Nektar++
PyrExp.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: PyrExp.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: PyrExp routines
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 #include <LocalRegions/PyrExp.h>
37 
38 using namespace std;
39 
40 namespace Nektar
41 {
42 namespace LocalRegions
43 {
44 
45 PyrExp::PyrExp(const LibUtilities::BasisKey &Ba,
46  const LibUtilities::BasisKey &Bb,
47  const LibUtilities::BasisKey &Bc,
49  : StdExpansion(LibUtilities::StdPyrData::getNumberOfCoefficients(
50  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
51  3, Ba, Bb, Bc),
52  StdExpansion3D(LibUtilities::StdPyrData::getNumberOfCoefficients(
53  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
54  Ba, Bb, Bc),
55  StdPyrExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
56  m_matrixManager(
57  std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
58  std::string("PyrExpMatrix")),
59  m_staticCondMatrixManager(std::bind(&Expansion::CreateStaticCondMatrix,
60  this, std::placeholders::_1),
61  std::string("PyrExpStaticCondMatrix"))
62 {
63 }
64 
66  : StdExpansion(T), StdExpansion3D(T), StdPyrExp(T), Expansion(T),
67  Expansion3D(T), m_matrixManager(T.m_matrixManager),
68  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
69 {
70 }
71 
72 //----------------------------
73 // Integration Methods
74 //----------------------------
75 
76 /**
77  * \brief Integrate the physical point list \a inarray over pyramidic
78  * region and return the value.
79  *
80  * Inputs:\n
81  *
82  * - \a inarray: definition of function to be returned at quadrature
83  * point of expansion.
84  *
85  * Outputs:\n
86  *
87  * - returns \f$\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1,
88  * \eta_2, \eta_3) J[i,j,k] d \bar \eta_1 d \eta_2 d \eta_3\f$ \n \f$=
89  * \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1}
90  * u(\bar \eta_{1i}^{0,0}, \eta_{2j}^{0,0},\eta_{3k}^{2,0})w_{i}^{0,0}
91  * w_{j}^{0,0} \hat w_{k}^{2,0} \f$ \n where \f$inarray[i,j, k] =
92  * u(\bar \eta_{1i},\eta_{2j}, \eta_{3k}) \f$, \n \f$\hat w_{k}^{2,0}
93  * = \frac {w^{2,0}} {2} \f$ \n and \f$ J[i,j,k] \f$ is the Jacobian
94  * evaluated at the quadrature point.
95  */
97 {
98  int nquad0 = m_base[0]->GetNumPoints();
99  int nquad1 = m_base[1]->GetNumPoints();
100  int nquad2 = m_base[2]->GetNumPoints();
102  Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
103 
104  // multiply inarray with Jacobian
105  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
106  {
107  Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
108  (NekDouble *)&inarray[0], 1, &tmp[0], 1);
109  }
110  else
111  {
112  Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
113  (NekDouble *)&inarray[0], 1, &tmp[0], 1);
114  }
115 
116  // call StdPyrExp version;
117  return StdPyrExp::v_Integral(tmp);
118 }
119 
120 //----------------------------
121 // Differentiation Methods
122 //----------------------------
123 
125  Array<OneD, NekDouble> &out_d0,
126  Array<OneD, NekDouble> &out_d1,
127  Array<OneD, NekDouble> &out_d2)
128 {
129  int nquad0 = m_base[0]->GetNumPoints();
130  int nquad1 = m_base[1]->GetNumPoints();
131  int nquad2 = m_base[2]->GetNumPoints();
133  m_metricinfo->GetDerivFactors(GetPointsKeys());
134  Array<OneD, NekDouble> diff0(nquad0 * nquad1 * nquad2);
135  Array<OneD, NekDouble> diff1(nquad0 * nquad1 * nquad2);
136  Array<OneD, NekDouble> diff2(nquad0 * nquad1 * nquad2);
137 
138  StdPyrExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
139 
140  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
141  {
142  if (out_d0.size())
143  {
144  Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[0][0], 1, &diff0[0], 1,
145  &out_d0[0], 1);
146  Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[1][0], 1, &diff1[0], 1,
147  &out_d0[0], 1, &out_d0[0], 1);
148  Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[2][0], 1, &diff2[0], 1,
149  &out_d0[0], 1, &out_d0[0], 1);
150  }
151 
152  if (out_d1.size())
153  {
154  Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[3][0], 1, &diff0[0], 1,
155  &out_d1[0], 1);
156  Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[4][0], 1, &diff1[0], 1,
157  &out_d1[0], 1, &out_d1[0], 1);
158  Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[5][0], 1, &diff2[0], 1,
159  &out_d1[0], 1, &out_d1[0], 1);
160  }
161 
162  if (out_d2.size())
163  {
164  Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[6][0], 1, &diff0[0], 1,
165  &out_d2[0], 1);
166  Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[7][0], 1, &diff1[0], 1,
167  &out_d2[0], 1, &out_d2[0], 1);
168  Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[8][0], 1, &diff2[0], 1,
169  &out_d2[0], 1, &out_d2[0], 1);
170  }
171  }
172  else // regular geometry
173  {
174  if (out_d0.size())
175  {
176  Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[0][0], &diff0[0], 1,
177  &out_d0[0], 1);
178  Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[1][0], &diff1[0], 1,
179  &out_d0[0], 1);
180  Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[2][0], &diff2[0], 1,
181  &out_d0[0], 1);
182  }
183 
184  if (out_d1.size())
185  {
186  Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[3][0], &diff0[0], 1,
187  &out_d1[0], 1);
188  Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[4][0], &diff1[0], 1,
189  &out_d1[0], 1);
190  Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[5][0], &diff2[0], 1,
191  &out_d1[0], 1);
192  }
193 
194  if (out_d2.size())
195  {
196  Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[6][0], &diff0[0], 1,
197  &out_d2[0], 1);
198  Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[7][0], &diff1[0], 1,
199  &out_d2[0], 1);
200  Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[8][0], &diff2[0], 1,
201  &out_d2[0], 1);
202  }
203  }
204 }
205 
206 //---------------------------------------
207 // Transforms
208 //---------------------------------------
209 
210 /**
211  * \brief Forward transform from physical quadrature space stored in
212  * \a inarray and evaluate the expansion coefficients and store in \a
213  * (this)->m_coeffs
214  *
215  * Inputs:\n
216  *
217  * - \a inarray: array of physical quadrature points to be transformed
218  *
219  * Outputs:\n
220  *
221  * - (this)->_coeffs: updated array of expansion coefficients.
222  */
224  Array<OneD, NekDouble> &outarray)
225 {
226  if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
227  m_base[2]->Collocation())
228  {
229  Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
230  }
231  else
232  {
233  v_IProductWRTBase(inarray, outarray);
234 
235  // get Mass matrix inverse
236  MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
237  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
238 
239  // copy inarray in case inarray == outarray
240  DNekVec in(m_ncoeffs, outarray);
241  DNekVec out(m_ncoeffs, outarray, eWrapper);
242 
243  out = (*matsys) * in;
244  }
245 }
246 
247 //---------------------------------------
248 // Inner product functions
249 //---------------------------------------
250 
251 /**
252  * \brief Calculate the inner product of inarray with respect to the
253  * basis B=base0*base1*base2 and put into outarray:
254  *
255  * \f$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = &
256  * \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a}
257  * (\bar \eta_{1i}) \psi_{q}^{a} (\eta_{2j}) \psi_{pqr}^{c}
258  * (\eta_{3k}) w_i w_j w_k u(\bar \eta_{1,i} \eta_{2,j} \eta_{3,k})
259  * J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i})
260  * \sum_{j=0}^{nq_1} \psi_{q}^a(\eta_{2,j}) \sum_{k=0}^{nq_2}
261  * \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k}
262  * \end{array} \f$ \n
263  *
264  * where
265  *
266  * \f$\phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1)
267  * \psi_{q}^a (\eta_2) \psi_{pqr}^c (\eta_3) \f$ \n
268  *
269  * which can be implemented as \n \f$f_{pqr} (\xi_{3k}) =
270  * \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\bar
271  * \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \f$ \n \f$
272  * g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pqr}
273  * (\xi_{3k}) = {\bf B_2 F} \f$ \n \f$ (\phi_{pqr}, u)_{\delta} =
274  * \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf
275  * B_1 G} \f$
276  */
277 
279  Array<OneD, NekDouble> &outarray)
280 {
281  v_IProductWRTBase_SumFac(inarray, outarray);
282 }
283 
285  const Array<OneD, const NekDouble> &inarray,
286  Array<OneD, NekDouble> &outarray, bool multiplybyweights)
287 {
288  const int nquad0 = m_base[0]->GetNumPoints();
289  const int nquad1 = m_base[1]->GetNumPoints();
290  const int nquad2 = m_base[2]->GetNumPoints();
291  const int order0 = m_base[0]->GetNumModes();
292  const int order1 = m_base[1]->GetNumModes();
293 
294  Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
295 
296  if (multiplybyweights)
297  {
298  Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
299 
300  MultiplyByQuadratureMetric(inarray, tmp);
301 
303  m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
304  tmp, outarray, wsp, true, true, true);
305  }
306  else
307  {
309  m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
310  inarray, outarray, wsp, true, true, true);
311  }
312 }
313 
314 /**
315  * @brief Calculates the inner product \f$ I_{pqr} = (u,
316  * \partial_{x_i} \phi_{pqr}) \f$.
317  *
318  * The derivative of the basis functions is performed using the chain
319  * rule in order to incorporate the geometric factors. Assuming that
320  * the basis functions are a tensor product
321  * \f$\phi_{pqr}(\eta_1,\eta_2,\eta_3) =
322  * \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\f$, this yields the
323  * result
324  *
325  * \f[
326  * I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j}
327  * \frac{\partial \eta_j}{\partial x_i}\right)
328  * \f]
329  *
330  * In the pyramid element, we must also incorporate a second set
331  * of geometric factors which incorporate the collapsed co-ordinate
332  * system, so that
333  *
334  * \f[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3
335  * \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial
336  * x_i} \f]
337  *
338  * These derivatives can be found on p152 of Sherwin & Karniadakis.
339  *
340  * @param dir Direction in which to take the derivative.
341  * @param inarray The function \f$ u \f$.
342  * @param outarray Value of the inner product.
343  */
345  const Array<OneD, const NekDouble> &inarray,
346  Array<OneD, NekDouble> &outarray)
347 {
348  v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
349 }
350 
352  const int dir, const Array<OneD, const NekDouble> &inarray,
353  Array<OneD, NekDouble> &outarray)
354 {
355  const int nquad0 = m_base[0]->GetNumPoints();
356  const int nquad1 = m_base[1]->GetNumPoints();
357  const int nquad2 = m_base[2]->GetNumPoints();
358  const int order0 = m_base[0]->GetNumModes();
359  const int order1 = m_base[1]->GetNumModes();
360  const int nqtot = nquad0 * nquad1 * nquad2;
361 
362  Array<OneD, NekDouble> tmp1(nqtot);
363  Array<OneD, NekDouble> tmp2(nqtot);
364  Array<OneD, NekDouble> tmp3(nqtot);
365  Array<OneD, NekDouble> tmp4(nqtot);
368  std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
369 
370  MultiplyByQuadratureMetric(inarray, tmp1);
371 
373  tmp2D[0] = tmp2;
374  tmp2D[1] = tmp3;
375  tmp2D[2] = tmp4;
376 
377  PyrExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
378 
379  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
380  m_base[2]->GetBdata(), tmp2, outarray, wsp,
381  false, true, true);
382 
383  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
384  m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
385  false, true);
386 
387  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
388 
389  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
390  m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
391  true, false);
392 
393  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
394 }
395 
397  const int dir, const Array<OneD, const NekDouble> &inarray,
398  Array<OneD, Array<OneD, NekDouble>> &outarray)
399 {
400  const int nquad0 = m_base[0]->GetNumPoints();
401  const int nquad1 = m_base[1]->GetNumPoints();
402  const int nquad2 = m_base[2]->GetNumPoints();
403  const int order0 = m_base[0]->GetNumModes();
404  const int order1 = m_base[1]->GetNumModes();
405  const int nqtot = nquad0 * nquad1 * nquad2;
406 
407  const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
408  const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
409  const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
410 
411  Array<OneD, NekDouble> gfac0(nquad0);
412  Array<OneD, NekDouble> gfac1(nquad1);
413  Array<OneD, NekDouble> gfac2(nquad2);
414  Array<OneD, NekDouble> tmp5(nqtot);
416  std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
417 
418  Array<OneD, NekDouble> tmp2 = outarray[0];
419  Array<OneD, NekDouble> tmp3 = outarray[1];
420  Array<OneD, NekDouble> tmp4 = outarray[2];
421 
422  const Array<TwoD, const NekDouble> &df =
423  m_metricinfo->GetDerivFactors(GetPointsKeys());
424 
426  tmp1 = inarray;
427 
428  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
429  {
430  Vmath::Vmul(nqtot, &df[3 * dir][0], 1, tmp1.get(), 1, tmp2.get(), 1);
431  Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, tmp1.get(), 1, tmp3.get(),
432  1);
433  Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, tmp1.get(), 1, tmp4.get(),
434  1);
435  }
436  else
437  {
438  Vmath::Smul(nqtot, df[3 * dir][0], tmp1.get(), 1, tmp2.get(), 1);
439  Vmath::Smul(nqtot, df[3 * dir + 1][0], tmp1.get(), 1, tmp3.get(), 1);
440  Vmath::Smul(nqtot, df[3 * dir + 2][0], tmp1.get(), 1, tmp4.get(), 1);
441  }
442 
443  // set up geometric factor: (1+z0)/2
444  for (int i = 0; i < nquad0; ++i)
445  {
446  gfac0[i] = 0.5 * (1 + z0[i]);
447  }
448 
449  // set up geometric factor: (1+z1)/2
450  for (int i = 0; i < nquad1; ++i)
451  {
452  gfac1[i] = 0.5 * (1 + z1[i]);
453  }
454 
455  // Set up geometric factor: 2/(1-z2)
456  for (int i = 0; i < nquad2; ++i)
457  {
458  gfac2[i] = 2.0 / (1 - z2[i]);
459  }
460 
461  const int nq01 = nquad0 * nquad1;
462 
463  for (int i = 0; i < nquad2; ++i)
464  {
465  Vmath::Smul(nq01, gfac2[i], &tmp2[0] + i * nq01, 1, &tmp2[0] + i * nq01,
466  1); // 2/(1-z2) for d/dxi_0
467  Vmath::Smul(nq01, gfac2[i], &tmp3[0] + i * nq01, 1, &tmp3[0] + i * nq01,
468  1); // 2/(1-z2) for d/dxi_1
469  Vmath::Smul(nq01, gfac2[i], &tmp4[0] + i * nq01, 1, &tmp5[0] + i * nq01,
470  1); // 2/(1-z2) for d/dxi_2
471  }
472 
473  // (1+z0)/(1-z2) for d/d eta_0
474  for (int i = 0; i < nquad1 * nquad2; ++i)
475  {
476  Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp5[0] + i * nquad0, 1,
477  &wsp[0] + i * nquad0, 1);
478  }
479 
480  Vmath::Vadd(nqtot, &tmp2[0], 1, &wsp[0], 1, &tmp2[0], 1);
481 
482  // (1+z1)/(1-z2) for d/d eta_1
483  for (int i = 0; i < nquad1 * nquad2; ++i)
484  {
485  Vmath::Smul(nquad0, gfac1[i % nquad1], &tmp5[0] + i * nquad0, 1,
486  &tmp5[0] + i * nquad0, 1);
487  }
488  Vmath::Vadd(nqtot, &tmp3[0], 1, &tmp5[0], 1, &tmp3[0], 1);
489 }
490 
491 //---------------------------------------
492 // Evaluation functions
493 //---------------------------------------
494 
496 {
498  m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
499  m_base[2]->GetBasisKey());
500 }
501 
503 {
505  m_base[0]->GetPointsKey());
507  m_base[1]->GetPointsKey());
509  m_base[2]->GetPointsKey());
510 
512  bkey2);
513 }
514 
515 /*
516  * @brief Get the coordinates #coords at the local coordinates
517  * #Lcoords
518  */
520  Array<OneD, NekDouble> &coords)
521 {
522  int i;
523 
524  ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
525  Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
526  "Local coordinates are not in region [-1,1]");
527 
528  // m_geom->FillGeom(); // TODO: implement FillGeom()
529 
530  for (i = 0; i < m_geom->GetCoordim(); ++i)
531  {
532  coords[i] = m_geom->GetCoord(i, Lcoords);
533  }
534 }
535 
537  Array<OneD, NekDouble> &coords_2,
538  Array<OneD, NekDouble> &coords_3)
539 {
540  Expansion::v_GetCoords(coords_1, coords_2, coords_3);
541 }
542 
544  const NekDouble *data, const std::vector<unsigned int> &nummodes,
545  const int mode_offset, NekDouble *coeffs,
546  std::vector<LibUtilities::BasisType> &fromType)
547 {
548  int data_order0 = nummodes[mode_offset];
549  int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
550  int data_order1 = nummodes[mode_offset + 1];
551  int order1 = m_base[1]->GetNumModes();
552  int fillorder1 = min(order1, data_order1);
553  int data_order2 = nummodes[mode_offset + 2];
554  int order2 = m_base[2]->GetNumModes();
555  int fillorder2 = min(order2, data_order2);
556 
557  // Check if not same order or basis and if not make temp
558  // element to read in data
559  if (fromType[0] != m_base[0]->GetBasisType() ||
560  fromType[1] != m_base[1]->GetBasisType() ||
561  fromType[2] != m_base[2]->GetBasisType() || data_order0 != fillorder0 ||
562  data_order1 != fillorder1 || data_order2 != fillorder2)
563  {
564  // Construct a pyr with the appropriate basis type at our
565  // quadrature points, and one more to do a forwards
566  // transform. We can then copy the output to coeffs.
567  StdRegions::StdPyrExp tmpPyr(
568  LibUtilities::BasisKey(fromType[0], data_order0,
569  m_base[0]->GetPointsKey()),
570  LibUtilities::BasisKey(fromType[1], data_order1,
571  m_base[1]->GetPointsKey()),
572  LibUtilities::BasisKey(fromType[2], data_order2,
573  m_base[2]->GetPointsKey()));
574 
575  StdRegions::StdPyrExp tmpPyr2(m_base[0]->GetBasisKey(),
576  m_base[1]->GetBasisKey(),
577  m_base[2]->GetBasisKey());
578 
579  Array<OneD, const NekDouble> tmpData(tmpPyr.GetNcoeffs(), data);
580  Array<OneD, NekDouble> tmpBwd(tmpPyr2.GetTotPoints());
581  Array<OneD, NekDouble> tmpOut(tmpPyr2.GetNcoeffs());
582 
583  tmpPyr.BwdTrans(tmpData, tmpBwd);
584  tmpPyr2.FwdTrans(tmpBwd, tmpOut);
585  Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
586  }
587  else
588  {
589  Vmath::Vcopy(m_ncoeffs, &data[0], 1, coeffs, 1);
590  }
591 }
592 
593 /**
594  * Given the local cartesian coordinate \a Lcoord evaluate the
595  * value of physvals at this point by calling through to the
596  * StdExpansion method
597  */
599  const Array<OneD, const NekDouble> &Lcoord,
600  const Array<OneD, const NekDouble> &physvals)
601 {
602  // Evaluate point in local coordinates.
603  return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
604 }
605 
607  const Array<OneD, const NekDouble> &physvals)
608 {
609  Array<OneD, NekDouble> Lcoord(3);
610 
611  ASSERTL0(m_geom, "m_geom not defined");
612 
613  // TODO: check GetLocCoords()
614  m_geom->GetLocCoords(coord, Lcoord);
615 
616  return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
617 }
618 
620  const Array<OneD, const NekDouble> &inarray,
621  std::array<NekDouble, 3> &firstOrderDerivs)
622 {
623  Array<OneD, NekDouble> Lcoord(3);
624  ASSERTL0(m_geom, "m_geom not defined");
625  m_geom->GetLocCoords(coord, Lcoord);
626  return StdPyrExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
627 }
628 
629 //---------------------------------------
630 // Helper functions
631 //---------------------------------------
632 
633 void PyrExp::v_GetTracePhysMap(const int face, Array<OneD, int> &outarray)
634 {
635  int nquad0 = m_base[0]->GetNumPoints();
636  int nquad1 = m_base[1]->GetNumPoints();
637  int nquad2 = m_base[2]->GetNumPoints();
638 
639  int nq0 = 0;
640  int nq1 = 0;
641 
642  switch (face)
643  {
644  case 0:
645  nq0 = nquad0;
646  nq1 = nquad1;
647  if (outarray.size() != nq0 * nq1)
648  {
649  outarray = Array<OneD, int>(nq0 * nq1);
650  }
651 
652  // Directions A and B positive
653  for (int i = 0; i < nquad0 * nquad1; ++i)
654  {
655  outarray[i] = i;
656  }
657 
658  break;
659  case 1:
660  nq0 = nquad0;
661  nq1 = nquad2;
662  if (outarray.size() != nq0 * nq1)
663  {
664  outarray = Array<OneD, int>(nq0 * nq1);
665  }
666 
667  // Direction A and B positive
668  for (int k = 0; k < nquad2; k++)
669  {
670  for (int i = 0; i < nquad0; ++i)
671  {
672  outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
673  }
674  }
675 
676  break;
677  case 2:
678  nq0 = nquad1;
679  nq1 = nquad2;
680  if (outarray.size() != nq0 * nq1)
681  {
682  outarray = Array<OneD, int>(nq0 * nq1);
683  }
684 
685  // Directions A and B positive
686  for (int j = 0; j < nquad1 * nquad2; ++j)
687  {
688  outarray[j] = nquad0 - 1 + j * nquad0;
689  }
690  break;
691  case 3:
692 
693  nq0 = nquad0;
694  nq1 = nquad2;
695  if (outarray.size() != nq0 * nq1)
696  {
697  outarray = Array<OneD, int>(nq0 * nq1);
698  }
699 
700  // Direction A and B positive
701  for (int k = 0; k < nquad2; k++)
702  {
703  for (int i = 0; i < nquad0; ++i)
704  {
705  outarray[k * nquad0 + i] =
706  nquad0 * (nquad1 - 1) + (nquad0 * nquad1 * k) + i;
707  }
708  }
709  break;
710  case 4:
711  nq0 = nquad1;
712  nq1 = nquad2;
713 
714  if (outarray.size() != nq0 * nq1)
715  {
716  outarray = Array<OneD, int>(nq0 * nq1);
717  }
718 
719  // Directions A and B positive
720  for (int j = 0; j < nquad1 * nquad2; ++j)
721  {
722  outarray[j] = j * nquad0;
723  }
724  break;
725  default:
726  ASSERTL0(false, "face value (> 4) is out of range");
727  break;
728  }
729 }
730 
731 void PyrExp::v_ComputeTraceNormal(const int face)
732 {
733  const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
734  GetGeom()->GetMetricInfo();
735 
737  for (int i = 0; i < ptsKeys.size(); ++i)
738  {
739  // Need at least 2 points for computing normals
740  if (ptsKeys[i].GetNumPoints() == 1)
741  {
742  LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
743  ptsKeys[i] = pKey;
744  }
745  }
746 
747  SpatialDomains::GeomType type = geomFactors->GetGtype();
748  const Array<TwoD, const NekDouble> &df =
749  geomFactors->GetDerivFactors(ptsKeys);
750  const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
751 
752  LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
753  LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
754 
755  // Number of quadrature points in face expansion.
756  int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
757 
758  int vCoordDim = GetCoordim();
759  int i;
760 
763  for (i = 0; i < vCoordDim; ++i)
764  {
765  normal[i] = Array<OneD, NekDouble>(nq_face);
766  }
767 
768  size_t nqb = nq_face;
769  size_t nbnd = face;
772 
773  // Regular geometry case
774  if (type == SpatialDomains::eRegular ||
776  {
777  NekDouble fac;
778  // Set up normals
779  switch (face)
780  {
781  case 0:
782  {
783  for (i = 0; i < vCoordDim; ++i)
784  {
785  normal[i][0] = -df[3 * i + 2][0];
786  }
787  break;
788  }
789  case 1:
790  {
791  for (i = 0; i < vCoordDim; ++i)
792  {
793  normal[i][0] = -df[3 * i + 1][0];
794  }
795  break;
796  }
797  case 2:
798  {
799  for (i = 0; i < vCoordDim; ++i)
800  {
801  normal[i][0] = df[3 * i][0] + df[3 * i + 2][0];
802  }
803  break;
804  }
805  case 3:
806  {
807  for (i = 0; i < vCoordDim; ++i)
808  {
809  normal[i][0] = df[3 * i + 1][0] + df[3 * i + 2][0];
810  }
811  break;
812  }
813  case 4:
814  {
815  for (i = 0; i < vCoordDim; ++i)
816  {
817  normal[i][0] = -df[3 * i][0];
818  }
819  break;
820  }
821  default:
822  ASSERTL0(false, "face is out of range (face < 4)");
823  }
824 
825  // Normalise resulting vector.
826  fac = 0.0;
827  for (i = 0; i < vCoordDim; ++i)
828  {
829  fac += normal[i][0] * normal[i][0];
830  }
831  fac = 1.0 / sqrt(fac);
832 
833  Vmath::Fill(nqb, fac, length, 1);
834 
835  for (i = 0; i < vCoordDim; ++i)
836  {
837  Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
838  }
839  }
840  else
841  {
842  // Set up deformed normals.
843  int j, k;
844 
845  int nq0 = ptsKeys[0].GetNumPoints();
846  int nq1 = ptsKeys[1].GetNumPoints();
847  int nq2 = ptsKeys[2].GetNumPoints();
848  int nq01 = nq0 * nq1;
849  int nqtot;
850 
851  // Determine number of quadrature points on the face.
852  if (face == 0)
853  {
854  nqtot = nq0 * nq1;
855  }
856  else if (face == 1 || face == 3)
857  {
858  nqtot = nq0 * nq2;
859  }
860  else
861  {
862  nqtot = nq1 * nq2;
863  }
864 
865  LibUtilities::PointsKey points0;
866  LibUtilities::PointsKey points1;
867 
868  Array<OneD, NekDouble> faceJac(nqtot);
869  Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
870 
871  // Extract Jacobian along face and recover local derivatives
872  // (dx/dr) for polynomial interpolation by multiplying m_gmat by
873  // jacobian
874  switch (face)
875  {
876  case 0:
877  {
878  for (j = 0; j < nq01; ++j)
879  {
880  normals[j] = -df[2][j] * jac[j];
881  normals[nqtot + j] = -df[5][j] * jac[j];
882  normals[2 * nqtot + j] = -df[8][j] * jac[j];
883  faceJac[j] = jac[j];
884  }
885 
886  points0 = ptsKeys[0];
887  points1 = ptsKeys[1];
888  break;
889  }
890 
891  case 1:
892  {
893  for (j = 0; j < nq0; ++j)
894  {
895  for (k = 0; k < nq2; ++k)
896  {
897  int tmp = j + nq01 * k;
898  normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
899  normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
900  normals[2 * nqtot + j + k * nq0] =
901  -df[7][tmp] * jac[tmp];
902  faceJac[j + k * nq0] = jac[tmp];
903  }
904  }
905 
906  points0 = ptsKeys[0];
907  points1 = ptsKeys[2];
908  break;
909  }
910 
911  case 2:
912  {
913  for (j = 0; j < nq1; ++j)
914  {
915  for (k = 0; k < nq2; ++k)
916  {
917  int tmp = nq0 - 1 + nq0 * j + nq01 * k;
918  normals[j + k * nq1] =
919  (df[0][tmp] + df[2][tmp]) * jac[tmp];
920  normals[nqtot + j + k * nq1] =
921  (df[3][tmp] + df[5][tmp]) * jac[tmp];
922  normals[2 * nqtot + j + k * nq1] =
923  (df[6][tmp] + df[8][tmp]) * jac[tmp];
924  faceJac[j + k * nq1] = jac[tmp];
925  }
926  }
927 
928  points0 = ptsKeys[1];
929  points1 = ptsKeys[2];
930  break;
931  }
932 
933  case 3:
934  {
935  for (j = 0; j < nq0; ++j)
936  {
937  for (k = 0; k < nq2; ++k)
938  {
939  int tmp = nq0 * (nq1 - 1) + j + nq01 * k;
940  normals[j + k * nq0] =
941  (df[1][tmp] + df[2][tmp]) * jac[tmp];
942  normals[nqtot + j + k * nq0] =
943  (df[4][tmp] + df[5][tmp]) * jac[tmp];
944  normals[2 * nqtot + j + k * nq0] =
945  (df[7][tmp] + df[8][tmp]) * jac[tmp];
946  faceJac[j + k * nq0] = jac[tmp];
947  }
948  }
949 
950  points0 = ptsKeys[0];
951  points1 = ptsKeys[2];
952  break;
953  }
954 
955  case 4:
956  {
957  for (j = 0; j < nq1; ++j)
958  {
959  for (k = 0; k < nq2; ++k)
960  {
961  int tmp = j * nq0 + nq01 * k;
962  normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
963  normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
964  normals[2 * nqtot + j + k * nq1] =
965  -df[6][tmp] * jac[tmp];
966  faceJac[j + k * nq1] = jac[tmp];
967  }
968  }
969 
970  points0 = ptsKeys[1];
971  points1 = ptsKeys[2];
972  break;
973  }
974 
975  default:
976  ASSERTL0(false, "face is out of range (face < 4)");
977  }
978 
979  Array<OneD, NekDouble> work(nq_face, 0.0);
980  // Interpolate Jacobian and invert
981  LibUtilities::Interp2D(points0, points1, faceJac,
982  tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
983  work);
984  Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
985 
986  // Interpolate normal and multiply by inverse Jacobian.
987  for (i = 0; i < vCoordDim; ++i)
988  {
989  LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
990  tobasis0.GetPointsKey(),
991  tobasis1.GetPointsKey(), &normal[i][0]);
992  Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
993  }
994 
995  // Normalise to obtain unit normals.
996  Vmath::Zero(nq_face, work, 1);
997  for (i = 0; i < GetCoordim(); ++i)
998  {
999  Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
1000  }
1001 
1002  Vmath::Vsqrt(nq_face, work, 1, work, 1);
1003  Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
1004 
1005  Vmath::Vcopy(nqb, work, 1, length, 1);
1006 
1007  for (i = 0; i < GetCoordim(); ++i)
1008  {
1009  Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
1010  }
1011  }
1012 }
1013 
1015  const StdRegions::StdMatrixKey &mkey)
1016 {
1017  int nq = GetTotPoints();
1018 
1019  // Calculate sqrt of the Jacobian
1021  Array<OneD, NekDouble> sqrt_jac(nq);
1022  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1023  {
1024  Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1025  }
1026  else
1027  {
1028  Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1029  }
1030 
1031  // Multiply array by sqrt(Jac)
1032  Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1033 
1034  // Apply std region filter
1035  StdPyrExp::v_SVVLaplacianFilter(array, mkey);
1036 
1037  // Divide by sqrt(Jac)
1038  Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1039 }
1040 
1041 //---------------------------------------
1042 // Matrix creation functions
1043 //---------------------------------------
1044 
1046 {
1047  DNekMatSharedPtr returnval;
1048 
1049  switch (mkey.GetMatrixType())
1050  {
1057  returnval = Expansion3D::v_GenMatrix(mkey);
1058  break;
1059  default:
1060  returnval = StdPyrExp::v_GenMatrix(mkey);
1061  }
1062 
1063  return returnval;
1064 }
1065 
1067 {
1068  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1069  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1070  LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1072  MemoryManager<StdPyrExp>::AllocateSharedPtr(bkey0, bkey1, bkey2);
1073 
1074  return tmp->GetStdMatrix(mkey);
1075 }
1076 
1078 {
1079  return m_matrixManager[mkey];
1080 }
1081 
1083 {
1084  m_matrixManager.DeleteObject(mkey);
1085 }
1086 
1088 {
1089  return m_staticCondMatrixManager[mkey];
1090 }
1091 
1093 {
1094  m_staticCondMatrixManager.DeleteObject(mkey);
1095 }
1096 
1098 {
1099  if (m_metrics.count(eMetricQuadrature) == 0)
1100  {
1102  }
1103 
1104  int i, j;
1105  const unsigned int nqtot = GetTotPoints();
1106  const unsigned int dim = 3;
1107  const MetricType m[3][3] = {
1111 
1112  for (unsigned int i = 0; i < dim; ++i)
1113  {
1114  for (unsigned int j = i; j < dim; ++j)
1115  {
1116  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1117  }
1118  }
1119 
1120  // Define shorthand synonyms for m_metrics storage
1121  Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1122  Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1123  Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1124  Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1125  Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1126  Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1127 
1128  // Allocate temporary storage
1129  Array<OneD, NekDouble> alloc(9 * nqtot, 0.0);
1130  Array<OneD, NekDouble> h0(nqtot, alloc);
1131  Array<OneD, NekDouble> h1(nqtot, alloc + 1 * nqtot);
1132  Array<OneD, NekDouble> h2(nqtot, alloc + 2 * nqtot);
1133  Array<OneD, NekDouble> wsp1(nqtot, alloc + 3 * nqtot);
1134  Array<OneD, NekDouble> wsp2(nqtot, alloc + 4 * nqtot);
1135  Array<OneD, NekDouble> wsp3(nqtot, alloc + 5 * nqtot);
1136  Array<OneD, NekDouble> wsp4(nqtot, alloc + 6 * nqtot);
1137  Array<OneD, NekDouble> wsp5(nqtot, alloc + 7 * nqtot);
1138  Array<OneD, NekDouble> wsp6(nqtot, alloc + 8 * nqtot);
1139 
1140  const Array<TwoD, const NekDouble> &df =
1141  m_metricinfo->GetDerivFactors(GetPointsKeys());
1142  const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1143  const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1144  const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1145  const unsigned int nquad0 = m_base[0]->GetNumPoints();
1146  const unsigned int nquad1 = m_base[1]->GetNumPoints();
1147  const unsigned int nquad2 = m_base[2]->GetNumPoints();
1148 
1149  // Populate collapsed coordinate arrays h0, h1 and h2.
1150  for (j = 0; j < nquad2; ++j)
1151  {
1152  for (i = 0; i < nquad1; ++i)
1153  {
1154  Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1155  &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1156  Vmath::Fill(nquad0, 1.0 / (1.0 - z2[j]),
1157  &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1158  Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1159  &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1160  }
1161  }
1162  for (i = 0; i < nquad0; i++)
1163  {
1164  Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1165  }
1166 
1167  // Step 3. Construct combined metric terms for physical space to
1168  // collapsed coordinate system.
1169  // Order of construction optimised to minimise temporary storage
1170  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1171  {
1172  // f_{1k}
1173  Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1,
1174  &wsp1[0], 1);
1175  Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1,
1176  &wsp2[0], 1);
1177  Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1,
1178  &wsp3[0], 1);
1179 
1180  // g0
1181  Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1182  1, &g0[0], 1);
1183  Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1184 
1185  // g4
1186  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp1[0], 1, &df[5][0], 1, &wsp2[0],
1187  1, &g4[0], 1);
1188  Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1189 
1190  // f_{2k}
1191  Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h0[0], 1, &df[2][0], 1, &h2[0], 1,
1192  &wsp4[0], 1);
1193  Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h0[0], 1, &df[5][0], 1, &h2[0], 1,
1194  &wsp5[0], 1);
1195  Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h0[0], 1, &df[8][0], 1, &h2[0], 1,
1196  &wsp6[0], 1);
1197 
1198  // g1
1199  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1200  1, &g1[0], 1);
1201  Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1202 
1203  // g3
1204  Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1205  1, &g3[0], 1);
1206  Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1207 
1208  // g5
1209  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1210  1, &g5[0], 1);
1211  Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1212 
1213  // g2
1214  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1215  &df[5][0], 1, &g2[0], 1);
1216  Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1217  }
1218  else
1219  {
1220  // f_{1k}
1221  Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1,
1222  &wsp1[0], 1);
1223  Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1,
1224  &wsp2[0], 1);
1225  Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1,
1226  &wsp3[0], 1);
1227 
1228  // g0
1229  Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1230  1, &g0[0], 1);
1231  Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1232 
1233  // g4
1234  Vmath::Svtsvtp(nqtot, df[2][0], &wsp1[0], 1, df[5][0], &wsp2[0], 1,
1235  &g4[0], 1);
1236  Vmath::Svtvp(nqtot, df[8][0], &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1237 
1238  // f_{2k}
1239  Vmath::Svtsvtp(nqtot, df[1][0], &h0[0], 1, df[2][0], &h2[0], 1,
1240  &wsp4[0], 1);
1241  Vmath::Svtsvtp(nqtot, df[4][0], &h0[0], 1, df[5][0], &h2[0], 1,
1242  &wsp5[0], 1);
1243  Vmath::Svtsvtp(nqtot, df[7][0], &h0[0], 1, df[8][0], &h2[0], 1,
1244  &wsp6[0], 1);
1245 
1246  // g1
1247  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1248  1, &g1[0], 1);
1249  Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1250 
1251  // g3
1252  Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1253  1, &g3[0], 1);
1254  Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1255 
1256  // g5
1257  Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1258  &g5[0], 1);
1259  Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1260 
1261  // g2
1262  Vmath::Fill(nqtot,
1263  df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1264  df[8][0] * df[8][0],
1265  &g2[0], 1);
1266  }
1267 
1268  for (unsigned int i = 0; i < dim; ++i)
1269  {
1270  for (unsigned int j = i; j < dim; ++j)
1271  {
1272  MultiplyByQuadratureMetric(m_metrics[m[i][j]], m_metrics[m[i][j]]);
1273  }
1274  }
1275 }
1276 
1278  const Array<OneD, const NekDouble> &inarray,
1280 {
1281  // This implementation is only valid when there are no coefficients
1282  // associated to the Laplacian operator
1283  if (m_metrics.count(eMetricLaplacian00) == 0)
1284  {
1286  }
1287 
1288  int nquad0 = m_base[0]->GetNumPoints();
1289  int nquad1 = m_base[1]->GetNumPoints();
1290  int nq2 = m_base[2]->GetNumPoints();
1291  int nqtot = nquad0 * nquad1 * nq2;
1292 
1293  ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1294  ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1295 
1296  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1297  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1298  const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1299  const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1300  const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1301  const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1302  const Array<OneD, const NekDouble> &metric00 =
1303  m_metrics[eMetricLaplacian00];
1304  const Array<OneD, const NekDouble> &metric01 =
1305  m_metrics[eMetricLaplacian01];
1306  const Array<OneD, const NekDouble> &metric02 =
1307  m_metrics[eMetricLaplacian02];
1308  const Array<OneD, const NekDouble> &metric11 =
1309  m_metrics[eMetricLaplacian11];
1310  const Array<OneD, const NekDouble> &metric12 =
1311  m_metrics[eMetricLaplacian12];
1312  const Array<OneD, const NekDouble> &metric22 =
1313  m_metrics[eMetricLaplacian22];
1314 
1315  // Allocate temporary storage
1316  Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1317  Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1318  Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1319  Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1320  Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1321  Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1322 
1323  // LAPLACIAN MATRIX OPERATION
1324  // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1325  // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1326  // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1327  StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1328 
1329  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1330  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1331  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1332  // especially for this purpose
1333  Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1334  &wsp1[0], 1, &wsp3[0], 1);
1335  Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1336  Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1337  &wsp1[0], 1, &wsp4[0], 1);
1338  Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1339  Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1340  &wsp1[0], 1, &wsp5[0], 1);
1341  Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1342 
1343  // outarray = m = (D_xi1 * B)^T * k
1344  // wsp1 = n = (D_xi2 * B)^T * l
1345  IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1346  false, true, true);
1347  IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1348  false, true);
1349  Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1350  IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1351  true, false);
1352  Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1353 }
1354 
1355 /** @brief: This method gets all of the factors which are
1356  required as part of the Gradient Jump Penalty
1357  stabilisation and involves the product of the normal and
1358  geometric factors along the element trace.
1359 */
1360 void PyrExp::v_NormalTraceDerivFactors(
1361  Array<OneD, Array<OneD, NekDouble>> &d0factors,
1362  Array<OneD, Array<OneD, NekDouble>> &d1factors,
1363  Array<OneD, Array<OneD, NekDouble>> &d2factors)
1364 {
1365  int nquad0 = GetNumPoints(0);
1366  int nquad1 = GetNumPoints(1);
1367  int nquad2 = GetNumPoints(2);
1368 
1369  const Array<TwoD, const NekDouble> &df =
1370  m_metricinfo->GetDerivFactors(GetPointsKeys());
1371 
1372  if (d0factors.size() != 5)
1373  {
1374  d0factors = Array<OneD, Array<OneD, NekDouble>>(5);
1375  d1factors = Array<OneD, Array<OneD, NekDouble>>(5);
1376  d2factors = Array<OneD, Array<OneD, NekDouble>>(5);
1377  }
1378 
1379  if (d0factors[0].size() != nquad0 * nquad1)
1380  {
1381  d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1382  d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1383  d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1384  }
1385 
1386  if (d0factors[1].size() != nquad0 * nquad2)
1387  {
1388  d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1389  d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1390  d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1391  d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1392  d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1393  d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1394  }
1395 
1396  if (d0factors[2].size() != nquad1 * nquad2)
1397  {
1398  d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1399  d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1400  d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1401  d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1402  d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1403  d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1404  }
1405 
1406  // Outwards normals
1407  const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1408  GetTraceNormal(0);
1409  const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1410  GetTraceNormal(1);
1411  const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1412  GetTraceNormal(2);
1413  const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1414  GetTraceNormal(3);
1415  const Array<OneD, const Array<OneD, NekDouble>> &normal_4 =
1416  GetTraceNormal(4);
1417 
1418  int ncoords = normal_0.size();
1419 
1420  // first gather together standard cartesian inner products
1421  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1422  {
1423  // face 0
1424  for (int i = 0; i < nquad0 * nquad1; ++i)
1425  {
1426  d0factors[0][i] = df[0][i] * normal_0[0][i];
1427  d1factors[0][i] = df[1][i] * normal_0[0][i];
1428  d2factors[0][i] = df[2][i] * normal_0[0][i];
1429  }
1430 
1431  for (int n = 1; n < ncoords; ++n)
1432  {
1433  for (int i = 0; i < nquad0 * nquad1; ++i)
1434  {
1435  d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1436  d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1437  d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1438  }
1439  }
1440 
1441  // faces 1 and 3
1442  for (int j = 0; j < nquad2; ++j)
1443  {
1444  for (int i = 0; i < nquad0; ++i)
1445  {
1446  d0factors[1][i] = df[0][j * nquad0 * nquad1 + i] *
1447  normal_1[0][j * nquad0 + i];
1448  d0factors[3][i] =
1449  df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1450  normal_3[0][j * nquad0 + i];
1451  d1factors[1][i] = df[1][j * nquad0 * nquad1 + i] *
1452  normal_1[0][j * nquad0 + i];
1453  d1factors[3][i] =
1454  df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1455  normal_3[0][j * nquad0 + i];
1456  d2factors[1][i] = df[2][j * nquad0 * nquad1 + i] *
1457  normal_1[0][j * nquad0 + i];
1458  d2factors[3][i] =
1459  df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1460  normal_3[0][j * nquad0 + i];
1461  }
1462  }
1463 
1464  for (int n = 1; n < ncoords; ++n)
1465  {
1466  for (int j = 0; j < nquad2; ++j)
1467  {
1468  for (int i = 0; i < nquad0; ++i)
1469  {
1470  d0factors[1][i] = df[3 * n][j * nquad0 * nquad1 + i] *
1471  normal_1[0][j * nquad0 + i];
1472  d0factors[3][i] =
1473  df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1474  normal_3[0][j * nquad0 + i];
1475  d1factors[1][i] = df[3 * n + 1][j * nquad0 * nquad1 + i] *
1476  normal_1[0][j * nquad0 + i];
1477  d1factors[3][i] =
1478  df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1479  normal_3[0][j * nquad0 + i];
1480  d2factors[1][i] = df[3 * n + 2][j * nquad0 * nquad1 + i] *
1481  normal_1[0][j * nquad0 + i];
1482  d2factors[3][i] =
1483  df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1484  normal_3[0][j * nquad0 + i];
1485  }
1486  }
1487  }
1488 
1489  // faces 2 and 4
1490  for (int j = 0; j < nquad2; ++j)
1491  {
1492  for (int i = 0; i < nquad1; ++i)
1493  {
1494  d0factors[2][j * nquad1 + i] =
1495  df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1496  normal_2[0][j * nquad1 + i];
1497  d0factors[4][j * nquad1 + i] =
1498  df[0][j * nquad0 * nquad1 + i * nquad0] *
1499  normal_4[0][j * nquad1 + i];
1500  d1factors[2][j * nquad1 + i] =
1501  df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1502  normal_2[0][j * nquad1 + i];
1503  d1factors[4][j * nquad1 + i] =
1504  df[1][j * nquad0 * nquad1 + i * nquad0] *
1505  normal_4[0][j * nquad1 + i];
1506  d2factors[2][j * nquad1 + i] =
1507  df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1508  normal_2[0][j * nquad1 + i];
1509  d2factors[4][j * nquad1 + i] =
1510  df[2][j * nquad0 * nquad1 + i * nquad0] *
1511  normal_4[0][j * nquad1 + i];
1512  }
1513  }
1514 
1515  for (int n = 1; n < ncoords; ++n)
1516  {
1517  for (int j = 0; j < nquad2; ++j)
1518  {
1519  for (int i = 0; i < nquad1; ++i)
1520  {
1521  d0factors[2][j * nquad1 + i] +=
1522  df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1523  normal_2[n][j * nquad0 + i];
1524  d0factors[4][j * nquad0 + i] +=
1525  df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1526  normal_4[n][j * nquad0 + i];
1527  d1factors[2][j * nquad1 + i] +=
1528  df[3 * n + 1]
1529  [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1530  normal_2[n][j * nquad0 + i];
1531  d1factors[4][j * nquad0 + i] +=
1532  df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1533  normal_4[n][j * nquad0 + i];
1534  d2factors[2][j * nquad1 + i] +=
1535  df[3 * n + 2]
1536  [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1537  normal_2[n][j * nquad0 + i];
1538  d2factors[4][j * nquad0 + i] +=
1539  df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1540  normal_4[n][j * nquad0 + i];
1541  }
1542  }
1543  }
1544  }
1545  else
1546  {
1547  // Face 0
1548  for (int i = 0; i < nquad0 * nquad1; ++i)
1549  {
1550  d0factors[0][i] = df[0][0] * normal_0[0][i];
1551  d1factors[0][i] = df[1][0] * normal_0[0][i];
1552  d2factors[0][i] = df[2][0] * normal_0[0][i];
1553  }
1554 
1555  for (int n = 1; n < ncoords; ++n)
1556  {
1557  for (int i = 0; i < nquad0 * nquad1; ++i)
1558  {
1559  d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1560  d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1561  d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1562  }
1563  }
1564 
1565  // faces 1 and 3
1566  for (int i = 0; i < nquad0 * nquad2; ++i)
1567  {
1568  d0factors[1][i] = df[0][0] * normal_1[0][i];
1569  d0factors[3][i] = df[0][0] * normal_3[0][i];
1570 
1571  d1factors[1][i] = df[1][0] * normal_1[0][i];
1572  d1factors[3][i] = df[1][0] * normal_3[0][i];
1573 
1574  d2factors[1][i] = df[2][0] * normal_1[0][i];
1575  d2factors[3][i] = df[2][0] * normal_3[0][i];
1576  }
1577 
1578  for (int n = 1; n < ncoords; ++n)
1579  {
1580  for (int i = 0; i < nquad0 * nquad2; ++i)
1581  {
1582  d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1583  d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1584 
1585  d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1586  d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1587 
1588  d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1589  d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1590  }
1591  }
1592 
1593  // faces 2 and 4
1594  for (int i = 0; i < nquad1 * nquad2; ++i)
1595  {
1596  d0factors[2][i] = df[0][0] * normal_2[0][i];
1597  d0factors[4][i] = df[0][0] * normal_4[0][i];
1598 
1599  d1factors[2][i] = df[1][0] * normal_2[0][i];
1600  d1factors[4][i] = df[1][0] * normal_4[0][i];
1601 
1602  d2factors[2][i] = df[2][0] * normal_2[0][i];
1603  d2factors[4][i] = df[2][0] * normal_4[0][i];
1604  }
1605 
1606  for (int n = 1; n < ncoords; ++n)
1607  {
1608  for (int i = 0; i < nquad1 * nquad2; ++i)
1609  {
1610  d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1611  d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1612 
1613  d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1614  d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1615 
1616  d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1617  d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1618  }
1619  }
1620  }
1621 }
1622 
1623 } // namespace LocalRegions
1624 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Describes the specification for a Basis.
Definition: Basis.h:50
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:130
PointsKey GetPointsKey() const
Return distribution of points.
Definition: Basis.h:147
Defines a specification for a set of points.
Definition: Points.h:59
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:278
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:288
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:171
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:275
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:535
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:276
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
Definition: PyrExp.cpp:543
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrate the physical point list inarray over pyramidic region and return the value.
Definition: PyrExp.cpp:96
virtual void v_ComputeLaplacianMetric() override
Definition: PyrExp.cpp:1097
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PyrExp.h:176
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: PyrExp.cpp:536
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: PyrExp.cpp:1066
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: PyrExp.cpp:223
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
Definition: PyrExp.cpp:1014
void v_ComputeTraceNormal(const int face) override
Definition: PyrExp.cpp:731
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
Definition: PyrExp.cpp:519
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PyrExp.h:178
void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculates the inner product .
Definition: PyrExp.cpp:344
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const override
Definition: PyrExp.cpp:495
void v_DropLocMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1082
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
Definition: PyrExp.cpp:1277
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: PyrExp.cpp:351
PyrExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::PyrGeomSharedPtr &geom)
Constructor using BasisKey class for quadrature points and order definition.
Definition: PyrExp.cpp:45
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: PyrExp.cpp:1045
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const override
Definition: PyrExp.cpp:502
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1087
virtual void v_GetTracePhysMap(const int face, Array< OneD, int > &outarray) override
Definition: PyrExp.cpp:633
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
Calculate the derivative of the physical points.
Definition: PyrExp.cpp:124
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: PyrExp.cpp:606
void v_DropLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1092
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition: PyrExp.cpp:278
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey) override
Definition: PyrExp.cpp:1077
NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
Definition: PyrExp.cpp:598
virtual void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
Definition: PyrExp.cpp:396
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: PyrExp.cpp:284
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162
const LibUtilities::PointsKeyVector GetPointsKeys() const
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:305
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:373
void BwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Backward transformation from coefficient space to physical space.
Definition: StdExpansion.h:430
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:211
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:224
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
Array< OneD, LibUtilities::BasisSharedPtr > m_base
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:85
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:168
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:154
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:106
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< PyrGeom > PyrGeomSharedPtr
Definition: PyrGeom.h:77
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::shared_ptr< StdPyrExp > StdPyrExpSharedPtr
Definition: StdPyrExp.h:258
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:79
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:534
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
svtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:751
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:324
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:692
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294