StdExpansion2D &T)
 
virtual ~StdExpansion2D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
 Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp (void) const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceNumModes (const int fid, const Orientation faceOrient, int &numModes0, int &numModes1)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const std::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const std::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const std::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
void NegateVertexNormal (const int vertex)
 
bool VertexNormalNegated (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion2D
 Expansion2D (SpatialDomains::Geometry2DSharedPtr pGeom)
 
virtual ~Expansion2D ()
 
void SetTraceToGeomOrientation (Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &inout)
 
Expansion1DSharedPtr GetEdgeExp (int edge, bool SetUpNormal=true)
 
void SetEdgeExp (const int edge, Expansion1DSharedPtr &e)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &edgeCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddEdgeBoundaryInt (const int edge, ExpansionSharedPtr &EdgeExp, Array< OneD, NekDouble > &edgePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
void AddHDGHelmholtzEdgeTerms (const NekDouble tau, const int edge, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &edgePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddHDGHelmholtzTraceTerms (const NekDouble tau, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
Expansion3DSharedPtr GetLeftAdjacentElementExp () const
 
Expansion3DSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementFace () const
 
int GetRightAdjacentElementFace () const
 
void SetAdjacentElementExp (int face, Expansion3DSharedPtr &f)
 
SpatialDomains::Geometry2DSharedPtr GetGeom2D () const
 
void ReOrientEdgePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, Array< OneD, int > &idmap)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrates the specified function over the domain. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out)
 Physical derivative along a direction vector. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Transform a given function from physical quadrature space to coefficient space. More...
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into outarray. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Directinoal Derivative in the modal space in the dir direction of varcoeffs. More...
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const
 
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual void v_GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
virtual void v_GetEdgePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeEdgeNormal (const int edge)
 
virtual int v_GetCoordim ()
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual const LibUtilities::BasisSharedPtrv_GetBasis (int dir) const
 
virtual int v_GetNumPoints (const int dir) const
 
virtual void v_GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdTriExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward tranform for triangular elements. More...
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetEdgeNumPoints (const int i) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual int v_DetCartesianDirOfEdge (const int edge)
 
virtual const LibUtilities::BasisKey v_DetEdgeBasisKey (const int edge) const
 
virtual void v_GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion2D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion2D
virtual Array< OneD, NekDoublev_GetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual Array< OneD, NekDoublev_GetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual Array< OneD, NekDoublev_GetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &edgeCoeffs, Array< OneD, NekDouble > &out_d)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void GetPhysEdgeVarCoeffsFromElement (const int edge, ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
Array< OneD, NekDoublev_GetnEdgecdotMF (const int dir, const int edge, ExpansionSharedPtr &EdgeExp_e, const Array< OneD, const Array< OneD, NekDouble > > &normals, const StdRegions::VarCoeffMap &varcoeffs)
 
void ReOrientQuadEdgePhysMap (const StdRegions::Orientation orient, const int nq0, Array< OneD, int > &idmap)
 
Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual void v_NegateEdgeNormal (const int edge)
 
virtual bool v_EdgeNormalNegated (const int edge)
 
virtual void v_SetUpPhysNormals (const int edge)
 
const StdRegions::NormalVectorv_GetEdgeNormal (const int edge) const
 
const StdRegions::NormalVectorv_GetSurfaceNormal (const int id) const
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
Array< OneD, NekDoublev_GetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoublev_GetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoublev_GetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 TriExp ()
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion2D
std::vector< Expansion1DWeakPtrm_edgeExp
 
std::vector< bool > m_requireNeg
 
std::map< int, StdRegions::NormalVectorm_edgeNormals
 
std::map< int, bool > m_negatedNormals
 
Expansion3DWeakPtr m_elementLeft
 
Expansion3DWeakPtr m_elementRight
 
int m_elementFaceLeft
 
int m_elementFaceRight
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Definition at line 50 of file TriExp.h.

Constructor & Destructor Documentation

◆ TriExp() [1/3]

Nektar::LocalRegions::TriExp::TriExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const SpatialDomains::TriGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 49 of file TriExp.cpp.

51  :
52  StdExpansion (LibUtilities::StdTriData::getNumberOfCoefficients(Ba.GetNumModes(),(Bb.GetNumModes())),2,Ba,Bb),
53  StdExpansion2D(LibUtilities::StdTriData::getNumberOfCoefficients(Ba.GetNumModes(),(Bb.GetNumModes())),Ba,Bb),
54  StdTriExp(Ba,Bb),
55  Expansion (geom),
56  Expansion2D (geom),
58  std::bind(&TriExp::CreateMatrix, this, std::placeholders::_1),
59  std::string("TriExpMatrix")),
61  std::bind(&TriExp::CreateStaticCondMatrix, this, std::placeholders::_1),
62  std::string("TriExpStaticCondMatrix"))
63  {
64  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:297
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:47
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: TriExp.cpp:1559
int getNumberOfCoefficients(int Na, int Nb)
Definition: ShapeType.hpp:113
Expansion2D(SpatialDomains::Geometry2DSharedPtr pGeom)
Definition: Expansion2D.cpp:52
StdExpansion()
Default Constructor.
virtual DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: TriExp.cpp:1204

◆ TriExp() [2/3]

Nektar::LocalRegions::TriExp::TriExp ( const TriExp T)

Definition at line 67 of file TriExp.cpp.

67  :
68  StdExpansion(T),
69  StdExpansion2D(T),
70  StdTriExp(T),
71  Expansion(T),
72  Expansion2D(T),
73  m_matrixManager(T.m_matrixManager),
74  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
75  {
76  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:297
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:47
Expansion2D(SpatialDomains::Geometry2DSharedPtr pGeom)
Definition: Expansion2D.cpp:52
StdExpansion()
Default Constructor.

◆ ~TriExp()

Nektar::LocalRegions::TriExp::~TriExp ( )

Definition at line 79 of file TriExp.cpp.

80  {
81  }

◆ TriExp() [3/3]

Nektar::LocalRegions::TriExp::TriExp ( )
private

Member Function Documentation

◆ CreateMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::TriExp::CreateMatrix ( const MatrixKey mkey)
protectedvirtual

Definition at line 1204 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::LocalRegions::Expansion::ComputeGmatcdotMF(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::eVarCoeffMass, Nektar::StdRegions::eVarCoeffMF, Nektar::StdRegions::eVarCoeffMFDiv, Nektar::StdRegions::eVarCoeffWeakDeriv, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::eWeakDirectionalDeriv, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeff(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::NullConstFactorMap, and Nektar::Transpose().

1205  {
1206  DNekScalMatSharedPtr returnval;
1208 
1209  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1210 
1211  switch(mkey.GetMatrixType())
1212  {
1213  case StdRegions::eMass:
1214  {
1215  if((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)||
1216  (mkey.GetNVarCoeff()))
1217  {
1218  NekDouble one = 1.0;
1219  DNekMatSharedPtr mat = GenMatrix(mkey);
1220  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1221  }
1222  else
1223  {
1224  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1225  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1226  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1227  }
1228  }
1229  break;
1230  case StdRegions::eInvMass:
1231  {
1232  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1233  {
1234  NekDouble one = 1.0;
1235  StdRegions::StdMatrixKey masskey(StdRegions::eMass,DetShapeType(),
1236  *this);
1237  DNekMatSharedPtr mat = GenMatrix(masskey);
1238  mat->Invert();
1239 
1240  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1241  }
1242  else
1243  {
1244  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1245  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1246  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
1247 
1248  }
1249  }
1250  break;
1254  {
1255  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed || mkey.GetNVarCoeff())
1256  {
1257  NekDouble one = 1.0;
1258  DNekMatSharedPtr mat = GenMatrix(mkey);
1259 
1260  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1261  }
1262  else
1263  {
1264  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1265  Array<TwoD, const NekDouble> df = m_metricinfo->GetDerivFactors(ptsKeys);
1266  int dir = 0;
1267  switch(mkey.GetMatrixType())
1268  {
1270  dir = 0;
1271  break;
1273  dir = 1;
1274  break;
1276  dir = 2;
1277  break;
1278  default:
1279  break;
1280  }
1281 
1282  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1283  mkey.GetShapeType(), *this);
1284  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1285  mkey.GetShapeType(), *this);
1286 
1287  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1288  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1289 
1290  int rows = deriv0.GetRows();
1291  int cols = deriv1.GetColumns();
1292 
1294  (*WeakDeriv) = df[2*dir][0]*deriv0 + df[2*dir+1][0]*deriv1;
1295 
1296  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,WeakDeriv);
1297  }
1298  }
1299  break;
1301  {
1302  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed ||
1303  mkey.GetNVarCoeff())
1304  {
1305  NekDouble one = 1.0;
1306  DNekMatSharedPtr mat = GenMatrix(mkey);
1307 
1308  returnval = MemoryManager<DNekScalMat>::
1309  AllocateSharedPtr(one,mat);
1310  }
1311  else
1312  {
1313  int shapedim = 2;
1314 
1315  // dfdirxi = tan_{xi_x} * d \xi/dx
1316  // + tan_{xi_y} * d \xi/dy
1317  // + tan_{xi_z} * d \xi/dz
1318  // dfdireta = tan_{eta_x} * d \eta/dx
1319  // + tan_{xi_y} * d \xi/dy
1320  // + tan_{xi_z} * d \xi/dz
1321  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1322  Array<TwoD, const NekDouble> df =
1323  m_metricinfo->GetDerivFactors(ptsKeys);
1324 
1325  Array<OneD, NekDouble> direction =
1326  mkey.GetVarCoeff(StdRegions::eVarCoeffMF);
1327 
1328  // d / dx = df[0]*deriv0 + df[1]*deriv1
1329  // d / dy = df[2]*deriv0 + df[3]*deriv1
1330  // d / dz = df[4]*deriv0 + df[5]*deriv1
1331 
1332  // dfdir[dir] = e \cdot (d/dx, d/dy, d/dz)
1333  // = (e^0 * df[0] + e^1 * df[2]
1334  // + e^2 * df[4]) * deriv0
1335  // + (e^0 * df[1] + e^1 * df[3]
1336  // + e^2 * df[5]) * deriv1
1337  // dfdir[dir] = e^0 * df[2 * 0 + dir]
1338  // + e^1 * df[2 * 1 + dir]
1339  // + e^2 * df [ 2 * 2 + dir]
1340  Array<OneD, Array<OneD, NekDouble> > dfdir(shapedim);
1341  Expansion::ComputeGmatcdotMF(df, direction, dfdir);
1342 
1343  StdRegions::VarCoeffMap dfdirxi;
1344  StdRegions::VarCoeffMap dfdireta;
1345 
1346  dfdirxi[StdRegions::eVarCoeffWeakDeriv] = dfdir[0];
1347  dfdireta[StdRegions::eVarCoeffWeakDeriv] = dfdir[1];
1348 
1349  MatrixKey derivxikey( StdRegions::eWeakDeriv0,
1350  mkey.GetShapeType(), *this,
1352  dfdirxi);
1353  MatrixKey derivetakey( StdRegions::eWeakDeriv1,
1354  mkey.GetShapeType(), *this,
1356  dfdireta);
1357 
1358  DNekMat &derivxi = *GetStdMatrix(derivxikey);
1359  DNekMat &deriveta = *GetStdMatrix(derivetakey);
1360 
1361  int rows = derivxi.GetRows();
1362  int cols = deriveta.GetColumns();
1363 
1365  AllocateSharedPtr(rows,cols);
1366 
1367  (*WeakDirDeriv) = derivxi + deriveta;
1368 
1369  // Add (\nabla \cdot e^k ) Mass
1370  StdRegions::VarCoeffMap DiveMass;
1371  DiveMass[StdRegions::eVarCoeffMass] =
1372  mkey.GetVarCoeff(StdRegions::eVarCoeffMFDiv);
1373  StdRegions::StdMatrixKey stdmasskey(
1375  mkey.GetShapeType(), *this,
1377  DiveMass);
1378 
1379  DNekMatSharedPtr DiveMassmat = GetStdMatrix(stdmasskey);
1380 
1381  (*WeakDirDeriv) = (*WeakDirDeriv) + (*DiveMassmat);
1382 
1383  returnval = MemoryManager<DNekScalMat>::
1384  AllocateSharedPtr(jac,WeakDirDeriv);
1385  }
1386  break;
1387  }
1389  {
1390  if( (m_metricinfo->GetGtype() == SpatialDomains::eDeformed) ||
1391  (mkey.GetNVarCoeff() > 0)||(mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio)))
1392  {
1393  NekDouble one = 1.0;
1394  DNekMatSharedPtr mat = GenMatrix(mkey);
1395 
1396  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1397  }
1398  else
1399  {
1400  MatrixKey lap00key(StdRegions::eLaplacian00,
1401  mkey.GetShapeType(), *this);
1402  MatrixKey lap01key(StdRegions::eLaplacian01,
1403  mkey.GetShapeType(), *this);
1404  MatrixKey lap11key(StdRegions::eLaplacian11,
1405  mkey.GetShapeType(), *this);
1406 
1407  DNekMat &lap00 = *GetStdMatrix(lap00key);
1408  DNekMat &lap01 = *GetStdMatrix(lap01key);
1409  DNekMat &lap11 = *GetStdMatrix(lap11key);
1410 
1411  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1412  Array<TwoD, const NekDouble> gmat =
1413  m_metricinfo->GetGmat(ptsKeys);
1414 
1415  int rows = lap00.GetRows();
1416  int cols = lap00.GetColumns();
1417 
1419 
1420  (*lap) = gmat[0][0] * lap00 +
1421  gmat[1][0] * (lap01 + Transpose(lap01)) +
1422  gmat[3][0] * lap11;
1423 
1424  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,lap);
1425  }
1426  }
1427  break;
1429  {
1430  DNekMatSharedPtr mat = GenMatrix(mkey);
1431  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(1.0,mat);
1432  }
1433  break;
1435  {
1436  NekDouble factor = mkey.GetConstFactor(StdRegions::eFactorLambda);
1437 
1438  MatrixKey masskey(mkey, StdRegions::eMass);
1439  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1440 
1441  MatrixKey lapkey(mkey, StdRegions::eLaplacian);
1442  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1443 
1444  int rows = LapMat.GetRows();
1445  int cols = LapMat.GetColumns();
1446 
1448 
1449  NekDouble one = 1.0;
1450  (*helm) = LapMat + factor*MassMat;
1451 
1452  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
1453  }
1454  break;
1456  {
1457  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1458  {
1459  NekDouble one = 1.0;
1460  DNekMatSharedPtr mat = GenMatrix(mkey);
1461  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1462  }
1463  else
1464  {
1465  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1466  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1467  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1468  }
1469  }
1470  break;
1474  {
1475  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1476  {
1477  NekDouble one = 1.0;
1478  DNekMatSharedPtr mat = GenMatrix(mkey);
1479  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1480  }
1481  else
1482  {
1483  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1484 
1485  const Array<TwoD, const NekDouble>& df = m_metricinfo->GetDerivFactors(ptsKeys);
1486  int dir = 0;
1487 
1488  switch(mkey.GetMatrixType())
1489  {
1491  dir = 0;
1492  break;
1494  dir = 1;
1495  break;
1497  dir = 2;
1498  break;
1499  default:
1500  break;
1501  }
1502 
1503  MatrixKey iProdDeriv0Key(StdRegions::eIProductWRTDerivBase0,
1504  mkey.GetShapeType(), *this);
1505  MatrixKey iProdDeriv1Key(StdRegions::eIProductWRTDerivBase1,
1506  mkey.GetShapeType(), *this);
1507 
1508  DNekMat &stdiprod0 = *GetStdMatrix(iProdDeriv0Key);
1509  DNekMat &stdiprod1 = *GetStdMatrix(iProdDeriv0Key);
1510 
1511  int rows = stdiprod0.GetRows();
1512  int cols = stdiprod1.GetColumns();
1513 
1515  (*mat) = df[2*dir][0]*stdiprod0 + df[2*dir+1][0]*stdiprod1;
1516 
1517  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1518  }
1519  }
1520  break;
1521 
1523  {
1524  NekDouble one = 1.0;
1525 
1526  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1527 
1528  DNekMatSharedPtr mat = GenMatrix(hkey);
1529 
1530  mat->Invert();
1531  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1532  }
1533  break;
1535  {
1536  NekDouble one = 1.0;
1537  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1538  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1539  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1541 
1543  }
1544  break;
1545  default:
1546  {
1547  NekDouble one = 1.0;
1548  DNekMatSharedPtr mat = GenMatrix(mkey);
1549 
1550  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1551  }
1552  break;
1553  }
1554 
1555  return returnval;
1556  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:246
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:469
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:73
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:98
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:761
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:714
const LibUtilities::PointsKeyVector GetPointsKeys() const
std::map< StdRegions::VarCoeffType, Array< OneD, NekDouble > > VarCoeffMap
Definition: StdRegions.hpp:264
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:51
double NekDouble
void ComputeGmatcdotMF(const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
Definition: Expansion.cpp:312
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:274
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
static ConstFactorMap NullConstFactorMap
Definition: StdRegions.hpp:295

◆ CreateStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::TriExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Definition at line 1559 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1560  {
1561  DNekScalBlkMatSharedPtr returnval;
1563 
1564  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1565 
1566  // set up block matrix system
1567  unsigned int nbdry = NumBndryCoeffs();
1568  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1569  unsigned int exp_size[] = {nbdry,nint};
1570  unsigned int nblks = 2;
1571  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks,nblks,exp_size,exp_size); //Really need a constructor which takes Arrays
1572  NekDouble factor = 1.0;
1573 
1574  switch(mkey.GetMatrixType())
1575  {
1576  // this can only use stdregions statically condensed system for mass matrix
1577  case StdRegions::eMass:
1578  if((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)||(mkey.GetNVarCoeff()))
1579  {
1580  factor = 1.0;
1581  goto UseLocRegionsMatrix;
1582  }
1583  else
1584  {
1585  factor = (m_metricinfo->GetJac(ptsKeys))[0];
1586  goto UseStdRegionsMatrix;
1587  }
1588  break;
1589  default: // use Deformed case for both regular and deformed geometries
1590  factor = 1.0;
1591  goto UseLocRegionsMatrix;
1592  break;
1593  UseStdRegionsMatrix:
1594  {
1595  NekDouble invfactor = 1.0/factor;
1596  NekDouble one = 1.0;
1598  DNekScalMatSharedPtr Atmp;
1599  DNekMatSharedPtr Asubmat;
1600 
1601  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1602  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1603  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1604  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1605  }
1606  break;
1607 
1608  UseLocRegionsMatrix:
1609  {
1610  int i,j;
1611  NekDouble invfactor = 1.0/factor;
1612  NekDouble one = 1.0;
1613 
1614  DNekScalMat &mat = *GetLocMatrix(mkey);
1615 
1620 
1621  Array<OneD,unsigned int> bmap(nbdry);
1622  Array<OneD,unsigned int> imap(nint);
1623  GetBoundaryMap(bmap);
1624  GetInteriorMap(imap);
1625 
1626  for(i = 0; i < nbdry; ++i)
1627  {
1628  for(j = 0; j < nbdry; ++j)
1629  {
1630  (*A)(i,j) = mat(bmap[i],bmap[j]);
1631  }
1632 
1633  for(j = 0; j < nint; ++j)
1634  {
1635  (*B)(i,j) = mat(bmap[i],imap[j]);
1636  }
1637  }
1638 
1639  for(i = 0; i < nint; ++i)
1640  {
1641  for(j = 0; j < nbdry; ++j)
1642  {
1643  (*C)(i,j) = mat(imap[i],bmap[j]);
1644  }
1645 
1646  for(j = 0; j < nint; ++j)
1647  {
1648  (*D)(i,j) = mat(imap[i],imap[j]);
1649  }
1650  }
1651 
1652  // Calculate static condensed system
1653  if(nint)
1654  {
1655  D->Invert();
1656  (*B) = (*B)*(*D);
1657  (*A) = (*A) - (*B)*(*C);
1658  }
1659 
1660  DNekScalMatSharedPtr Atmp;
1661 
1662  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1663  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1664  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1665  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1666 
1667  }
1668  }
1669 
1670  return returnval;
1671  }
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:246
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:73
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
std::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:71
const LibUtilities::PointsKeyVector GetPointsKeys() const
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:719
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:817
double NekDouble
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:274
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:812

◆ v_ComputeEdgeNormal()

void Nektar::LocalRegions::TriExp::v_ComputeEdgeNormal ( const int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 939 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eBackwards, Nektar::SpatialDomains::eDeformed, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::PointsKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion2D::m_edgeNormals, Vmath::Reverse(), Vmath::Sdiv(), Vmath::Smul(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

940  {
941  int i;
942  const SpatialDomains::GeomFactorsSharedPtr & geomFactors = GetGeom()->GetMetricInfo();
943 
945  for(i = 0; i < ptsKeys.size(); ++i)
946  {
947  // Need at least 2 points for computing normals
948  if (ptsKeys[i].GetNumPoints() == 1)
949  {
950  LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
951  ptsKeys[i] = pKey;
952  }
953  }
954 
955  const SpatialDomains::GeomType type = geomFactors->GetGtype();
956  const Array<TwoD, const NekDouble> & df = geomFactors->GetDerivFactors(ptsKeys);
957  const Array<OneD, const NekDouble> & jac = geomFactors->GetJac(ptsKeys);
958  int nqe = m_base[0]->GetNumPoints();
959  int dim = GetCoordim();
960 
961  m_edgeNormals[edge] = Array<OneD, Array<OneD, NekDouble> >(dim);
962  Array<OneD, Array<OneD, NekDouble> > &normal = m_edgeNormals[edge];
963  for (i = 0; i < dim; ++i)
964  {
965  normal[i] = Array<OneD, NekDouble>(nqe);
966  }
967 
968  // Regular geometry case
970  {
971  NekDouble fac;
972  // Set up normals
973  switch(edge)
974  {
975  case 0:
976  for(i = 0; i < GetCoordim(); ++i)
977  {
978  Vmath::Fill(nqe,-df[2*i+1][0],normal[i],1);
979  }
980  break;
981  case 1:
982  for(i = 0; i < GetCoordim(); ++i)
983  {
984  Vmath::Fill(nqe,df[2*i+1][0] + df[2*i][0],normal[i],1);
985  }
986  break;
987  case 2:
988  for(i = 0; i < GetCoordim(); ++i)
989  {
990  Vmath::Fill(nqe,-df[2*i][0],normal[i],1);
991  }
992  break;
993  default:
994  ASSERTL0(false,"Edge is out of range (edge < 3)");
995  }
996 
997  // normalise
998  fac = 0.0;
999  for(i =0 ; i < GetCoordim(); ++i)
1000  {
1001  fac += normal[i][0]*normal[i][0];
1002  }
1003  fac = 1.0/sqrt(fac);
1004  for (i = 0; i < GetCoordim(); ++i)
1005  {
1006  Vmath::Smul(nqe,fac,normal[i],1,normal[i],1);
1007  }
1008  }
1009  else // Set up deformed normals
1010  {
1011  int j;
1012 
1013  int nquad0 = ptsKeys[0].GetNumPoints();
1014  int nquad1 = ptsKeys[1].GetNumPoints();
1015 
1016  LibUtilities::PointsKey from_key;
1017 
1018  Array<OneD,NekDouble> normals(GetCoordim()*max(nquad0,nquad1),0.0);
1019  Array<OneD,NekDouble> edgejac(GetCoordim()*max(nquad0,nquad1),0.0);
1020 
1021  // Extract Jacobian along edges and recover local
1022  // derivates (dx/dr) for polynomial interpolation by
1023  // multiplying m_gmat by jacobian
1024  switch(edge)
1025  {
1026  case 0:
1027  for(j = 0; j < nquad0; ++j)
1028  {
1029  edgejac[j] = jac[j];
1030  for(i = 0; i < GetCoordim(); ++i)
1031  {
1032  normals[i*nquad0+j] = -df[2*i+1][j]*edgejac[j];
1033  }
1034  }
1035  from_key = ptsKeys[0];
1036  break;
1037  case 1:
1038  for(j = 0; j < nquad1; ++j)
1039  {
1040  edgejac[j] = jac[nquad0*j+nquad0-1];
1041  for(i = 0; i < GetCoordim(); ++i)
1042  {
1043  normals[i*nquad1+j] = (df[2*i][nquad0*j + nquad0-1] + df[2*i+1][nquad0*j + nquad0-1])*edgejac[j];
1044  }
1045  }
1046  from_key = ptsKeys[1];
1047  break;
1048  case 2:
1049  for(j = 0; j < nquad1; ++j)
1050  {
1051  edgejac[j] = jac[nquad0*j];
1052  for(i = 0; i < GetCoordim(); ++i)
1053  {
1054  normals[i*nquad1+j] = -df[2*i][nquad0*j]*edgejac[j];
1055  }
1056  }
1057  from_key = ptsKeys[1];
1058  break;
1059  default:
1060  ASSERTL0(false,"edge is out of range (edge < 3)");
1061 
1062  }
1063 
1064  int nq = from_key.GetNumPoints();
1065  Array<OneD,NekDouble> work(nqe,0.0);
1066 
1067  // interpolate Jacobian and invert
1068  LibUtilities::Interp1D(from_key,jac,m_base[0]->GetPointsKey(),work);
1069  Vmath::Sdiv(nqe,1.0,&work[0],1,&work[0],1);
1070 
1071  // interpolate
1072  for(i = 0; i < GetCoordim(); ++i)
1073  {
1074  LibUtilities::Interp1D(from_key,&normals[i*nq],m_base[0]->GetPointsKey(),&normal[i][0]);
1075  Vmath::Vmul(nqe,work,1,normal[i],1,normal[i],1);
1076  }
1077 
1078  //normalise normal vectors
1079  Vmath::Zero(nqe,work,1);
1080  for(i = 0; i < GetCoordim(); ++i)
1081  {
1082  Vmath::Vvtvp(nqe,normal[i],1, normal[i],1,work,1,work,1);
1083  }
1084 
1085  Vmath::Vsqrt(nqe,work,1,work,1);
1086  Vmath::Sdiv(nqe,1.0,work,1,work,1);
1087 
1088  for(i = 0; i < GetCoordim(); ++i)
1089  {
1090  Vmath::Vmul(nqe,normal[i],1,work,1,normal[i],1);
1091  }
1092  }
1093  if(GetGeom()->GetEorient(edge) == StdRegions::eBackwards)
1094  {
1095  for(i = 0; i < GetCoordim(); ++i)
1096  {
1097  if(geomFactors->GetGtype() == SpatialDomains::eDeformed)
1098  {
1099  Vmath::Reverse(nqe, normal[i], 1, normal[i],1);
1100  }
1101  }
1102  }
1103  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:246
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:228
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:411
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:167
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
std::map< int, StdRegions::NormalVector > m_edgeNormals
Definition: Expansion2D.h:134
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:776
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:274
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1088
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
double NekDouble
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:215
Geometry is straight-sided with constant geometric factors.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:53
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:376
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_ComputeLaplacianMetric()

void Nektar::LocalRegions::TriExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1825 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Blas::Dscal(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

1826  {
1827  if (m_metrics.count(eMetricQuadrature) == 0)
1828  {
1830  }
1831 
1832  unsigned int i, j;
1833  const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1834  const unsigned int nqtot = GetTotPoints();
1835  const unsigned int dim = 2;
1839  };
1840 
1841  Array<OneD, NekDouble> dEta_dXi[2] = {Array<OneD, NekDouble>(nqtot,1.0),
1842  Array<OneD, NekDouble>(nqtot,1.0)};
1843 
1844  for (i = 0; i < dim; ++i)
1845  {
1846  for (j = i; j < dim; ++j)
1847  {
1848  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1849  }
1850  }
1851 
1852  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
1853  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
1854  const unsigned int nquad0 = m_base[0]->GetNumPoints();
1855  const unsigned int nquad1 = m_base[1]->GetNumPoints();
1856  const Array<TwoD, const NekDouble>& df =
1857  m_metricinfo->GetDerivFactors(GetPointsKeys());
1858 
1859  for(i = 0; i < nquad1; i++)
1860  {
1861  Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[0][0]+i*nquad0,1);
1862  Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[1][0]+i*nquad0,1);
1863  }
1864  for(i = 0; i < nquad0; i++)
1865  {
1866  Blas::Dscal(nquad1,0.5*(1+z0[i]),&dEta_dXi[1][0]+i,nquad0);
1867  }
1868 
1869  Array<OneD, NekDouble> tmp(nqtot);
1870  if((type == SpatialDomains::eRegular ||
1872  {
1873  Vmath::Smul (nqtot,df[0][0],&dEta_dXi[0][0],1,&tmp[0],1);
1874  Vmath::Svtvp(nqtot,df[1][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1875 
1876  Vmath::Vmul (nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1);
1877  Vmath::Smul (nqtot,df[1][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1);
1878 
1879 
1880  Vmath::Smul (nqtot,df[2][0],&dEta_dXi[0][0],1,&tmp[0],1);
1881  Vmath::Svtvp(nqtot,df[3][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1882 
1883  Vmath::Vvtvp(nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1884  Vmath::Svtvp(nqtot,df[3][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1885 
1886  if(GetCoordim() == 3)
1887  {
1888  Vmath::Smul (nqtot,df[4][0],&dEta_dXi[0][0],1,&tmp[0],1);
1889  Vmath::Svtvp(nqtot,df[5][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1890 
1891  Vmath::Vvtvp(nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1892  Vmath::Svtvp(nqtot,df[5][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1893  }
1894 
1895  NekDouble g2 = df[1][0]*df[1][0] + df[3][0]*df[3][0];
1896  if(GetCoordim() == 3)
1897  {
1898  g2 += df[5][0]*df[5][0];
1899  }
1900  Vmath::Fill(nqtot,g2,&m_metrics[eMetricLaplacian11][0],1);
1901  }
1902  else
1903  {
1904 
1905  Vmath::Vmul (nqtot,&df[0][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1906  Vmath::Vvtvp(nqtot,&df[1][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1907 
1908  Vmath::Vmul (nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1);
1909  Vmath::Vmul (nqtot,&df[1][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1);
1910  Vmath::Vmul (nqtot,&df[1][0],1,&df[1][0],1,&m_metrics[eMetricLaplacian11][0],1);
1911 
1912 
1913  Vmath::Vmul (nqtot,&df[2][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1914  Vmath::Vvtvp(nqtot,&df[3][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1915 
1916  Vmath::Vvtvp(nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1917  Vmath::Vvtvp(nqtot,&df[3][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1918  Vmath::Vvtvp(nqtot,&df[3][0],1,&df[3][0],1,&m_metrics[eMetricLaplacian11][0],1,&m_metrics[eMetricLaplacian11][0],1);
1919 
1920  if(GetCoordim() == 3)
1921  {
1922  Vmath::Vmul (nqtot,&df[4][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1923  Vmath::Vvtvp(nqtot,&df[5][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1924 
1925  Vmath::Vvtvp(nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1926  Vmath::Vvtvp(nqtot,&df[5][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1927  Vmath::Vvtvp(nqtot,&df[5][0],1,&df[5][0],1,&m_metrics[eMetricLaplacian11][0],1,&m_metrics[eMetricLaplacian11][0],1);
1928  }
1929  }
1930 
1931  for (unsigned int i = 0; i < dim; ++i)
1932  {
1933  for (unsigned int j = i; j < dim; ++j)
1934  {
1936  m_metrics[m[i][j]]);
1937 
1938  }
1939  }
1940  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:945
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:488
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
double NekDouble
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:125
Geometry is straight-sided with constant geometric factors.
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
GeomType
Indicates the type of element geometry.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::TriExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1193 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1194  {
1195  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1196  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1198  AllocateSharedPtr(bkey0,bkey1);
1199 
1200  return tmp->GetStdMatrix(mkey);
1201  }
std::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:266
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::TriExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1685 of file TriExp.cpp.

References m_staticCondMatrixManager.

1686  {
1687  m_staticCondMatrixManager.DeleteObject(mkey);
1688  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:297

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::TriExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1111 of file TriExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

1117  {
1118  boost::ignore_unused(fromType);
1119 
1120  int data_order0 = nummodes[mode_offset];
1121  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
1122  int data_order1 = nummodes[mode_offset+1];
1123  int order1 = m_base[1]->GetNumModes();
1124  int fillorder1 = min(order1,data_order1);
1125 
1126  switch(m_base[0]->GetBasisType())
1127  {
1129  {
1130  int i;
1131  int cnt = 0;
1132  int cnt1 = 0;
1133 
1135  "Extraction routine not set up for this basis");
1136 
1137  Vmath::Zero(m_ncoeffs,coeffs,1);
1138  for(i = 0; i < fillorder0; ++i)
1139  {
1140  Vmath::Vcopy(fillorder1-i,&data[cnt],1,&coeffs[cnt1],1);
1141  cnt += data_order1-i;
1142  cnt1 += order1-i;
1143  }
1144  }
1145  break;
1146  default:
1147  ASSERTL0(false,"basis is either not set up or not hierarchicial");
1148  }
1149  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
Principle Modified Functions .
Definition: BasisType.h:48
Principle Modified Functions .
Definition: BasisType.h:49
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:376
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_FwdTrans()

void Nektar::LocalRegions::TriExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Transform a given function from physical quadrature space to coefficient space.

See also
StdExpansion::FwdTrans

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 267 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::IProductWRTBase(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

269  {
270  IProductWRTBase(inarray,outarray);
271 
272  // get Mass matrix inverse
273  MatrixKey masskey(StdRegions::eInvMass,
274  DetShapeType(),*this);
275  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
276 
277  // copy inarray in case inarray == outarray
278  NekVector<NekDouble> in (m_ncoeffs,outarray,eCopy);
279  NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
280 
281  out = (*matsys)*in;
282  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:469
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:634

◆ v_FwdTrans_BndConstrained()

void Nektar::LocalRegions::TriExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 285 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::DetShapeType(), Blas::Dgemv(), Nektar::StdRegions::eForwards, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::StdRegions::eMass, Nektar::StdRegions::StdExpansion::GetEdgeToElementMap(), Nektar::LocalRegions::Expansion2D::GetGeom2D(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, m_staticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), Nektar::StdRegions::StdExpansion::NumBndryCoeffs(), Nektar::rhs, sign, and Vmath::Vsub().

287  {
288  int i,j;
289  int npoints[2] = {m_base[0]->GetNumPoints(),
290  m_base[1]->GetNumPoints()};
291  int nmodes[2] = {m_base[0]->GetNumModes(),
292  m_base[1]->GetNumModes()};
293 
294  fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
295 
296  if(nmodes[0] == 1 && nmodes[1] == 1)
297  {
298  outarray[0] = inarray[0];
299  return;
300  }
301 
302  Array<OneD, NekDouble> physEdge[3];
303  Array<OneD, NekDouble> coeffEdge[3];
304  for(i = 0; i < 3; i++)
305  {
306  // define physEdge and add 1 so can interpolate grl10 points if necessary
307  physEdge[i] = Array<OneD, NekDouble>(max(npoints[i!=0],npoints[0]));
308  coeffEdge[i] = Array<OneD, NekDouble>(nmodes[i!=0]);
309  }
310 
311  for(i = 0; i < npoints[0]; i++)
312  {
313  physEdge[0][i] = inarray[i];
314  }
315 
316  // extract data in cartesian directions
317  for(i = 0; i < npoints[1]; i++)
318  {
319  physEdge[1][i] = inarray[npoints[0]-1+i*npoints[0]];
320  physEdge[2][i] = inarray[i*npoints[0]];
321  }
322 
323  SegExpSharedPtr segexp[3];
324  segexp[0] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[0]->GetBasisKey(),GetGeom2D()->GetEdge(0));
325 
327  {
328  for(i = 1; i < 3; i++)
329  {
330  segexp[i] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[i!=0]->GetBasisKey(),GetGeom2D()->GetEdge(i));
331  }
332  }
333  else // interploate using edge 0 GLL distribution
334  {
335  for(i = 1; i < 3; i++)
336  {
337  segexp[i] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[0]->GetBasisKey(),GetGeom2D()->GetEdge(i));
338 
339  LibUtilities::Interp1D(m_base[1]->GetPointsKey(),physEdge[i],
340  m_base[0]->GetPointsKey(),physEdge[i]);
341  }
342  npoints[1] = npoints[0];
343  }
344 
345 
346  Array<OneD, unsigned int> mapArray;
347  Array<OneD, int> signArray;
348  NekDouble sign;
349  // define an orientation to get EdgeToElmtMapping from Cartesian data
351  StdRegions::eForwards};
352 
353  for(i = 0; i < 3; i++)
354  {
355  segexp[i]->FwdTrans_BndConstrained(physEdge[i],coeffEdge[i]);
356 
357  // this orient goes with the one above and so could
358  // probably set both to eForwards
359  GetEdgeToElementMap(i,orient[i],mapArray,signArray);
360  for(j=0; j < nmodes[i!=0]; j++)
361  {
362  sign = (NekDouble) signArray[j];
363  outarray[ mapArray[j] ] = sign * coeffEdge[i][j];
364  }
365  }
366 
367  int nBoundaryDofs = NumBndryCoeffs();
368  int nInteriorDofs = m_ncoeffs - nBoundaryDofs;
369 
370  if (nInteriorDofs > 0) {
371  Array<OneD, NekDouble> tmp0(m_ncoeffs);
372  Array<OneD, NekDouble> tmp1(m_ncoeffs);
373 
374  StdRegions::StdMatrixKey stdmasskey(StdRegions::eMass,DetShapeType(),*this);
375  MassMatrixOp(outarray,tmp0,stdmasskey);
376  IProductWRTBase(inarray,tmp1);
377 
378  Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
379 
380  // get Mass matrix inverse (only of interior DOF)
381  // use block (1,1) of the static condensed system
382  // note: this block alreay contains the inverse matrix
383  MatrixKey masskey(StdRegions::eMass,DetShapeType(),*this);
384  DNekScalMatSharedPtr matsys = (m_staticCondMatrixManager[masskey])->GetBlock(1,1);
385 
386  Array<OneD, NekDouble> rhs(nInteriorDofs);
387  Array<OneD, NekDouble> result(nInteriorDofs);
388 
389  GetInteriorMap(mapArray);
390 
391  for(i = 0; i < nInteriorDofs; i++)
392  {
393  rhs[i] = tmp1[ mapArray[i] ];
394  }
395 
396  Blas::Dgemv('N', nInteriorDofs, nInteriorDofs, matsys->Scale(), &((matsys->GetOwnedMatrix())->GetPtr())[0],
397  nInteriorDofs,rhs.get(),1,0.0,result.get(),1);
398 
399  for(i = 0; i < nInteriorDofs; i++)
400  {
401  outarray[ mapArray[i] ] = result[i];
402  }
403  }
404  }
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:974
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:297
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:469
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:16
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:634
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:291
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:817
double NekDouble
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:346
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:215
void GetEdgeToElementMap(const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
Definition: StdExpansion.h:849
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:53
std::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:266
StandardMatrixTag boost::call_traits< LhsDataType >::const_reference rhs
Array< OneD, LibUtilities::BasisSharedPtr > m_base
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51

◆ v_GeneralMatrixOp_MatOp()

void Nektar::LocalRegions::TriExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1750 of file TriExp.cpp.

References Blas::Dgemv(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

1753  {
1754  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1755 
1756  if(inarray.get() == outarray.get())
1757  {
1758  Array<OneD,NekDouble> tmp(m_ncoeffs);
1759  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1760 
1761  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1762  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1763  }
1764  else
1765  {
1766  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1767  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1768  }
1769  }
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:85
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::TriExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1170 of file TriExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion2D::v_GenMatrix().

1171  {
1172  DNekMatSharedPtr returnval;
1173  switch(mkey.GetMatrixType())
1174  {
1182  returnval = Expansion2D::v_GenMatrix(mkey);
1183  break;
1184  default:
1185  returnval = StdTriExp::v_GenMatrix(mkey);
1186  break;
1187  }
1188 
1189  return returnval;
1190  }
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)

◆ v_GetBasis()

const LibUtilities::BasisSharedPtr & Nektar::LocalRegions::TriExp::v_GetBasis ( int  dir) const
protectedvirtual

Definition at line 1157 of file TriExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion::m_base.

1158  {
1159  ASSERTL1(dir >= 0 &&dir <= 1,"input dir is out of range");
1160  return m_base[dir];
1161  }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_GetCoord()

void Nektar::LocalRegions::TriExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 710 of file TriExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

712  {
713  int i;
714 
715  ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[1] <= 1.0 &&
716  Lcoords[1] >= -1.0 && Lcoords[1] <=1.0,
717  "Local coordinates are not in region [-1,1]");
718 
719  m_geom->FillGeom();
720 
721  for(i = 0; i < m_geom->GetCoordim(); ++i)
722  {
723  coords[i] = m_geom->GetCoord(i,Lcoords);
724  }
725  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:127
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ v_GetCoordim()

int Nektar::LocalRegions::TriExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion2D.

Definition at line 1105 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

1106  {
1107  return m_geom->GetCoordim();
1108  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:127

◆ v_GetCoords()

void Nektar::LocalRegions::TriExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 727 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

731  {
732  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
733  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:231

◆ v_GetEdgeInterpVals()

void Nektar::LocalRegions::TriExp::v_GetEdgeInterpVals ( const int  edge,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 880 of file TriExp.cpp.

References ASSERTL0.

883  {
884  boost::ignore_unused(edge, inarray, outarray);
885  ASSERTL0(false,
886  "Routine not implemented for triangular elements");
887  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216

◆ v_GetEdgePhysMap()

void Nektar::LocalRegions::TriExp::v_GetEdgePhysMap ( const int  edge,
Array< OneD, int > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 900 of file TriExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

903  {
904  int nquad0 = m_base[0]->GetNumPoints();
905  int nquad1 = m_base[1]->GetNumPoints();
906 
907  // Get points in Cartesian orientation
908  switch (edge)
909  {
910  case 0:
911  outarray = Array<OneD, int>(nquad0);
912  for (int i = 0; i < nquad0; ++i)
913  {
914  outarray[i] = i;
915  }
916  break;
917  case 1:
918  outarray = Array<OneD, int>(nquad1);
919  for (int i = 0; i < nquad1; ++i)
920  {
921  outarray[i] = (nquad0-1) + i * nquad0;
922  }
923  break;
924  case 2:
925  outarray = Array<OneD, int>(nquad1);
926  for (int i = 0; i < nquad1; ++i)
927  {
928  outarray[i] = i*nquad0;
929  }
930  break;
931  default:
932  ASSERTL0(false, "edge value (< 3) is out of range");
933  break;
934  }
935 
936  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_GetEdgePhysVals() [1/2]

void Nektar::LocalRegions::TriExp::v_GetEdgePhysVals ( const int  edge,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 771 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eForwards, Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by v_GetTracePhysVals().

775  {
776  int nquad0 = m_base[0]->GetNumPoints();
777  int nquad1 = m_base[1]->GetNumPoints();
778 
779  StdRegions::Orientation edgedir = GetEorient(edge);
780  switch(edge)
781  {
782  case 0:
783  if (edgedir == StdRegions::eForwards)
784  {
785  Vmath::Vcopy(nquad0,&(inarray[0]),1,&(outarray[0]),1);
786  }
787  else
788  {
789  Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1),-1,
790  &(outarray[0]),1);
791  }
792  break;
793  case 1:
794  if (edgedir == StdRegions::eForwards)
795  {
796  Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0-1),nquad0,
797  &(outarray[0]),1);
798  }
799  else
800  {
801  Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0*nquad1-1),
802  -nquad0, &(outarray[0]),1);
803  }
804  break;
805  case 2:
806  if (edgedir == StdRegions::eForwards)
807  {
808  Vmath::Vcopy(nquad1,&(inarray[0]) + nquad0*(nquad1-1),
809  -nquad0,&(outarray[0]),1);
810  }
811  else
812  {
813  Vmath::Vcopy(nquad1,&(inarray[0]),nquad0,
814  &(outarray[0]),1);
815  }
816  break;
817  default:
818  ASSERTL0(false,"edge value (< 3) is out of range");
819  break;
820  }
821  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:776
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064

◆ v_GetEdgePhysVals() [2/2]

void Nektar::LocalRegions::TriExp::v_GetEdgePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Definition at line 823 of file TriExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::StdRegions::eBackwards, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Reverse(), and Vmath::Vcopy().

828  {
829  int nquad0 = m_base[0]->GetNumPoints();
830  int nquad1 = m_base[1]->GetNumPoints();
831 
832  // Extract in Cartesian direction because we have to deal with
833  // e.g. Gauss-Radau points.
834  switch(edge)
835  {
836  case 0:
837  Vmath::Vcopy(nquad0, &(inarray[0]), 1, &(outarray[0]), 1);
838  break;
839  case 1:
840  Vmath::Vcopy(nquad1, &(inarray[0])+(nquad0-1),
841  nquad0, &(outarray[0]), 1);
842  break;
843  case 2:
844  Vmath::Vcopy(nquad1, &(inarray[0]), nquad0, &(outarray[0]), 1);
845  break;
846  default:
847  ASSERTL0(false,"edge value (< 3) is out of range");
848  break;
849  }
850 
851  ASSERTL1(EdgeExp->GetBasis(0)->GetPointsType()
853  "Edge expansion should be GLL");
854 
855  // Interpolate if required
856  if(m_base[edge?1:0]->GetPointsKey() != EdgeExp->GetBasis(0)->GetPointsKey())
857  {
858  Array<OneD,NekDouble> outtmp(max(nquad0,nquad1));
859 
860  outtmp = outarray;
861 
862  LibUtilities::Interp1D(m_base[edge?1:0]->GetPointsKey(),
863  outtmp,
864  EdgeExp->GetBasis(0)->GetPointsKey(),
865  outarray);
866  }
867 
868  StdRegions::Orientation orient = GetEorient(edge);
869 
870  //Reverse data if necessary
871  if(orient == StdRegions::eBackwards)
872  {
873  Vmath::Reverse(EdgeExp->GetNumPoints(0),&outarray[0],1,
874  &outarray[0],1);
875  }
876 
877  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:776
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1088
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:53
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1064
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51

◆ v_GetEdgeQFactors()

void Nektar::LocalRegions::TriExp::v_GetEdgeQFactors ( const int  edge,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 889 of file TriExp.cpp.

References ASSERTL0.

892  {
893  boost::ignore_unused(edge, outarray);
894  ASSERTL0(false,
895  "Routine not implemented for triangular elements");
896  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216

◆ v_GetEorient()

StdRegions::Orientation Nektar::LocalRegions::TriExp::v_GetEorient ( int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1152 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion2D::GetGeom2D().

1153  {
1154  return GetGeom2D()->GetEorient(edge);
1155  }
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:291

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TriExp::v_GetLinStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 699 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

700  {
701  LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(),
702  2, m_base[0]->GetPointsKey());
703  LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(),
704  2, m_base[1]->GetPointsKey());
705 
707  ::AllocateSharedPtr( bkey0, bkey1);
708  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::TriExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1674 of file TriExp.cpp.

References m_matrixManager.

1675  {
1676  return m_matrixManager[mkey];
1677  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::TriExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1680 of file TriExp.cpp.

References m_staticCondMatrixManager.

1681  {
1682  return m_staticCondMatrixManager[mkey];
1683  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:297

◆ v_GetNumPoints()

int Nektar::LocalRegions::TriExp::v_GetNumPoints ( const int  dir) const
protectedvirtual

Definition at line 1164 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints().

1165  {
1166  return GetNumPoints(dir);
1167  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:228

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TriExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 691 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

692  {
693 
695  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
696  m_base[1]->GetBasisKey());
697  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_GetTracePhysVals()

void Nektar::LocalRegions::TriExp::v_GetTracePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
protectedvirtual

Definition at line 760 of file TriExp.cpp.

References v_GetEdgePhysVals().

766  {
767  boost::ignore_unused(orient);
768  v_GetEdgePhysVals(edge,EdgeExp,inarray,outarray);
769  }
virtual void v_GetEdgePhysVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Extract the physical values along edge edge from inarray into outarray following the local edge orien...
Definition: TriExp.cpp:771

◆ v_HelmholtzMatrixOp()

void Nektar::LocalRegions::TriExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1742 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree().

1745  {
1746  TriExp::HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
1747  }
void HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

◆ v_Integral()

NekDouble Nektar::LocalRegions::TriExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 85 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

86  {
87  int nquad0 = m_base[0]->GetNumPoints();
88  int nquad1 = m_base[1]->GetNumPoints();
89  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
90  NekDouble ival;
91  Array<OneD,NekDouble> tmp(nquad0*nquad1);
92 
93  // multiply inarray with Jacobian
94  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
95  {
96  Vmath::Vmul(nquad0*nquad1, jac, 1, inarray, 1,tmp, 1);
97  }
98  else
99  {
100  Vmath::Smul(nquad0*nquad1, jac[0], inarray, 1, tmp, 1);
101  }
102 
103  // call StdQuadExp version;
104  ival = StdTriExp::v_Integral(tmp);
105  return ival;
106  }
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_IProductWRTBase()

void Nektar::LocalRegions::TriExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into outarray.

\( \begin{array}{rcl} I_{pq} = (\phi^A_q \phi^B_{pq}, u) &=& \sum_{i=0}^{nq_0}\sum_{j=0}^{nq_1} \phi^A_p(\eta_{0,i})\phi^B_{pq}(\eta_{1,j}) w^0_i w^1_j u(\xi_{0,i} \xi_{1,j}) \\ & = & \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i}) \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) \tilde{u}_{i,j} \end{array} \)

where

\( \tilde{u}_{i,j} = w^0_i w^1_j u(\xi_{0,i},\xi_{1,j}) \)

which can be implemented as

\( f_{pj} = \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i}) \tilde{u}_{i,j} \rightarrow {\bf B_1 U} \) \( I_{pq} = \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) f_{pj} \rightarrow {\bf B_2[p*skip] f[skip]} \)

Recall: \( \eta_{1} = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \, \eta_2 = \xi_2\)

Note: For the orthgonality of this expansion to be realised the 'q' ordering must run fastest in contrast to the Quad and Hex ordering where 'p' index runs fastest to be consistent with the quadrature ordering.

In the triangular space the i (i.e. \(\eta_1\) direction) ordering still runs fastest by convention.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 407 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTBase_SumFac().

409  {
410  IProductWRTBase_SumFac(inarray,outarray);
411  }
void IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)

◆ v_IProductWRTBase_MatOp()

void Nektar::LocalRegions::TriExp::v_IProductWRTBase_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 448 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Blas::Dgemv(), Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

450  {
451  int nq = GetTotPoints();
452  MatrixKey iprodmatkey(StdRegions::eIProductWRTBase,DetShapeType(),*this);
453  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
454 
455  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
456  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
457 
458  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:469
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140

◆ v_IProductWRTBase_SumFac()

void Nektar::LocalRegions::TriExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 422 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

425  {
426  int nquad0 = m_base[0]->GetNumPoints();
427  int nquad1 = m_base[1]->GetNumPoints();
428  int order0 = m_base[0]->GetNumModes();
429 
430  if(multiplybyweights)
431  {
432  Array<OneD,NekDouble> tmp(nquad0*nquad1+nquad1*order0);
433  Array<OneD,NekDouble> wsp(tmp+nquad0*nquad1);
434 
435  MultiplyByQuadratureMetric(inarray,tmp);
436  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),m_base[1]->GetBdata(),tmp,outarray,wsp);
437  }
438  else
439  {
440  Array<OneD,NekDouble> wsp(+nquad1*order0);
441 
442  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),m_base[1]->GetBdata(),
443  inarray,outarray,wsp);
444  }
445  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:945
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 414 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTDerivBase_SumFac().

417  {
418  IProductWRTDerivBase_SumFac(dir,inarray,outarray);
419  }
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)

◆ v_IProductWRTDerivBase_MatOp()

void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 531 of file TriExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Blas::Dgemv(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

534  {
535  int nq = GetTotPoints();
537 
538  switch(dir)
539  {
540  case 0:
541  {
543  }
544  break;
545  case 1:
546  {
548  }
549  break;
550  case 2:
551  {
553  }
554  break;
555  default:
556  {
557  ASSERTL1(false,"input dir is out of range");
558  }
559  break;
560  }
561 
562  MatrixKey iprodmatkey(mtype,DetShapeType(),*this);
563  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
564 
565  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
566  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
567 
568  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:296
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:469
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:168
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ v_IProductWRTDerivBase_SumFac()

void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 461 of file TriExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

464  {
465  ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
466  ASSERTL1((dir==2)?(m_geom->GetCoordim()==3):true,"Invalid direction.");
467 
468  int i;
469  int nquad0 = m_base[0]->GetNumPoints();
470  int nquad1 = m_base[1]->GetNumPoints();
471  int nqtot = nquad0*nquad1;
472  int nmodes0 = m_base[0]->GetNumModes();
473  int wspsize = max(max(nqtot,m_ncoeffs),nquad1*nmodes0);
474 
475  const Array<TwoD, const NekDouble>& df =
476  m_metricinfo->GetDerivFactors(GetPointsKeys());
477 
478  Array<OneD, NekDouble> tmp0 (6*wspsize);
479  Array<OneD, NekDouble> tmp1 (tmp0 + wspsize);
480  Array<OneD, NekDouble> tmp2 (tmp0 + 2*wspsize);
481  Array<OneD, NekDouble> tmp3 (tmp0 + 3*wspsize);
482  Array<OneD, NekDouble> gfac0(tmp0 + 4*wspsize);
483  Array<OneD, NekDouble> gfac1(tmp0 + 5*wspsize);
484 
485  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
486  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
487 
488  // set up geometric factor: 2/(1-z1)
489  for(i = 0; i < nquad1; ++i)
490  {
491  gfac0[i] = 2.0/(1-z1[i]);
492  }
493  for(i = 0; i < nquad0; ++i)
494  {
495  gfac1[i] = 0.5*(1+z0[i]);
496  }
497 
498  for(i = 0; i < nquad1; ++i)
499  {
500  Vmath::Smul(nquad0,gfac0[i],&inarray[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
501  }
502 
503  for(i = 0; i < nquad1; ++i)
504  {
505  Vmath::Vmul(nquad0,&gfac1[0],1,&tmp0[0]+i*nquad0,1,&tmp1[0]+i*nquad0,1);
506  }
507 
508  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
509  {
510  Vmath::Vmul(nqtot,&df[2*dir][0], 1,&tmp0[0], 1,&tmp0[0],1);
511  Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&tmp1[0], 1,&tmp1[0],1);
512  Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&inarray[0],1,&tmp2[0],1);
513  }
514  else
515  {
516  Vmath::Smul(nqtot, df[2*dir][0], tmp0, 1, tmp0, 1);
517  Vmath::Smul(nqtot, df[2*dir+1][0], tmp1, 1, tmp1, 1);
518  Vmath::Smul(nqtot, df[2*dir+1][0], inarray, 1, tmp2, 1);
519  }
520  Vmath::Vadd(nqtot, tmp0, 1, tmp1, 1, tmp1, 1);
521 
522  MultiplyByQuadratureMetric(tmp1,tmp1);
523  MultiplyByQuadratureMetric(tmp2,tmp2);
524 
525  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),m_base[1]->GetBdata() ,tmp1,tmp3 ,tmp0);
526  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata() ,m_base[1]->GetDbdata(),tmp2,outarray,tmp0);
527  Vmath::Vadd(m_ncoeffs, tmp3, 1, outarray, 1, outarray, 1);
528  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:945
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:127
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_IProductWRTDirectionalDerivBase()

void Nektar::LocalRegions::TriExp::v_IProductWRTDirectionalDerivBase ( const Array< OneD, const NekDouble > &  direction,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 571 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTDirectionalDerivBase_SumFac().

575  {
577  inarray,outarray);
578  }
void IProductWRTDirectionalDerivBase_SumFac(const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)

◆ v_IProductWRTDirectionalDerivBase_SumFac()

void Nektar::LocalRegions::TriExp::v_IProductWRTDirectionalDerivBase_SumFac ( const Array< OneD, const NekDouble > &  direction,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Directinoal Derivative in the modal space in the dir direction of varcoeffs.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 585 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeGmatcdotMF(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

589  {
590  int i;
591  int shapedim = 2;
592  int nquad0 = m_base[0]->GetNumPoints();
593  int nquad1 = m_base[1]->GetNumPoints();
594  int nqtot = nquad0*nquad1;
595  int nmodes0 = m_base[0]->GetNumModes();
596  int wspsize = max(max(nqtot,m_ncoeffs),nquad1*nmodes0);
597 
598  const Array<TwoD, const NekDouble>& df =
599  m_metricinfo->GetDerivFactors(GetPointsKeys());
600 
601  Array<OneD, NekDouble> tmp0 (6*wspsize);
602  Array<OneD, NekDouble> tmp1 (tmp0 + wspsize);
603  Array<OneD, NekDouble> tmp2 (tmp0 + 2*wspsize);
604  Array<OneD, NekDouble> tmp3 (tmp0 + 3*wspsize);
605  Array<OneD, NekDouble> gfac0(tmp0 + 4*wspsize);
606  Array<OneD, NekDouble> gfac1(tmp0 + 5*wspsize);
607 
608  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
609  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
610 
611  // set up geometric factor: 2/(1-z1)
612  for(i = 0; i < nquad1; ++i)
613  {
614  gfac0[i] = 2.0/(1-z1[i]);
615  }
616  for(i = 0; i < nquad0; ++i)
617  {
618  gfac1[i] = 0.5*(1+z0[i]);
619  }
620  for(i = 0; i < nquad1; ++i)
621  {
622  Vmath::Smul(nquad0, gfac0[i], &inarray[0] + i*nquad0, 1,
623  &tmp0[0] + i*nquad0, 1);
624  }
625  for(i = 0; i < nquad1; ++i)
626  {
627  Vmath::Vmul(nquad0, &gfac1[0], 1,
628  &tmp0[0] + i*nquad0, 1,
629  &tmp1[0] + i*nquad0, 1);
630  }
631 
632  // Compute gmat \cdot e^j
633  Array<OneD, Array<OneD, NekDouble> > dfdir(shapedim);
634  Expansion::ComputeGmatcdotMF(df, direction, dfdir);
635 
636  Vmath::Vmul(nqtot, &dfdir[0][0], 1, &tmp0[0], 1, &tmp0[0], 1);
637  Vmath::Vmul(nqtot, &dfdir[1][0], 1, &tmp1[0], 1, &tmp1[0], 1);
638  Vmath::Vmul(nqtot, &dfdir[1][0], 1, &inarray[0], 1, &tmp2[0], 1);
639 
640  Vmath::Vadd(nqtot, &tmp0[0], 1, &tmp1[0], 1, &tmp1[0], 1);
641 
642  MultiplyByQuadratureMetric(tmp1,tmp1);
643  MultiplyByQuadratureMetric(tmp2,tmp2);
644 
645  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
646  m_base[1]->GetBdata(),
647  tmp1, tmp3, tmp0);
648  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
649  m_base[1]->GetDbdata(),
650  tmp2, outarray, tmp0);
651  Vmath::Vadd(m_ncoeffs, tmp3, 1, outarray, 1, outarray, 1);
652  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:945
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
void ComputeGmatcdotMF(const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
Definition: Expansion.cpp:312
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_LaplacianMatrixOp() [1/2]

void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1700 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree().

1703  {
1704  TriExp::LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
1705  }
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

◆ v_LaplacianMatrixOp() [2/2]

void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1708 of file TriExp.cpp.

1712  {
1713  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,mkey);
1714  }

◆ v_LaplacianMatrixOp_MatFree_Kernel()

void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1772 of file TriExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian11, Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), and Vmath::Vvtvvtp().

1776  {
1777  if (m_metrics.count(eMetricLaplacian00) == 0)
1778  {
1780  }
1781 
1782  int nquad0 = m_base[0]->GetNumPoints();
1783  int nquad1 = m_base[1]->GetNumPoints();
1784  int nqtot = nquad0*nquad1;
1785  int nmodes0 = m_base[0]->GetNumModes();
1786  int nmodes1 = m_base[1]->GetNumModes();
1787  int wspsize = max(max(max(nqtot,m_ncoeffs),nquad1*nmodes0),nquad0*nmodes1);
1788 
1789  ASSERTL1(wsp.num_elements() >= 3*wspsize,
1790  "Workspace is of insufficient size.");
1791 
1792  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1793  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1794  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1795  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1796  const Array<OneD, const NekDouble>& metric00 = m_metrics[eMetricLaplacian00];
1797  const Array<OneD, const NekDouble>& metric01 = m_metrics[eMetricLaplacian01];
1798  const Array<OneD, const NekDouble>& metric11 = m_metrics[eMetricLaplacian11];
1799 
1800  // Allocate temporary storage
1801  Array<OneD,NekDouble> wsp0(wsp);
1802  Array<OneD,NekDouble> wsp1(wsp+wspsize);
1803  Array<OneD,NekDouble> wsp2(wsp+2*wspsize);
1804 
1805  StdExpansion2D::PhysTensorDeriv(inarray,wsp1,wsp2);
1806 
1807  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1808  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1809  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1810  // especially for this purpose
1811  Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp1[0],1,&metric01[0],1,&wsp2[0],1,&wsp0[0],1);
1812  Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp1[0],1,&metric11[0],1,&wsp2[0],1,&wsp2[0],1);
1813 
1814  // outarray = m = (D_xi1 * B)^T * k
1815  // wsp1 = n = (D_xi2 * B)^T * l
1816  IProductWRTBase_SumFacKernel(dbase0,base1,wsp0,outarray,wsp1);
1817  IProductWRTBase_SumFacKernel(base0,dbase1,wsp2,wsp1, wsp0);
1818 
1819  // outarray = outarray + wsp1
1820  // = L * u_hat
1821  Vmath::Vadd(m_ncoeffs,wsp1.get(),1,outarray.get(),1,outarray.get(),1);
1822  }
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:540
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:302

◆ v_MassLevelCurvatureMatrixOp()

void Nektar::LocalRegions::TriExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1734 of file TriExp.cpp.

1737  {
1738  StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray,outarray,mkey);
1739  }

◆ v_MassMatrixOp()

void Nektar::LocalRegions::TriExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1692 of file TriExp.cpp.

1695  {
1696  StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
1697  }

◆ v_NormVectorIProductWRTBase() [1/2]

void Nektar::LocalRegions::TriExp::v_NormVectorIProductWRTBase ( const Array< OneD, const NekDouble > &  Fx,
const Array< OneD, const NekDouble > &  Fy,
const Array< OneD, const NekDouble > &  Fz,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 655 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::Expansion2D::GetLeftAdjacentElementExp(), Nektar::LocalRegions::Expansion2D::GetLeftAdjacentElementFace(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

660  {
661  int nq = m_base[0]->GetNumPoints()*m_base[1]->GetNumPoints();
662  Array<OneD, NekDouble > Fn(nq);
663 
664  const Array<OneD, const Array<OneD, NekDouble> > &normals =
665  GetLeftAdjacentElementExp()->GetFaceNormal(
667 
668  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
669  {
670  Vmath::Vvtvvtp(nq,&normals[0][0],1,&Fx[0],1,
671  &normals[1][0],1,&Fy[0],1,&Fn[0],1);
672  Vmath::Vvtvp (nq,&normals[2][0],1,&Fz[0],1,&Fn[0],1,&Fn[0],1);
673  }
674  else
675  {
676  Vmath::Svtsvtp(nq,normals[0][0],&Fx[0],1,
677  normals[1][0],&Fy[0],1,&Fn[0],1);
678  Vmath::Svtvp (nq,normals[2][0],&Fz[0],1,&Fn[0],1,&Fn[0],1);
679  }
680 
681  IProductWRTBase(Fn,outarray);
682  }
Expansion3DSharedPtr GetLeftAdjacentElementExp() const
Definition: Expansion2D.h:245
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:634
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:488
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:540
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:594
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.

◆ v_NormVectorIProductWRTBase() [2/2]

void Nektar::LocalRegions::TriExp::v_NormVectorIProductWRTBase ( const Array< OneD, const Array< OneD, NekDouble > > &  Fvec,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 684 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::NormVectorIProductWRTBase().

687  {
688  NormVectorIProductWRTBase(Fvec[0], Fvec[1], Fvec[2], outarray);
689  }
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:741

◆ v_PhysDeriv() [1/2]

void Nektar::LocalRegions::TriExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Calculate the derivative of the physical points.

\( \frac{\partial u}{\partial x_1} = \left . \frac{2.0}{1-\eta_2} \frac{\partial u}{\partial d\eta_1} \right |_{\eta_2}\)

\( \frac{\partial u}{\partial x_2} = \left . \frac{1+\eta_1}{1-\eta_2} \frac{\partial u}{\partial d\eta_1} \right |_{\eta_2} + \left . \frac{\partial u}{\partial d\eta_2} \right |_{\eta_1} \)

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 108 of file TriExp.cpp.

References Blas::Daxpy(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

112  {
113  int nquad0 = m_base[0]->GetNumPoints();
114  int nquad1 = m_base[1]->GetNumPoints();
115  int nqtot = nquad0*nquad1;
116  const Array<TwoD, const NekDouble>& df
117  = m_metricinfo->GetDerivFactors(GetPointsKeys());
118 
119  Array<OneD,NekDouble> diff0(2*nqtot);
120  Array<OneD,NekDouble> diff1(diff0+nqtot);
121 
122  StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
123 
124  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
125  {
126  if(out_d0.num_elements())
127  {
128  Vmath::Vmul (nqtot,df[0],1,diff0,1, out_d0, 1);
129  Vmath::Vvtvp (nqtot,df[1],1,diff1,1, out_d0, 1, out_d0,1);
130  }
131 
132  if(out_d1.num_elements())
133  {
134  Vmath::Vmul (nqtot,df[2],1,diff0,1, out_d1, 1);
135  Vmath::Vvtvp (nqtot,df[3],1,diff1,1, out_d1, 1, out_d1,1);
136  }
137 
138  if(out_d2.num_elements())
139  {
140  Vmath::Vmul (nqtot,df[4],1,diff0,1, out_d2, 1);
141  Vmath::Vvtvp (nqtot,df[5],1,diff1,1, out_d2, 1, out_d2,1);
142  }
143  }
144  else // regular geometry
145  {
146  if(out_d0.num_elements())
147  {
148  Vmath::Smul (nqtot, df[0][0], diff0, 1, out_d0, 1);
149  Blas::Daxpy (nqtot, df[1][0], diff1, 1, out_d0, 1);
150  }
151 
152  if(out_d1.num_elements())
153  {
154  Vmath::Smul (nqtot, df[2][0], diff0, 1, out_d1, 1);
155  Blas::Daxpy (nqtot, df[3][0], diff1, 1, out_d1, 1);
156  }
157 
158  if(out_d2.num_elements())
159  {
160  Vmath::Smul (nqtot, df[4][0], diff0, 1, out_d2, 1);
161  Blas::Daxpy (nqtot, df[5][0], diff1, 1, out_d2, 1);
162  }
163  }
164  }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:110
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_PhysDeriv() [2/2]

void Nektar::LocalRegions::TriExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 167 of file TriExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

170  {
171  switch(dir)
172  {
173  case 0:
174  {
176  }
177  break;
178  case 1:
179  {
181  }
182  break;
183  case 2:
184  {
186  }
187  break;
188  default:
189  {
190  ASSERTL1(false,"input dir is out of range");
191  }
192  break;
193  }
194  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:250

◆ v_PhysDirectionalDeriv()

void Nektar::LocalRegions::TriExp::v_PhysDirectionalDeriv ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  direction,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Physical derivative along a direction vector.

See also
StdRegions::StdExpansion::PhysDirectionalDeriv

D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta

D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 196 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

200  {
201  if(! out.num_elements())
202  {
203  return;
204  }
205 
206  int nquad0 = m_base[0]->GetNumPoints();
207  int nquad1 = m_base[1]->GetNumPoints();
208  int nqtot = nquad0*nquad1;
209 
210  const Array<TwoD, const NekDouble>& df =
211  m_metricinfo->GetDerivFactors(GetPointsKeys());
212 
213  Array<OneD,NekDouble> diff0(2*nqtot);
214  Array<OneD,NekDouble> diff1(diff0+nqtot);
215 
216  // diff0 = du/d_xi, diff1 = du/d_eta
217  StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
218 
219  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
220  {
221  Array<OneD, Array<OneD, NekDouble> > tangmat(2);
222 
223 
224  // D^v_xi = v_x*d_xi/dx + v_y*d_xi/dy + v_z*d_xi/dz
225  // D^v_eta = v_x*d_eta/dx + v_y*d_eta/dy + v_z*d_eta/dz
226  for (int i=0; i< 2; ++i)
227  {
228  tangmat[i] = Array<OneD, NekDouble>(nqtot,0.0);
229  for (int k=0; k<(m_geom->GetCoordim()); ++k)
230  {
231  Vmath::Vvtvp(nqtot,&df[2*k+i][0],1,&direction[k*nqtot],1,&tangmat[i][0],1,&tangmat[i][0],1);
232  }
233  }
234 
235  /// D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta
236  Vmath::Vmul (nqtot,&tangmat[0][0],1,&diff0[0],1, &out[0], 1);
237  Vmath::Vvtvp (nqtot,&tangmat[1][0],1,&diff1[0],1, &out[0], 1, &out[0],1);
238  }
239  else
240  {
241  Array<OneD, Array<OneD, NekDouble> > tangmat(2);
242 
243  for (int i=0; i< 2; ++i)
244  {
245  tangmat[i] = Array<OneD, NekDouble>(nqtot,0.0);
246  for (int k=0; k<(m_geom->GetCoordim()); ++k)
247  {
248  Vmath::Svtvp(nqtot, df[2*k+i][0],
249  &direction[k*nqtot], 1,
250  &tangmat[i][0], 1, &tangmat[i][0], 1);
251  }
252  }
253 
254  /// D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta
255  Vmath::Vmul (nqtot, &tangmat[0][0], 1,
256  &diff0[0], 1,
257  &out[0], 1);
258 
259  Vmath::Vvtvp (nqtot, &tangmat[1][0], 1,
260  &diff1[0], 1,
261  &out[0], 1,
262  &out[0], 1);
263  }
264  }
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:488
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:445
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:127
const LibUtilities::PointsKeyVector GetPointsKeys() const
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_PhysEvaluate()

NekDouble Nektar::LocalRegions::TriExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

This function is a wrapper around the virtual function v_PhysEvaluate()

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #m_phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion2D.

Definition at line 749 of file TriExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

750  {
751  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(2);
752 
753  ASSERTL0(m_geom,"m_geom not defined");
754  m_geom->GetLocCoords(coord,Lcoord);
755 
756  return StdTriExp::v_PhysEvaluate(Lcoord, physvals);
757  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:127

◆ v_ReduceOrderCoeffs()

void Nektar::LocalRegions::TriExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Function is used to compute exactly the advective numerical flux on theinterface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements. Furthermore, this function is used to compute the sensor value in each element.

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1954 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

1958  {
1959  int n_coeffs = inarray.num_elements();
1960  int nquad0 = m_base[0]->GetNumPoints();
1961  int nquad1 = m_base[1]->GetNumPoints();
1962  int nqtot = nquad0*nquad1;
1963  int nmodes0 = m_base[0]->GetNumModes();
1964  int nmodes1 = m_base[1]->GetNumModes();
1965  int numMin2 = nmodes0, i;
1966 
1967  Array<OneD, NekDouble> coeff(n_coeffs,0.0);
1968  Array<OneD, NekDouble> phys_tmp(nqtot,0.0);
1969  Array<OneD, NekDouble> tmp, tmp2;
1970 
1971  const LibUtilities::PointsKey Pkey0 = m_base[0]->GetPointsKey();
1972  const LibUtilities::PointsKey Pkey1 = m_base[1]->GetPointsKey();
1973 
1974  LibUtilities::BasisKey b0(
1975  m_base[0]->GetBasisType(), nmodes0, Pkey0);
1976  LibUtilities::BasisKey b1(
1977  m_base[1]->GetBasisType(), nmodes1, Pkey1);
1978  LibUtilities::BasisKey bortho0(
1979  LibUtilities::eOrtho_A, nmodes0, Pkey0);
1980  LibUtilities::BasisKey bortho1(
1981  LibUtilities::eOrtho_B, nmodes1, Pkey1);
1982 
1983  // Check if it is also possible to use the same InterCoeff routine
1984  // which is also used for Quadrilateral and Hexagonal shaped
1985  // elements
1986 
1987  // For now, set up the used basis on the standard element to
1988  // calculate the phys values, set up the orthogonal basis to do a
1989  // forward transform, to obtain the coefficients in orthogonal
1990  // coefficient space
1991  StdRegions::StdTriExpSharedPtr m_OrthoTriExp;
1993 
1995  ::AllocateSharedPtr(b0, b1);
1996  m_OrthoTriExp = MemoryManager<StdRegions::StdTriExp>
1997  ::AllocateSharedPtr(bortho0, bortho1);
1998 
1999  m_TriExp ->BwdTrans(inarray,phys_tmp);
2000  m_OrthoTriExp->FwdTrans(phys_tmp, coeff);
2001 
2002  for (i = 0; i < n_coeffs; i++)
2003  {
2004  if (i == numMin)
2005  {
2006  coeff[i] = 0.0;
2007  numMin += numMin2 - 1;
2008  numMin2 -= 1.0;
2009  }
2010  }
2011 
2012  m_OrthoTriExp->BwdTrans(coeff,phys_tmp);
2013  m_TriExp ->FwdTrans(phys_tmp, outarray);
2014  }
std::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:266
Principle Orthogonal Functions .
Definition: BasisType.h:46
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Principle Orthogonal Functions .
Definition: BasisType.h:45
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:164
Array< OneD, LibUtilities::BasisSharedPtr > m_base

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::TriExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 741 of file TriExp.cpp.

744  {
745  // Evaluate point in local (eta) coordinates.
746  return StdTriExp::v_PhysEvaluate(Lcoord,physvals);
747  }

◆ v_SVVLaplacianFilter()

void Nektar::LocalRegions::TriExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 2016 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

2019  {
2020  int nq = GetTotPoints();
2021 
2022  // Calculate sqrt of the Jacobian
2023  Array<OneD, const NekDouble> jac =
2024  m_metricinfo->GetJac(GetPointsKeys());
2025  Array<OneD, NekDouble> sqrt_jac(nq);
2026  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
2027  {
2028  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
2029  }
2030  else
2031  {
2032  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
2033  }
2034 
2035  // Multiply array by sqrt(Jac)
2036  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
2037 
2038  // Apply std region filter
2039  StdTriExp::v_SVVLaplacianFilter( array, mkey);
2040 
2041  // Divide by sqrt(Jac)
2042  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
2043  }
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:411
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:128
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:244
const LibUtilities::PointsKeyVector GetPointsKeys() const
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:186

◆ v_WeakDerivMatrixOp()

void Nektar::LocalRegions::TriExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1717 of file TriExp.cpp.

1721  {
1722  StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
1723  }

◆ v_WeakDirectionalDerivMatrixOp()

void Nektar::LocalRegions::TriExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1726 of file TriExp.cpp.

1729  {
1730  StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray,outarray,mkey);
1731  }

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::TriExp::m_matrixManager
private

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::TriExp::m_staticCondMatrixManager
private