Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion3D Class Referenceabstract

#include <StdExpansion3D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion3D:
[legend]

Public Member Functions

 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D () override
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble >> &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble >> &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
virtual void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 

Private Member Functions

virtual int v_GetShapeDimension () const override final
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 51 of file StdExpansion3D.h.

Constructor & Destructor Documentation

◆ StdExpansion3D() [1/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( )

Definition at line 49 of file StdExpansion3D.cpp.

50 {
51 }

◆ StdExpansion3D() [2/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 53 of file StdExpansion3D.cpp.

56  : StdExpansion(numcoeffs, 3, Ba, Bb, Bc)
57 {
58 }
StdExpansion()
Default Constructor.

◆ StdExpansion3D() [3/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( const StdExpansion3D T)

Definition at line 60 of file StdExpansion3D.cpp.

60  : StdExpansion(T)
61 {
62 }

◆ ~StdExpansion3D()

Nektar::StdRegions::StdExpansion3D::~StdExpansion3D ( )
overridevirtual

Definition at line 64 of file StdExpansion3D.cpp.

65 {
66 }

Member Function Documentation

◆ BaryTensorDeriv()

NekDouble Nektar::StdRegions::StdExpansion3D::BaryTensorDeriv ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
inlineprotected

Performs tensor product evaluation in 3D to evaluate the physical and derivative values in each direction at input coordinate

Parameters
coordusing input physical values at quadrature points
inarray.Returns via reference the derivatives.
coordGlobal coordinate
inarrayPhys values
out_d0Return by reference parameter for 0th derivative
out_d1Return by reference parameter for 1st derivative
out_d2Return by reference parameter for 2nd derivative
Returns
Physical value at
Parameters
coord

Definition at line 232 of file StdExpansion3D.h.

236  {
237  const int nq0 = m_base[0]->GetNumPoints();
238  const int nq1 = m_base[1]->GetNumPoints();
239  const int nq2 = m_base[2]->GetNumPoints();
240 
241  const NekDouble *ptr = &inarray[0];
242  Array<OneD, NekDouble> deriv0(nq1 * nq2, 0.0);
243  Array<OneD, NekDouble> phys0(nq1 * nq2, 0.0);
244  Array<OneD, NekDouble> deriv0phys1(nq1, 0.0);
245  Array<OneD, NekDouble> phys0deriv1(nq1, 0.0);
246  Array<OneD, NekDouble> phys0phys1(nq1, 0.0);
247 
248  for (int j = 0; j < nq1 * nq2; ++j, ptr += nq0)
249  {
250  phys0[j] =
251  StdExpansion::BaryEvaluate<0, true>(coord[0], ptr, deriv0[j]);
252  }
253 
254  for (int j = 0; j < nq2; ++j)
255  {
256  deriv0phys1[j] = StdExpansion::BaryEvaluate<1, false>(
257  coord[1], &deriv0[j * nq1]);
258  }
259  firstOrderDerivs[0] =
260  StdExpansion::BaryEvaluate<2, false>(coord[2], &deriv0phys1[0]);
261 
262  for (int j = 0; j < nq2; ++j)
263  {
264  phys0phys1[j] = StdExpansion::BaryEvaluate<1, true>(
265  coord[1], &phys0[j * nq1], phys0deriv1[j]);
266  }
267  firstOrderDerivs[1] =
268  StdExpansion::BaryEvaluate<2, false>(coord[2], &phys0deriv1[0]);
269 
270  return StdExpansion::BaryEvaluate<2, true>(coord[2], &phys0phys1[0],
271  firstOrderDerivs[2]);
272  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
double NekDouble

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_PhysEvaluate(), Nektar::StdRegions::StdPrismExp::v_PhysEvaluate(), Nektar::StdRegions::StdPyrExp::v_PhysEvaluate(), and Nektar::StdRegions::StdTetExp::v_PhysEvaluate().

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 110 of file StdExpansion3D.cpp.

117 {
118  v_BwdTrans_SumFacKernel(base0, base1, base2, inarray, outarray, wsp,
119  doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
120 }
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdHexExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdPrismExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
inline

Definition at line 145 of file StdExpansion3D.h.

149  {
150  v_GetEdgeInteriorToElementMap(tid, maparray, signarray, traceOrient);
151  }
virtual void v_GetEdgeInteriorToElementMap(const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)

References v_GetEdgeInteriorToElementMap().

◆ GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::GetEdgeNcoeffs ( const int  i) const
inline

This function returns the number of expansion coefficients belonging to the i-th edge.

This function is a wrapper around the virtual function v_GetEdgeNcoeffs()

Parameters
ispecifies which edge
Returns
returns the number of expansion coefficients belonging to the i-th edge

Definition at line 140 of file StdExpansion3D.h.

141  {
142  return v_GetEdgeNcoeffs(i);
143  }
virtual int v_GetEdgeNcoeffs(const int i) const

References v_GetEdgeNcoeffs().

Referenced by Nektar::MultiRegions::PreconditionerLowEnergy::v_BuildPreconditioner(), and Nektar::StdRegions::StdHexExp::v_GetEdgeInteriorToElementMap().

◆ GetNedges()

int Nektar::StdRegions::StdExpansion3D::GetNedges ( ) const
inline

return the number of edges in 3D expansion

Definition at line 125 of file StdExpansion3D.h.

126  {
127  return v_GetNedges();
128  }
virtual int v_GetNedges(void) const

References v_GetNedges().

Referenced by Nektar::MultiRegions::PreconditionerLowEnergy::v_BuildPreconditioner().

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 122 of file StdExpansion3D.cpp.

129 {
130  v_IProductWRTBase_SumFacKernel(base0, base1, base2, inarray, outarray, wsp,
131  doCheckCollDir0, doCheckCollDir1,
132  doCheckCollDir2);
133 }
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_IProductWRTBase_SumFacKernel().

Referenced by v_GenStdMatBwdDeriv(), v_HelmholtzMatrixOp_MatFree(), Nektar::StdRegions::StdHexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase(), Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdHexExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTDirectionalDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel(), and Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp_MatFree_Kernel().

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d1,
Array< OneD, NekDouble > &  outarray_d2,
Array< OneD, NekDouble > &  outarray_d3 
)

Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
  • \( \frac{d}{d\eta_3} \rightarrow {\bf D_2 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d1the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d1 as output of the function
outarray_d2the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d2 as output of the function
outarray_d3the resulting array of derivative in the \(\eta_3\) direction will be stored in outarray_d3 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Hexahedral} & -1 \leq \xi_1,\xi_2, \xi_3 \leq 1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2, \eta_3 = \xi_3 \\ \mbox{Tetrahedral} & -1 \leq \xi_1,\xi_2,\xi_3; \xi_1+\xi_2 +\xi_3 \leq -1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{-\xi_2 -\xi_3}-1, \eta_2 = \frac{2(1+\xi_2)}{1 - \xi_3}-1, \eta_3 = \xi_3 \\ \end{array} \)

Definition at line 68 of file StdExpansion3D.cpp.

71 {
72  const int nquad0 = m_base[0]->GetNumPoints();
73  const int nquad1 = m_base[1]->GetNumPoints();
74  const int nquad2 = m_base[2]->GetNumPoints();
75 
76  Array<OneD, NekDouble> wsp(nquad0 * nquad1 * nquad2);
77 
78  // copy inarray to wsp in case inarray is used as outarray
79  Vmath::Vcopy(nquad0 * nquad1 * nquad2, &inarray[0], 1, &wsp[0], 1);
80 
81  if (out_dx.size() > 0)
82  {
83  NekDouble *D0 = &((m_base[0]->GetD())->GetPtr())[0];
84 
85  Blas::Dgemm('N', 'N', nquad0, nquad1 * nquad2, nquad0, 1.0, D0, nquad0,
86  &wsp[0], nquad0, 0.0, &out_dx[0], nquad0);
87  }
88 
89  if (out_dy.size() > 0)
90  {
91  NekDouble *D1 = &((m_base[1]->GetD())->GetPtr())[0];
92  for (int j = 0; j < nquad2; ++j)
93  {
94  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0,
95  &wsp[j * nquad0 * nquad1], nquad0, D1, nquad1, 0.0,
96  &out_dy[j * nquad0 * nquad1], nquad0);
97  }
98  }
99 
100  if (out_dz.size() > 0)
101  {
102  NekDouble *D2 = &((m_base[2]->GetD())->GetPtr())[0];
103 
104  Blas::Dgemm('N', 'T', nquad0 * nquad1, nquad2, nquad2, 1.0, &wsp[0],
105  nquad0 * nquad1, D2, nquad2, 0.0, &out_dz[0],
106  nquad0 * nquad1);
107  }
108 }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:368
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdHexExp::v_PhysDeriv(), Nektar::StdRegions::StdPrismExp::v_PhysDeriv(), Nektar::StdRegions::StdPyrExp::v_PhysDeriv(), and Nektar::StdRegions::StdTetExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion3D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 135 of file StdExpansion3D.cpp.

136 {
137  ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
138 
139  const int nq0 = m_base[0]->GetNumPoints();
140  const int nq1 = m_base[1]->GetNumPoints();
141  const int nq2 = m_base[2]->GetNumPoints();
142  const int nq = nq0 * nq1 * nq2;
143  const int nm0 = m_base[0]->GetNumModes();
144  const int nm1 = m_base[1]->GetNumModes();
145 
146  Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1),
147  0.0);
148  Array<OneD, NekDouble> tmp1(alloc); // Quad metric
149  Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
150  Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
151  Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
152  Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
153  Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
154  switch (dir)
155  {
156  case 0:
157  for (int i = 0; i < nq; i++)
158  {
159  tmp2[i] = 1.0;
161  m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
162  m_base[2]->GetBdata(), tmp2, tmp5, wsp, false, true, true);
163 
164  tmp2[i] = 0.0;
165 
166  for (int j = 0; j < m_ncoeffs; j++)
167  {
168  (*mat)(j, i) = tmp5[j];
169  }
170  }
171  break;
172  case 1:
173  for (int i = 0; i < nq; i++)
174  {
175  tmp2[i] = 1.0;
177  m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
178  m_base[2]->GetBdata(), tmp2, tmp5, wsp, true, false, true);
179 
180  tmp2[i] = 0.0;
181 
182  for (int j = 0; j < m_ncoeffs; j++)
183  {
184  (*mat)(j, i) = tmp5[j];
185  }
186  }
187  break;
188  case 2:
189  for (int i = 0; i < nq; i++)
190  {
191  tmp2[i] = 1.0;
193  m_base[0]->GetBdata(), m_base[1]->GetBdata(),
194  m_base[2]->GetDbdata(), tmp2, tmp5, wsp, true, true, false);
195  tmp2[i] = 0.0;
196 
197  for (int j = 0; j < m_ncoeffs; j++)
198  {
199  (*mat)(j, i) = tmp5[j];
200  }
201  }
202  break;
203  default:
204  NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
205  break;
206  }
207 }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
protectedvirtual

Reimplemented in Nektar::StdRegions::StdTetExp, Nektar::StdRegions::StdPyrExp, Nektar::StdRegions::StdPrismExp, and Nektar::StdRegions::StdHexExp.

Definition at line 424 of file StdExpansion3D.cpp.

427 {
428  boost::ignore_unused(tid, maparray, signarray, traceOrient);
429  NEKERROR(ErrorUtil::efatal, "Method does not exist for this shape");
430 }

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeInteriorToElementMap().

◆ v_GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::v_GetEdgeNcoeffs ( const int  i) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdTetExp, Nektar::StdRegions::StdPyrExp, Nektar::StdRegions::StdPrismExp, and Nektar::StdRegions::StdHexExp.

Definition at line 417 of file StdExpansion3D.cpp.

418 {
419  boost::ignore_unused(i);
420  NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
421  return 0;
422 }

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeNcoeffs().

◆ v_GetNedges()

int Nektar::StdRegions::StdExpansion3D::v_GetNedges ( void  ) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdTetExp, Nektar::StdRegions::StdPyrExp, Nektar::StdRegions::StdPrismExp, and Nektar::StdRegions::StdHexExp.

Definition at line 411 of file StdExpansion3D.cpp.

412 {
413  NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
414  return 0;
415 }

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetNedges().

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetShapeDimension ( ) const
inlinefinaloverrideprivatevirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 287 of file StdExpansion3D.h.

288  {
289  return 3;
290  }

◆ v_GetTraceToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetTraceToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient,
int  P,
int  Q 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 432 of file StdExpansion3D.cpp.

437 {
438  Array<OneD, unsigned int> map1, map2;
439  GetTraceCoeffMap(tid, map1);
440  GetElmtTraceToTraceMap(tid, map2, signarray, traceOrient, P, Q);
441 
442  if (maparray.size() != map2.size())
443  {
444  maparray = Array<OneD, unsigned int>(map2.size());
445  }
446 
447  for (int i = 0; i < map2.size(); ++i)
448  {
449  maparray[i] = map1[map2[i]];
450  }
451 }
void GetElmtTraceToTraceMap(const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
Definition: StdExpansion.h:705
void GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray)
Definition: StdExpansion.h:699

References Nektar::StdRegions::StdExpansion::GetElmtTraceToTraceMap(), Nektar::StdRegions::StdExpansion::GetTraceCoeffMap(), and Nektar::LibUtilities::P.

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 339 of file StdExpansion3D.cpp.

342 {
343  if (mkey.GetNVarCoeff() == 0 &&
344  !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00))
345  {
346  using std::max;
347 
348  int nquad0 = m_base[0]->GetNumPoints();
349  int nquad1 = m_base[1]->GetNumPoints();
350  int nquad2 = m_base[2]->GetNumPoints();
351  int nmodes0 = m_base[0]->GetNumModes();
352  int nmodes1 = m_base[1]->GetNumModes();
353  int nmodes2 = m_base[2]->GetNumModes();
354  int wspsize = max(nquad0 * nmodes2 * (nmodes1 + nquad1),
355  nquad0 * nquad1 * (nquad2 + nmodes0) +
356  nmodes0 * nmodes1 * nquad2);
357 
358  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
359 
360  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
361  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
362  const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
363  Array<OneD, NekDouble> wsp0(8 * wspsize);
364  Array<OneD, NekDouble> wsp1(wsp0 + 1 * wspsize);
365  Array<OneD, NekDouble> wsp2(wsp0 + 2 * wspsize);
366 
367  if (!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
368  m_base[2]->Collocation()))
369  {
370  // MASS MATRIX OPERATION
371  // The following is being calculated:
372  // wsp0 = B * u_hat = u
373  // wsp1 = W * wsp0
374  // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
375  BwdTrans_SumFacKernel(base0, base1, base2, inarray, wsp0, wsp2,
376  true, true, true);
377  MultiplyByQuadratureMetric(wsp0, wsp1);
378  IProductWRTBase_SumFacKernel(base0, base1, base2, wsp1, outarray,
379  wsp2, true, true, true);
380  LaplacianMatrixOp_MatFree_Kernel(wsp0, wsp1, wsp2);
381  }
382  else
383  {
384  // specialised implementation for the classical spectral
385  // element method
386  MultiplyByQuadratureMetric(inarray, outarray);
387  LaplacianMatrixOp_MatFree_Kernel(inarray, wsp1, wsp2);
388  }
389 
390  // outarray = lambda * outarray + wsp1
391  // = (lambda * M + L ) * u_hat
392  Vmath::Svtvp(m_ncoeffs, lambda, &outarray[0], 1, &wsp1[0], 1,
393  &outarray[0], 1);
394  }
395  else
396  {
398  mkey);
399  }
400 }
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdHexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::PrismExp::v_HelmholtzMatrixOp(), and Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp().

◆ v_Integral()

NekDouble Nektar::StdRegions::StdExpansion3D::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, Nektar::LocalRegions::PyrExp, Nektar::LocalRegions::PrismExp, and Nektar::LocalRegions::HexExp.

Definition at line 402 of file StdExpansion3D.cpp.

404 {
405  const int nqtot = GetTotPoints();
406  Array<OneD, NekDouble> tmp(GetTotPoints());
407  v_MultiplyByStdQuadratureMetric(inarray, tmp);
408  return Vmath::Vsum(nqtot, tmp, 1);
409 }
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
virtual void v_MultiplyByStdQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:895

References Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::v_MultiplyByStdQuadratureMetric(), and Vmath::Vsum().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual
Parameters
inarrayInput coefficients.
outputOutput coefficients.
mkeyMatrix key

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 296 of file StdExpansion3D.cpp.

299 {
300  if (mkey.GetNVarCoeff() == 0 &&
301  !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
302  !mkey.ConstFactorExists(eFactorSVVCutoffRatio))
303  {
304  // This implementation is only valid when there are no
305  // coefficients associated to the Laplacian operator
306  int nqtot = GetTotPoints();
307 
308  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
309  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
310  const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
311 
312  // Allocate temporary storage
313  Array<OneD, NekDouble> wsp0(7 * nqtot);
314  Array<OneD, NekDouble> wsp1(wsp0 + nqtot);
315 
316  if (!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
317  m_base[2]->Collocation()))
318  {
319  // LAPLACIAN MATRIX OPERATION
320  // wsp0 = u = B * u_hat
321  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
322  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
323  BwdTrans_SumFacKernel(base0, base1, base2, inarray, wsp0, wsp1,
324  true, true, true);
325  LaplacianMatrixOp_MatFree_Kernel(wsp0, outarray, wsp1);
326  }
327  else
328  {
329  LaplacianMatrixOp_MatFree_Kernel(inarray, outarray, wsp1);
330  }
331  }
332  else
333  {
335  mkey);
336  }
337 }
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_LaplacianMatrixOp(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp(), and Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate() [1/3]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TetExp, Nektar::LocalRegions::HexExp, Nektar::LocalRegions::PyrExp, and Nektar::LocalRegions::PrismExp.

Definition at line 209 of file StdExpansion3D.cpp.

212 {
213  Array<OneD, NekDouble> eta(3);
214 
215  WARNINGL2(coords[0] >= -1 - NekConstants::kNekZeroTol, "coord[0] < -1");
216  WARNINGL2(coords[0] <= 1 + NekConstants::kNekZeroTol, "coord[0] > 1");
217  WARNINGL2(coords[1] >= -1 - NekConstants::kNekZeroTol, "coord[1] < -1");
218  WARNINGL2(coords[1] <= 1 + NekConstants::kNekZeroTol, "coord[1] > 1");
219  WARNINGL2(coords[2] >= -1 - NekConstants::kNekZeroTol, "coord[2] < -1");
220  WARNINGL2(coords[2] <= 1 + NekConstants::kNekZeroTol, "coord[2] > 1");
221 
222  // Obtain local collapsed corodinate from Cartesian coordinate.
223  LocCoordToLocCollapsed(coords, eta);
224 
225  const int nq0 = m_base[0]->GetNumPoints();
226  const int nq1 = m_base[1]->GetNumPoints();
227  const int nq2 = m_base[2]->GetNumPoints();
228 
229  Array<OneD, NekDouble> wsp1(nq1 * nq2), wsp2(nq2);
230 
231  // Construct the 2D square...
232  const NekDouble *ptr = &physvals[0];
233  for (int i = 0; i < nq1 * nq2; ++i, ptr += nq0)
234  {
235  wsp1[i] = StdExpansion::BaryEvaluate<0>(eta[0], ptr);
236  }
237 
238  for (int i = 0; i < nq2; ++i)
239  {
240  wsp2[i] = StdExpansion::BaryEvaluate<1>(eta[1], &wsp1[i * nq1]);
241  }
242 
243  return StdExpansion::BaryEvaluate<2>(eta[2], &wsp2[0]);
244 }
#define WARNINGL2(condition, msg)
Definition: ErrorUtil.hpp:273
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, and WARNINGL2.

Referenced by Nektar::StdRegions::StdNodalPrismExp::GenNBasisTransMatrix(), and Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

◆ v_PhysEvaluate() [2/3]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 246 of file StdExpansion3D.cpp.

249 {
250  NekDouble value;
251 
252  int Qx = m_base[0]->GetNumPoints();
253  int Qy = m_base[1]->GetNumPoints();
254  int Qz = m_base[2]->GetNumPoints();
255 
256  Array<OneD, NekDouble> sumFactorization_qr =
257  Array<OneD, NekDouble>(Qy * Qz);
258  Array<OneD, NekDouble> sumFactorization_r = Array<OneD, NekDouble>(Qz);
259 
260  // Lagrangian interpolation matrix
261  NekDouble *interpolatingNodes = 0;
262 
263  // Interpolate first coordinate direction
264  interpolatingNodes = &I[0]->GetPtr()[0];
265 
266  Blas::Dgemv('T', Qx, Qy * Qz, 1.0, &physvals[0], Qx, &interpolatingNodes[0],
267  1, 0.0, &sumFactorization_qr[0], 1);
268 
269  // Interpolate in second coordinate direction
270  interpolatingNodes = &I[1]->GetPtr()[0];
271 
272  Blas::Dgemv('T', Qy, Qz, 1.0, &sumFactorization_qr[0], Qy,
273  &interpolatingNodes[0], 1, 0.0, &sumFactorization_r[0], 1);
274 
275  // Interpolate in third coordinate direction
276  interpolatingNodes = &I[2]->GetPtr()[0];
277  value = Blas::Ddot(Qz, interpolatingNodes, 1, &sumFactorization_r[0], 1);
278 
279  return value;
280 }
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:246
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:182

References Blas::Ddot(), Blas::Dgemv(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_PhysEvaluate() [3/3]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual