Nektar++
TetExp.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: TetExp.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description:
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
39 #include <LocalRegions/TetExp.h>
40 #include <SpatialDomains/SegGeom.h>
41 
42 using namespace std;
43 
44 namespace Nektar
45 {
46 namespace LocalRegions
47 {
48 /**
49  * @class TetExp
50  * Defines a Tetrahedral local expansion.
51  */
52 
53 /**
54  * \brief Constructor using BasisKey class for quadrature points and
55  * order definition
56  *
57  * @param Ba Basis key for first coordinate.
58  * @param Bb Basis key for second coordinate.
59  * @param Bc Basis key for third coordinate.
60  */
61 TetExp::TetExp(const LibUtilities::BasisKey &Ba,
62  const LibUtilities::BasisKey &Bb,
63  const LibUtilities::BasisKey &Bc,
65  : StdExpansion(LibUtilities::StdTetData::getNumberOfCoefficients(
66  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
67  3, Ba, Bb, Bc),
68  StdExpansion3D(LibUtilities::StdTetData::getNumberOfCoefficients(
69  Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
70  Ba, Bb, Bc),
71  StdTetExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
72  m_matrixManager(
73  std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
74  std::string("TetExpMatrix")),
75  m_staticCondMatrixManager(std::bind(&Expansion::CreateStaticCondMatrix,
76  this, std::placeholders::_1),
77  std::string("TetExpStaticCondMatrix"))
78 {
79 }
80 
81 /**
82  * \brief Copy Constructor
83  */
85  : StdRegions::StdExpansion(T), StdRegions::StdExpansion3D(T),
86  StdRegions::StdTetExp(T), Expansion(T), Expansion3D(T),
87  m_matrixManager(T.m_matrixManager),
88  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
89 {
90 }
91 
92 //-----------------------------
93 // Integration Methods
94 //-----------------------------
95 /**
96  * \brief Integrate the physical point list \a inarray over region
97  *
98  * @param inarray Definition of function to be returned at
99  * quadrature point of expansion.
100  * @returns \f$\int^1_{-1}\int^1_{-1} \int^1_{-1}
101  * u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 \f$
102  * where \f$inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k})
103  * \f$ and \f$ J[i,j,k] \f$ is the Jacobian evaluated at the quadrature
104  * point.
105  */
107 {
108  int nquad0 = m_base[0]->GetNumPoints();
109  int nquad1 = m_base[1]->GetNumPoints();
110  int nquad2 = m_base[2]->GetNumPoints();
112  NekDouble retrunVal;
113  Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
114 
115  // multiply inarray with Jacobian
116  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
117  {
118  Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
119  (NekDouble *)&inarray[0], 1, &tmp[0], 1);
120  }
121  else
122  {
123  Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
124  (NekDouble *)&inarray[0], 1, &tmp[0], 1);
125  }
126 
127  // call StdTetExp version;
128  retrunVal = StdTetExp::v_Integral(tmp);
129 
130  return retrunVal;
131 }
132 
133 //-----------------------------
134 // Differentiation Methods
135 //-----------------------------
136 /**
137  * \brief Differentiate \a inarray in the three coordinate directions.
138  *
139  * @param inarray Input array of values at quadrature points to
140  * be differentiated.
141  * @param out_d0 Derivative in first coordinate direction.
142  * @param out_d1 Derivative in second coordinate direction.
143  * @param out_d2 Derivative in third coordinate direction.
144  */
146  Array<OneD, NekDouble> &out_d0,
147  Array<OneD, NekDouble> &out_d1,
148  Array<OneD, NekDouble> &out_d2)
149 {
150  int TotPts = m_base[0]->GetNumPoints() * m_base[1]->GetNumPoints() *
151  m_base[2]->GetNumPoints();
152 
154  m_metricinfo->GetDerivFactors(GetPointsKeys());
156  Array<OneD, NekDouble> Diff1 = Diff0 + TotPts;
157  Array<OneD, NekDouble> Diff2 = Diff1 + TotPts;
158 
159  StdTetExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
160 
161  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
162  {
163  if (out_d0.size())
164  {
165  Vmath::Vmul(TotPts, &df[0][0], 1, &Diff0[0], 1, &out_d0[0], 1);
166  Vmath::Vvtvp(TotPts, &df[1][0], 1, &Diff1[0], 1, &out_d0[0], 1,
167  &out_d0[0], 1);
168  Vmath::Vvtvp(TotPts, &df[2][0], 1, &Diff2[0], 1, &out_d0[0], 1,
169  &out_d0[0], 1);
170  }
171 
172  if (out_d1.size())
173  {
174  Vmath::Vmul(TotPts, &df[3][0], 1, &Diff0[0], 1, &out_d1[0], 1);
175  Vmath::Vvtvp(TotPts, &df[4][0], 1, &Diff1[0], 1, &out_d1[0], 1,
176  &out_d1[0], 1);
177  Vmath::Vvtvp(TotPts, &df[5][0], 1, &Diff2[0], 1, &out_d1[0], 1,
178  &out_d1[0], 1);
179  }
180 
181  if (out_d2.size())
182  {
183  Vmath::Vmul(TotPts, &df[6][0], 1, &Diff0[0], 1, &out_d2[0], 1);
184  Vmath::Vvtvp(TotPts, &df[7][0], 1, &Diff1[0], 1, &out_d2[0], 1,
185  &out_d2[0], 1);
186  Vmath::Vvtvp(TotPts, &df[8][0], 1, &Diff2[0], 1, &out_d2[0], 1,
187  &out_d2[0], 1);
188  }
189  }
190  else // regular geometry
191  {
192  if (out_d0.size())
193  {
194  Vmath::Smul(TotPts, df[0][0], &Diff0[0], 1, &out_d0[0], 1);
195  Blas::Daxpy(TotPts, df[1][0], &Diff1[0], 1, &out_d0[0], 1);
196  Blas::Daxpy(TotPts, df[2][0], &Diff2[0], 1, &out_d0[0], 1);
197  }
198 
199  if (out_d1.size())
200  {
201  Vmath::Smul(TotPts, df[3][0], &Diff0[0], 1, &out_d1[0], 1);
202  Blas::Daxpy(TotPts, df[4][0], &Diff1[0], 1, &out_d1[0], 1);
203  Blas::Daxpy(TotPts, df[5][0], &Diff2[0], 1, &out_d1[0], 1);
204  }
205 
206  if (out_d2.size())
207  {
208  Vmath::Smul(TotPts, df[6][0], &Diff0[0], 1, &out_d2[0], 1);
209  Blas::Daxpy(TotPts, df[7][0], &Diff1[0], 1, &out_d2[0], 1);
210  Blas::Daxpy(TotPts, df[8][0], &Diff2[0], 1, &out_d2[0], 1);
211  }
212  }
213 }
214 
215 //-----------------------------
216 // Transforms
217 //-----------------------------
218 /**
219  * \brief Forward transform from physical quadrature space stored in
220  * \a inarray and evaluate the expansion coefficients and store
221  * in \a (this)->_coeffs
222  *
223  * @param inarray Array of physical quadrature points to be
224  * transformed.
225  * @param outarray Array of coefficients to update.
226  */
228  Array<OneD, NekDouble> &outarray)
229 {
230  if ((m_base[0]->Collocation()) && (m_base[1]->Collocation()) &&
231  (m_base[2]->Collocation()))
232  {
233  Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
234  }
235  else
236  {
237  IProductWRTBase(inarray, outarray);
238 
239  // get Mass matrix inverse
240  MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
241  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
242 
243  // copy inarray in case inarray == outarray
244  DNekVec in(m_ncoeffs, outarray);
245  DNekVec out(m_ncoeffs, outarray, eWrapper);
246 
247  out = (*matsys) * in;
248  }
249 }
250 
251 //-----------------------------
252 // Inner product functions
253 //-----------------------------
254 /**
255  * \brief Calculate the inner product of inarray with respect to the
256  * basis B=m_base0*m_base1*m_base2 and put into outarray:
257  *
258  * \f$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta}
259  * & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2}
260  * \psi_{p}^{a} (\eta_{1i}) \psi_{pq}^{b} (\eta_{2j}) \psi_{pqr}^{c}
261  * (\eta_{3k}) w_i w_j w_k u(\eta_{1,i} \eta_{2,j} \eta_{3,k})
262  * J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\eta_{1,i})
263  * \sum_{j=0}^{nq_1} \psi_{pq}^b(\eta_{2,j}) \sum_{k=0}^{nq_2}
264  * \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k}
265  * \end{array} \f$ \n
266  * where
267  * \f$ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3)
268  * = \psi_p^a (\eta_1) \psi_{pq}^b (\eta_2) \psi_{pqr}^c (\eta_3) \f$
269  * which can be implemented as \n
270  * \f$f_{pqr} (\xi_{3k})
271  * = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\eta_{1i},\eta_{2j},\eta_{3k})
272  * J_{i,j,k} = {\bf B_3 U} \f$ \n
273  * \f$ g_{pq} (\xi_{3k})
274  * = \sum_{j=0}^{nq_1} \psi_{pq}^b (\xi_{2j}) f_{pqr} (\xi_{3k})
275  * = {\bf B_2 F} \f$ \n
276  * \f$ (\phi_{pqr}, u)_{\delta}
277  * = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k})
278  * = {\bf B_1 G} \f$
279  */
281  Array<OneD, NekDouble> &outarray)
282 {
283  v_IProductWRTBase_SumFac(inarray, outarray);
284 }
285 
287  const Array<OneD, const NekDouble> &inarray,
288  Array<OneD, NekDouble> &outarray, bool multiplybyweights)
289 {
290  const int nquad0 = m_base[0]->GetNumPoints();
291  const int nquad1 = m_base[1]->GetNumPoints();
292  const int nquad2 = m_base[2]->GetNumPoints();
293  const int order0 = m_base[0]->GetNumModes();
294  const int order1 = m_base[1]->GetNumModes();
295  Array<OneD, NekDouble> wsp(nquad1 * nquad2 * order0 +
296  nquad2 * order0 * (order1 + 1) / 2);
297 
298  if (multiplybyweights)
299  {
300  Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
301 
302  MultiplyByQuadratureMetric(inarray, tmp);
304  m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
305  tmp, outarray, wsp, true, true, true);
306  }
307  else
308  {
310  m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
311  inarray, outarray, wsp, true, true, true);
312  }
313 }
314 
315 /**
316  * @brief Calculates the inner product \f$ I_{pqr} = (u,
317  * \partial_{x_i} \phi_{pqr}) \f$.
318  *
319  * The derivative of the basis functions is performed using the chain
320  * rule in order to incorporate the geometric factors. Assuming that
321  * the basis functions are a tensor product
322  * \f$\phi_{pqr}(\eta_1,\eta_2,\eta_3) =
323  * \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\f$, this yields the
324  * result
325  *
326  * \f[
327  * I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j}
328  * \frac{\partial \eta_j}{\partial x_i}\right)
329  * \f]
330  *
331  * In the prismatic element, we must also incorporate a second set of
332  * geometric factors which incorporate the collapsed co-ordinate
333  * system, so that
334  *
335  * \f[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3
336  * \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial
337  * x_i} \f]
338  *
339  * These derivatives can be found on p152 of Sherwin & Karniadakis.
340  *
341  * @param dir Direction in which to take the derivative.
342  * @param inarray The function \f$ u \f$.
343  * @param outarray Value of the inner product.
344  */
346  const Array<OneD, const NekDouble> &inarray,
347  Array<OneD, NekDouble> &outarray)
348 {
349  const int nquad0 = m_base[0]->GetNumPoints();
350  const int nquad1 = m_base[1]->GetNumPoints();
351  const int nquad2 = m_base[2]->GetNumPoints();
352  const int order0 = m_base[0]->GetNumModes();
353  const int order1 = m_base[1]->GetNumModes();
354  const int nqtot = nquad0 * nquad1 * nquad2;
355 
356  Array<OneD, NekDouble> tmp1(nqtot);
357  Array<OneD, NekDouble> tmp2(nqtot);
358  Array<OneD, NekDouble> tmp3(nqtot);
359  Array<OneD, NekDouble> tmp4(nqtot);
361  Array<OneD, NekDouble> wsp(nquad1 * nquad2 * order0 +
362  nquad2 * order0 * (order1 + 1) / 2);
363 
364  MultiplyByQuadratureMetric(inarray, tmp1);
365 
367  tmp2D[0] = tmp2;
368  tmp2D[1] = tmp3;
369  tmp2D[2] = tmp4;
370 
371  TetExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
372 
373  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
374  m_base[2]->GetBdata(), tmp2, outarray, wsp,
375  false, true, true);
376 
377  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
378  m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
379  false, true);
380 
381  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
382 
383  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
384  m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
385  true, false);
386 
387  Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
388 }
389 
391  const int dir, const Array<OneD, const NekDouble> &inarray,
392  Array<OneD, Array<OneD, NekDouble>> &outarray)
393 {
394  int i, j;
395 
396  const int nquad0 = m_base[0]->GetNumPoints();
397  const int nquad1 = m_base[1]->GetNumPoints();
398  const int nquad2 = m_base[2]->GetNumPoints();
399  const int nqtot = nquad0 * nquad1 * nquad2;
400 
401  const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
402  const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
403  const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
404 
405  Array<OneD, NekDouble> tmp2(nqtot);
406  Array<OneD, NekDouble> tmp3(nqtot);
407 
408  const Array<TwoD, const NekDouble> &df =
409  m_metricinfo->GetDerivFactors(GetPointsKeys());
410 
411  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
412  {
413  Vmath::Vmul(nqtot, &df[3 * dir][0], 1, inarray.get(), 1, tmp2.get(), 1);
414  Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, inarray.get(), 1, tmp3.get(),
415  1);
416  Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, inarray.get(), 1,
417  outarray[2].get(), 1);
418  }
419  else
420  {
421  Vmath::Smul(nqtot, df[3 * dir][0], inarray.get(), 1, tmp2.get(), 1);
422  Vmath::Smul(nqtot, df[3 * dir + 1][0], inarray.get(), 1, tmp3.get(), 1);
423  Vmath::Smul(nqtot, df[3 * dir + 2][0], inarray.get(), 1,
424  outarray[2].get(), 1);
425  }
426 
427  NekDouble g0, g1, g1a, g2, g3;
428  int k, cnt;
429 
430  for (cnt = 0, k = 0; k < nquad2; ++k)
431  {
432  for (j = 0; j < nquad1; ++j)
433  {
434  g2 = 2.0 / (1.0 - z2[k]);
435  g1 = g2 / (1.0 - z1[j]);
436  g0 = 2.0 * g1;
437  g3 = (1.0 + z1[j]) * g2 * 0.5;
438 
439  for (i = 0; i < nquad0; ++i, ++cnt)
440  {
441  g1a = g1 * (1 + z0[i]);
442 
443  outarray[0][cnt] =
444  g0 * tmp2[cnt] + g1a * (tmp3[cnt] + outarray[2][cnt]);
445 
446  outarray[1][cnt] = g2 * tmp3[cnt] + g3 * outarray[2][cnt];
447  }
448  }
449  }
450 }
451 
452 //-----------------------------
453 // Evaluation functions
454 //-----------------------------
455 
456 /**
457  * Given the local cartesian coordinate \a Lcoord evaluate the
458  * value of physvals at this point by calling through to the
459  * StdExpansion method
460  */
462  const Array<OneD, const NekDouble> &Lcoord,
463  const Array<OneD, const NekDouble> &physvals)
464 {
465  // Evaluate point in local (eta) coordinates.
466  return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
467 }
468 
469 /**
470  * @param coord Physical space coordinate
471  * @returns Evaluation of expansion at given coordinate.
472  */
474  const Array<OneD, const NekDouble> &physvals)
475 {
476  ASSERTL0(m_geom, "m_geom not defined");
477 
479 
480  // Get the local (eta) coordinates of the point
481  m_geom->GetLocCoords(coord, Lcoord);
482 
483  // Evaluate point in local (eta) coordinates.
484  return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
485 }
486 
488  const Array<OneD, const NekDouble> &inarray,
489  std::array<NekDouble, 3> &firstOrderDerivs)
490 {
491  Array<OneD, NekDouble> Lcoord(3);
492  ASSERTL0(m_geom, "m_geom not defined");
493  m_geom->GetLocCoords(coord, Lcoord);
494  return StdTetExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
495 }
496 
497 /**
498  * \brief Get the coordinates "coords" at the local coordinates "Lcoords"
499  */
501  Array<OneD, NekDouble> &coords)
502 {
503  int i;
504 
505  ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
506  Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
507  "Local coordinates are not in region [-1,1]");
508 
509  // m_geom->FillGeom(); // TODO: implement FillGeom()
510 
511  for (i = 0; i < m_geom->GetCoordim(); ++i)
512  {
513  coords[i] = m_geom->GetCoord(i, Lcoords);
514  }
515 }
516 
518  Array<OneD, NekDouble> &coords_1,
519  Array<OneD, NekDouble> &coords_2)
520 {
521  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
522 }
523 
524 //-----------------------------
525 // Helper functions
526 //-----------------------------
527 
528 /**
529  * \brief Return Shape of region, using ShapeType enum list.
530  */
532 {
534 }
535 
537 {
539  m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
540  m_base[2]->GetBasisKey());
541 }
542 
544 {
546  m_base[0]->GetPointsKey());
548  m_base[1]->GetPointsKey());
550  m_base[2]->GetPointsKey());
551 
553  bkey2);
554 }
555 
557  const NekDouble *data, const std::vector<unsigned int> &nummodes,
558  const int mode_offset, NekDouble *coeffs,
559  std::vector<LibUtilities::BasisType> &fromType)
560 {
561  boost::ignore_unused(fromType);
562 
563  int data_order0 = nummodes[mode_offset];
564  int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
565  int data_order1 = nummodes[mode_offset + 1];
566  int order1 = m_base[1]->GetNumModes();
567  int fillorder1 = min(order1, data_order1);
568  int data_order2 = nummodes[mode_offset + 2];
569  int order2 = m_base[2]->GetNumModes();
570  int fillorder2 = min(order2, data_order2);
571 
572  switch (m_base[0]->GetBasisType())
573  {
575  {
576  int i, j;
577  int cnt = 0;
578  int cnt1 = 0;
579 
581  "Extraction routine not set up for this basis");
583  "Extraction routine not set up for this basis");
584 
585  Vmath::Zero(m_ncoeffs, coeffs, 1);
586  for (j = 0; j < fillorder0; ++j)
587  {
588  for (i = 0; i < fillorder1 - j; ++i)
589  {
590  Vmath::Vcopy(fillorder2 - j - i, &data[cnt], 1,
591  &coeffs[cnt1], 1);
592  cnt += data_order2 - j - i;
593  cnt1 += order2 - j - i;
594  }
595 
596  // count out data for j iteration
597  for (i = fillorder1 - j; i < data_order1 - j; ++i)
598  {
599  cnt += data_order2 - j - i;
600  }
601 
602  for (i = fillorder1 - j; i < order1 - j; ++i)
603  {
604  cnt1 += order2 - j - i;
605  }
606  }
607  }
608  break;
609  default:
610  ASSERTL0(false, "basis is either not set up or not "
611  "hierarchicial");
612  }
613 }
614 
615 /**
616  * \brief Returns the physical values at the quadrature points of a face
617  */
618 void TetExp::v_GetTracePhysMap(const int face, Array<OneD, int> &outarray)
619 {
620  int nquad0 = m_base[0]->GetNumPoints();
621  int nquad1 = m_base[1]->GetNumPoints();
622  int nquad2 = m_base[2]->GetNumPoints();
623 
624  int nq0 = 0;
625  int nq1 = 0;
626 
627  // get forward aligned faces.
628  switch (face)
629  {
630  case 0:
631  {
632  nq0 = nquad0;
633  nq1 = nquad1;
634  if (outarray.size() != nq0 * nq1)
635  {
636  outarray = Array<OneD, int>(nq0 * nq1);
637  }
638 
639  for (int i = 0; i < nquad0 * nquad1; ++i)
640  {
641  outarray[i] = i;
642  }
643 
644  break;
645  }
646  case 1:
647  {
648  nq0 = nquad0;
649  nq1 = nquad2;
650  if (outarray.size() != nq0 * nq1)
651  {
652  outarray = Array<OneD, int>(nq0 * nq1);
653  }
654 
655  // Direction A and B positive
656  for (int k = 0; k < nquad2; k++)
657  {
658  for (int i = 0; i < nquad0; ++i)
659  {
660  outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
661  }
662  }
663  break;
664  }
665  case 2:
666  {
667  nq0 = nquad1;
668  nq1 = nquad2;
669  if (outarray.size() != nq0 * nq1)
670  {
671  outarray = Array<OneD, int>(nq0 * nq1);
672  }
673 
674  // Directions A and B positive
675  for (int j = 0; j < nquad1 * nquad2; ++j)
676  {
677  outarray[j] = nquad0 - 1 + j * nquad0;
678  }
679  break;
680  }
681  case 3:
682  {
683  nq0 = nquad1;
684  nq1 = nquad2;
685  if (outarray.size() != nq0 * nq1)
686  {
687  outarray = Array<OneD, int>(nq0 * nq1);
688  }
689 
690  // Directions A and B positive
691  for (int j = 0; j < nquad1 * nquad2; ++j)
692  {
693  outarray[j] = j * nquad0;
694  }
695  }
696  break;
697  default:
698  ASSERTL0(false, "face value (> 3) is out of range");
699  break;
700  }
701 }
702 
703 /**
704  * \brief Compute the normal of a triangular face
705  */
706 void TetExp::v_ComputeTraceNormal(const int face)
707 {
708  int i;
709  const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
710  GetGeom()->GetMetricInfo();
711 
713  for (int i = 0; i < ptsKeys.size(); ++i)
714  {
715  // Need at least 2 points for computing normals
716  if (ptsKeys[i].GetNumPoints() == 1)
717  {
718  LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
719  ptsKeys[i] = pKey;
720  }
721  }
722 
723  SpatialDomains::GeomType type = geomFactors->GetGtype();
724  const Array<TwoD, const NekDouble> &df =
725  geomFactors->GetDerivFactors(ptsKeys);
726  const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
727 
728  LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
729  LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
730 
731  // number of face quadrature points
732  int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
733 
734  int vCoordDim = GetCoordim();
735 
738  for (i = 0; i < vCoordDim; ++i)
739  {
740  normal[i] = Array<OneD, NekDouble>(nq_face);
741  }
742 
743  size_t nqb = nq_face;
744  size_t nbnd = face;
747 
748  // Regular geometry case
749  if (type == SpatialDomains::eRegular ||
751  {
752  NekDouble fac;
753 
754  // Set up normals
755  switch (face)
756  {
757  case 0:
758  {
759  for (i = 0; i < vCoordDim; ++i)
760  {
761  normal[i][0] = -df[3 * i + 2][0];
762  }
763 
764  break;
765  }
766  case 1:
767  {
768  for (i = 0; i < vCoordDim; ++i)
769  {
770  normal[i][0] = -df[3 * i + 1][0];
771  }
772 
773  break;
774  }
775  case 2:
776  {
777  for (i = 0; i < vCoordDim; ++i)
778  {
779  normal[i][0] =
780  df[3 * i][0] + df[3 * i + 1][0] + df[3 * i + 2][0];
781  }
782 
783  break;
784  }
785  case 3:
786  {
787  for (i = 0; i < vCoordDim; ++i)
788  {
789  normal[i][0] = -df[3 * i][0];
790  }
791  break;
792  }
793  default:
794  ASSERTL0(false, "face is out of range (edge < 3)");
795  }
796 
797  // normalise
798  fac = 0.0;
799  for (i = 0; i < vCoordDim; ++i)
800  {
801  fac += normal[i][0] * normal[i][0];
802  }
803  fac = 1.0 / sqrt(fac);
804  Vmath::Fill(nqb, fac, length, 1);
805 
806  for (i = 0; i < vCoordDim; ++i)
807  {
808  Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
809  }
810  }
811  else
812  {
813  // Set up deformed normals
814  int j, k;
815 
816  int nq0 = ptsKeys[0].GetNumPoints();
817  int nq1 = ptsKeys[1].GetNumPoints();
818  int nq2 = ptsKeys[2].GetNumPoints();
819  int nqtot;
820  int nq01 = nq0 * nq1;
821 
822  // number of elemental quad points
823  if (face == 0)
824  {
825  nqtot = nq01;
826  }
827  else if (face == 1)
828  {
829  nqtot = nq0 * nq2;
830  }
831  else
832  {
833  nqtot = nq1 * nq2;
834  }
835 
836  LibUtilities::PointsKey points0;
837  LibUtilities::PointsKey points1;
838 
839  Array<OneD, NekDouble> faceJac(nqtot);
840  Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
841 
842  // Extract Jacobian along face and recover local derivates
843  // (dx/dr) for polynomial interpolation by multiplying m_gmat by
844  // jacobian
845  switch (face)
846  {
847  case 0:
848  {
849  for (j = 0; j < nq01; ++j)
850  {
851  normals[j] = -df[2][j] * jac[j];
852  normals[nqtot + j] = -df[5][j] * jac[j];
853  normals[2 * nqtot + j] = -df[8][j] * jac[j];
854  faceJac[j] = jac[j];
855  }
856 
857  points0 = ptsKeys[0];
858  points1 = ptsKeys[1];
859  break;
860  }
861 
862  case 1:
863  {
864  for (j = 0; j < nq0; ++j)
865  {
866  for (k = 0; k < nq2; ++k)
867  {
868  int tmp = j + nq01 * k;
869  normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
870  normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
871  normals[2 * nqtot + j + k * nq0] =
872  -df[7][tmp] * jac[tmp];
873  faceJac[j + k * nq0] = jac[tmp];
874  }
875  }
876 
877  points0 = ptsKeys[0];
878  points1 = ptsKeys[2];
879  break;
880  }
881 
882  case 2:
883  {
884  for (j = 0; j < nq1; ++j)
885  {
886  for (k = 0; k < nq2; ++k)
887  {
888  int tmp = nq0 - 1 + nq0 * j + nq01 * k;
889  normals[j + k * nq1] =
890  (df[0][tmp] + df[1][tmp] + df[2][tmp]) * jac[tmp];
891  normals[nqtot + j + k * nq1] =
892  (df[3][tmp] + df[4][tmp] + df[5][tmp]) * jac[tmp];
893  normals[2 * nqtot + j + k * nq1] =
894  (df[6][tmp] + df[7][tmp] + df[8][tmp]) * jac[tmp];
895  faceJac[j + k * nq1] = jac[tmp];
896  }
897  }
898 
899  points0 = ptsKeys[1];
900  points1 = ptsKeys[2];
901  break;
902  }
903 
904  case 3:
905  {
906  for (j = 0; j < nq1; ++j)
907  {
908  for (k = 0; k < nq2; ++k)
909  {
910  int tmp = j * nq0 + nq01 * k;
911  normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
912  normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
913  normals[2 * nqtot + j + k * nq1] =
914  -df[6][tmp] * jac[tmp];
915  faceJac[j + k * nq1] = jac[tmp];
916  }
917  }
918 
919  points0 = ptsKeys[1];
920  points1 = ptsKeys[2];
921  break;
922  }
923 
924  default:
925  ASSERTL0(false, "face is out of range (face < 3)");
926  }
927 
928  Array<OneD, NekDouble> work(nq_face, 0.0);
929  // Interpolate Jacobian and invert
930  LibUtilities::Interp2D(points0, points1, faceJac,
931  tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
932  work);
933  Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
934 
935  // Interpolate normal and multiply by inverse Jacobian.
936  for (i = 0; i < vCoordDim; ++i)
937  {
938  LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
939  tobasis0.GetPointsKey(),
940  tobasis1.GetPointsKey(), &normal[i][0]);
941  Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
942  }
943 
944  // Normalise to obtain unit normals.
945  Vmath::Zero(nq_face, work, 1);
946  for (i = 0; i < GetCoordim(); ++i)
947  {
948  Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
949  }
950 
951  Vmath::Vsqrt(nq_face, work, 1, work, 1);
952  Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
953 
954  Vmath::Vcopy(nqb, work, 1, length, 1);
955 
956  for (i = 0; i < GetCoordim(); ++i)
957  {
958  Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
959  }
960  }
961 }
962 
963 //-----------------------------
964 // Operator creation functions
965 //-----------------------------
967  Array<OneD, NekDouble> &outarray,
968  const StdRegions::StdMatrixKey &mkey)
969 {
970  TetExp::v_HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
971 }
972 
974  Array<OneD, NekDouble> &outarray,
975  const StdRegions::StdMatrixKey &mkey)
976 {
977  TetExp::v_LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
978 }
979 
980 void TetExp::v_LaplacianMatrixOp(const int k1, const int k2,
981  const Array<OneD, const NekDouble> &inarray,
982  Array<OneD, NekDouble> &outarray,
983  const StdRegions::StdMatrixKey &mkey)
984 {
985  StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
986 }
987 
989  const StdRegions::StdMatrixKey &mkey)
990 {
991  int nq = GetTotPoints();
992 
993  // Calculate sqrt of the Jacobian
995  Array<OneD, NekDouble> sqrt_jac(nq);
996  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
997  {
998  Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
999  }
1000  else
1001  {
1002  Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1003  }
1004 
1005  // Multiply array by sqrt(Jac)
1006  Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1007 
1008  // Apply std region filter
1009  StdTetExp::v_SVVLaplacianFilter(array, mkey);
1010 
1011  // Divide by sqrt(Jac)
1012  Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1013 }
1014 
1015 //-----------------------------
1016 // Matrix creation functions
1017 //-----------------------------
1019 {
1020  DNekMatSharedPtr returnval;
1021 
1022  switch (mkey.GetMatrixType())
1023  {
1031  returnval = Expansion3D::v_GenMatrix(mkey);
1032  break;
1033  default:
1034  returnval = StdTetExp::v_GenMatrix(mkey);
1035  }
1036 
1037  return returnval;
1038 }
1039 
1041 {
1042  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1043  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1044  LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1046  MemoryManager<StdTetExp>::AllocateSharedPtr(bkey0, bkey1, bkey2);
1047 
1048  return tmp->GetStdMatrix(mkey);
1049 }
1050 
1052 {
1053  return m_matrixManager[mkey];
1054 }
1055 
1057 {
1058  m_matrixManager.DeleteObject(mkey);
1059 }
1060 
1062 {
1063  return m_staticCondMatrixManager[mkey];
1064 }
1065 
1067 {
1068  m_staticCondMatrixManager.DeleteObject(mkey);
1069 }
1070 
1072  Array<OneD, NekDouble> &outarray,
1073  const StdRegions::StdMatrixKey &mkey)
1074 {
1075  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1076 
1077  if (inarray.get() == outarray.get())
1078  {
1080  Vmath::Vcopy(m_ncoeffs, inarray.get(), 1, tmp.get(), 1);
1081 
1082  Blas::Dgemv('N', m_ncoeffs, m_ncoeffs, mat->Scale(),
1083  (mat->GetOwnedMatrix())->GetPtr().get(), m_ncoeffs,
1084  tmp.get(), 1, 0.0, outarray.get(), 1);
1085  }
1086  else
1087  {
1088  Blas::Dgemv('N', m_ncoeffs, m_ncoeffs, mat->Scale(),
1089  (mat->GetOwnedMatrix())->GetPtr().get(), m_ncoeffs,
1090  inarray.get(), 1, 0.0, outarray.get(), 1);
1091  }
1092 }
1093 
1095  const Array<OneD, const NekDouble> &inarray,
1097 {
1098  // This implementation is only valid when there are no
1099  // coefficients associated to the Laplacian operator
1100  if (m_metrics.count(eMetricLaplacian00) == 0)
1101  {
1103  }
1104 
1105  int nquad0 = m_base[0]->GetNumPoints();
1106  int nquad1 = m_base[1]->GetNumPoints();
1107  int nquad2 = m_base[2]->GetNumPoints();
1108  int nqtot = nquad0 * nquad1 * nquad2;
1109 
1110  ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1111  ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1112 
1113  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1114  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1115  const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1116  const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1117  const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1118  const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1119  const Array<OneD, const NekDouble> &metric00 =
1120  m_metrics[eMetricLaplacian00];
1121  const Array<OneD, const NekDouble> &metric01 =
1122  m_metrics[eMetricLaplacian01];
1123  const Array<OneD, const NekDouble> &metric02 =
1124  m_metrics[eMetricLaplacian02];
1125  const Array<OneD, const NekDouble> &metric11 =
1126  m_metrics[eMetricLaplacian11];
1127  const Array<OneD, const NekDouble> &metric12 =
1128  m_metrics[eMetricLaplacian12];
1129  const Array<OneD, const NekDouble> &metric22 =
1130  m_metrics[eMetricLaplacian22];
1131 
1132  // Allocate temporary storage
1133  Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1134  Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1135  Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1136  Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1137  Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1138  Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1139 
1140  // LAPLACIAN MATRIX OPERATION
1141  // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1142  // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1143  // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1144  StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1145 
1146  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1147  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1148  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1149  // especially for this purpose
1150  Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1151  &wsp1[0], 1, &wsp3[0], 1);
1152  Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1153  Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1154  &wsp1[0], 1, &wsp4[0], 1);
1155  Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1156  Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1157  &wsp1[0], 1, &wsp5[0], 1);
1158  Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1159 
1160  // outarray = m = (D_xi1 * B)^T * k
1161  // wsp1 = n = (D_xi2 * B)^T * l
1162  IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1163  false, true, true);
1164  IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1165  false, true);
1166  Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1167  IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1168  true, false);
1169  Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1170 }
1171 
1172 void TetExp::v_ComputeLaplacianMetric()
1173 {
1174  if (m_metrics.count(eMetricQuadrature) == 0)
1175  {
1176  ComputeQuadratureMetric();
1177  }
1178 
1179  int i, j;
1180  const unsigned int nqtot = GetTotPoints();
1181  const unsigned int dim = 3;
1182  const MetricType m[3][3] = {
1183  {eMetricLaplacian00, eMetricLaplacian01, eMetricLaplacian02},
1184  {eMetricLaplacian01, eMetricLaplacian11, eMetricLaplacian12},
1185  {eMetricLaplacian02, eMetricLaplacian12, eMetricLaplacian22}};
1186 
1187  for (unsigned int i = 0; i < dim; ++i)
1188  {
1189  for (unsigned int j = i; j < dim; ++j)
1190  {
1191  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1192  }
1193  }
1194 
1195  // Define shorthand synonyms for m_metrics storage
1196  Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1197  Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1198  Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1199  Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1200  Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1201  Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1202 
1203  // Allocate temporary storage
1204  Array<OneD, NekDouble> alloc(7 * nqtot, 0.0);
1205  Array<OneD, NekDouble> h0(alloc); // h0
1206  Array<OneD, NekDouble> h1(alloc + 1 * nqtot); // h1
1207  Array<OneD, NekDouble> h2(alloc + 2 * nqtot); // h2
1208  Array<OneD, NekDouble> h3(alloc + 3 * nqtot); // h3
1209  Array<OneD, NekDouble> wsp4(alloc + 4 * nqtot); // wsp4
1210  Array<OneD, NekDouble> wsp5(alloc + 5 * nqtot); // wsp5
1211  Array<OneD, NekDouble> wsp6(alloc + 6 * nqtot); // wsp6
1212  // Reuse some of the storage as workspace
1213  Array<OneD, NekDouble> wsp7(alloc); // wsp7
1214  Array<OneD, NekDouble> wsp8(alloc + 1 * nqtot); // wsp8
1215  Array<OneD, NekDouble> wsp9(alloc + 2 * nqtot); // wsp9
1216 
1217  const Array<TwoD, const NekDouble> &df =
1218  m_metricinfo->GetDerivFactors(GetPointsKeys());
1219  const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1220  const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1221  const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1222  const unsigned int nquad0 = m_base[0]->GetNumPoints();
1223  const unsigned int nquad1 = m_base[1]->GetNumPoints();
1224  const unsigned int nquad2 = m_base[2]->GetNumPoints();
1225 
1226  for (j = 0; j < nquad2; ++j)
1227  {
1228  for (i = 0; i < nquad1; ++i)
1229  {
1230  Vmath::Fill(nquad0, 4.0 / (1.0 - z1[i]) / (1.0 - z2[j]),
1231  &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1232  Vmath::Fill(nquad0, 2.0 / (1.0 - z1[i]) / (1.0 - z2[j]),
1233  &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1234  Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1235  &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1236  Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1237  &h3[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1238  }
1239  }
1240  for (i = 0; i < nquad0; i++)
1241  {
1242  Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1243  }
1244 
1245  // Step 3. Construct combined metric terms for physical space to
1246  // collapsed coordinate system.
1247  // Order of construction optimised to minimise temporary storage
1248  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1249  {
1250  // wsp4
1251  Vmath::Vadd(nqtot, &df[1][0], 1, &df[2][0], 1, &wsp4[0], 1);
1252  Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &wsp4[0], 1, &h1[0], 1,
1253  &wsp4[0], 1);
1254  // wsp5
1255  Vmath::Vadd(nqtot, &df[4][0], 1, &df[5][0], 1, &wsp5[0], 1);
1256  Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &wsp5[0], 1, &h1[0], 1,
1257  &wsp5[0], 1);
1258  // wsp6
1259  Vmath::Vadd(nqtot, &df[7][0], 1, &df[8][0], 1, &wsp6[0], 1);
1260  Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &wsp6[0], 1, &h1[0], 1,
1261  &wsp6[0], 1);
1262 
1263  // g0
1264  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1265  1, &g0[0], 1);
1266  Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1267 
1268  // g4
1269  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1270  1, &g4[0], 1);
1271  Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1272 
1273  // overwrite h0, h1, h2
1274  // wsp7 (h2f1 + h3f2)
1275  Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h2[0], 1, &df[2][0], 1, &h3[0], 1,
1276  &wsp7[0], 1);
1277  // wsp8 (h2f4 + h3f5)
1278  Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h2[0], 1, &df[5][0], 1, &h3[0], 1,
1279  &wsp8[0], 1);
1280  // wsp9 (h2f7 + h3f8)
1281  Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h2[0], 1, &df[8][0], 1, &h3[0], 1,
1282  &wsp9[0], 1);
1283 
1284  // g3
1285  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0],
1286  1, &g3[0], 1);
1287  Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1288 
1289  // overwrite wsp4, wsp5, wsp6
1290  // g1
1291  Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0],
1292  1, &g1[0], 1);
1293  Vmath::Vvtvp(nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1294 
1295  // g5
1296  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp7[0], 1, &df[5][0], 1, &wsp8[0],
1297  1, &g5[0], 1);
1298  Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1299 
1300  // g2
1301  Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1302  &df[5][0], 1, &g2[0], 1);
1303  Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1304  }
1305  else
1306  {
1307  // wsp4
1308  Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[1][0] + df[2][0], &h1[0],
1309  1, &wsp4[0], 1);
1310  // wsp5
1311  Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[4][0] + df[5][0], &h1[0],
1312  1, &wsp5[0], 1);
1313  // wsp6
1314  Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[7][0] + df[8][0], &h1[0],
1315  1, &wsp6[0], 1);
1316 
1317  // g0
1318  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1319  1, &g0[0], 1);
1320  Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1321 
1322  // g4
1323  Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1324  &g4[0], 1);
1325  Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1326 
1327  // overwrite h0, h1, h2
1328  // wsp7 (h2f1 + h3f2)
1329  Vmath::Svtsvtp(nqtot, df[1][0], &h2[0], 1, df[2][0], &h3[0], 1,
1330  &wsp7[0], 1);
1331  // wsp8 (h2f4 + h3f5)
1332  Vmath::Svtsvtp(nqtot, df[4][0], &h2[0], 1, df[5][0], &h3[0], 1,
1333  &wsp8[0], 1);
1334  // wsp9 (h2f7 + h3f8)
1335  Vmath::Svtsvtp(nqtot, df[7][0], &h2[0], 1, df[8][0], &h3[0], 1,
1336  &wsp9[0], 1);
1337 
1338  // g3
1339  Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp7[0], 1, &wsp5[0], 1, &wsp8[0],
1340  1, &g3[0], 1);
1341  Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp9[0], 1, &g3[0], 1, &g3[0], 1);
1342 
1343  // overwrite wsp4, wsp5, wsp6
1344  // g1
1345  Vmath::Vvtvvtp(nqtot, &wsp7[0], 1, &wsp7[0], 1, &wsp8[0], 1, &wsp8[0],
1346  1, &g1[0], 1);
1347  Vmath::Vvtvp(nqtot, &wsp9[0], 1, &wsp9[0], 1, &g1[0], 1, &g1[0], 1);
1348 
1349  // g5
1350  Vmath::Svtsvtp(nqtot, df[2][0], &wsp7[0], 1, df[5][0], &wsp8[0], 1,
1351  &g5[0], 1);
1352  Vmath::Svtvp(nqtot, df[8][0], &wsp9[0], 1, &g5[0], 1, &g5[0], 1);
1353 
1354  // g2
1355  Vmath::Fill(nqtot,
1356  df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1357  df[8][0] * df[8][0],
1358  &g2[0], 1);
1359  }
1360 
1361  for (unsigned int i = 0; i < dim; ++i)
1362  {
1363  for (unsigned int j = i; j < dim; ++j)
1364  {
1365  MultiplyByQuadratureMetric(m_metrics[m[i][j]], m_metrics[m[i][j]]);
1366  }
1367  }
1368 }
1369 
1370 /** @brief: This method gets all of the factors which are
1371  required as part of the Gradient Jump Penalty
1372  stabilisation and involves the product of the normal and
1373  geometric factors along the element trace.
1374 */
1375 void TetExp::v_NormalTraceDerivFactors(
1376  Array<OneD, Array<OneD, NekDouble>> &d0factors,
1377  Array<OneD, Array<OneD, NekDouble>> &d1factors,
1378  Array<OneD, Array<OneD, NekDouble>> &d2factors)
1379 {
1380  int nquad0 = GetNumPoints(0);
1381  int nquad1 = GetNumPoints(1);
1382  int nquad2 = GetNumPoints(2);
1383 
1384  const Array<TwoD, const NekDouble> &df =
1385  m_metricinfo->GetDerivFactors(GetPointsKeys());
1386 
1387  if (d0factors.size() != 4)
1388  {
1389  d0factors = Array<OneD, Array<OneD, NekDouble>>(4);
1390  d1factors = Array<OneD, Array<OneD, NekDouble>>(4);
1391  d2factors = Array<OneD, Array<OneD, NekDouble>>(4);
1392  }
1393 
1394  if (d0factors[0].size() != nquad0 * nquad1)
1395  {
1396  d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1397  d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1398  d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1399  }
1400 
1401  if (d0factors[1].size() != nquad0 * nquad2)
1402  {
1403  d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1404  d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1405  d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1406  }
1407 
1408  if (d0factors[2].size() != nquad1 * nquad2)
1409  {
1410  d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1411  d0factors[3] = Array<OneD, NekDouble>(nquad1 * nquad2);
1412  d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1413  d1factors[3] = Array<OneD, NekDouble>(nquad1 * nquad2);
1414  d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1415  d2factors[3] = Array<OneD, NekDouble>(nquad1 * nquad2);
1416  }
1417 
1418  // Outwards normals
1419  const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1420  GetTraceNormal(0);
1421  const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1422  GetTraceNormal(1);
1423  const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1424  GetTraceNormal(2);
1425  const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1426  GetTraceNormal(3);
1427 
1428  int ncoords = normal_0.size();
1429 
1430  // first gather together standard cartesian inner products
1431  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1432  {
1433  // face 0
1434  for (int i = 0; i < nquad0 * nquad1; ++i)
1435  {
1436  d0factors[0][i] = df[0][i] * normal_0[0][i];
1437  d1factors[0][i] = df[1][i] * normal_0[0][i];
1438  d2factors[0][i] = df[2][i] * normal_0[0][i];
1439  }
1440 
1441  for (int n = 1; n < ncoords; ++n)
1442  {
1443  for (int i = 0; i < nquad0 * nquad1; ++i)
1444  {
1445  d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1446  d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1447  d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1448  }
1449  }
1450 
1451  // face 1
1452  for (int j = 0; j < nquad2; ++j)
1453  {
1454  for (int i = 0; i < nquad0; ++i)
1455  {
1456  d0factors[1][i] = df[0][j * nquad0 * nquad1 + i] *
1457  normal_1[0][j * nquad0 + i];
1458  d1factors[1][i] = df[1][j * nquad0 * nquad1 + i] *
1459  normal_1[0][j * nquad0 + i];
1460  d2factors[1][i] = df[2][j * nquad0 * nquad1 + i] *
1461  normal_1[0][j * nquad0 + i];
1462  }
1463  }
1464 
1465  for (int n = 1; n < ncoords; ++n)
1466  {
1467  for (int j = 0; j < nquad2; ++j)
1468  {
1469  for (int i = 0; i < nquad0; ++i)
1470  {
1471  d0factors[1][i] = df[3 * n][j * nquad0 * nquad1 + i] *
1472  normal_1[0][j * nquad0 + i];
1473  d1factors[1][i] = df[3 * n + 1][j * nquad0 * nquad1 + i] *
1474  normal_1[0][j * nquad0 + i];
1475  d2factors[1][i] = df[3 * n + 2][j * nquad0 * nquad1 + i] *
1476  normal_1[0][j * nquad0 + i];
1477  }
1478  }
1479  }
1480 
1481  // faces 2 and 3
1482  for (int j = 0; j < nquad2; ++j)
1483  {
1484  for (int i = 0; i < nquad1; ++i)
1485  {
1486  d0factors[2][j * nquad1 + i] =
1487  df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1488  normal_2[0][j * nquad1 + i];
1489  d0factors[3][j * nquad1 + i] =
1490  df[0][j * nquad0 * nquad1 + i * nquad0] *
1491  normal_3[0][j * nquad1 + i];
1492  d1factors[2][j * nquad1 + i] =
1493  df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1494  normal_2[0][j * nquad1 + i];
1495  d1factors[3][j * nquad1 + i] =
1496  df[1][j * nquad0 * nquad1 + i * nquad0] *
1497  normal_3[0][j * nquad1 + i];
1498  d2factors[2][j * nquad1 + i] =
1499  df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1500  normal_2[0][j * nquad1 + i];
1501  d2factors[3][j * nquad1 + i] =
1502  df[2][j * nquad0 * nquad1 + i * nquad0] *
1503  normal_3[0][j * nquad1 + i];
1504  }
1505  }
1506 
1507  for (int n = 1; n < ncoords; ++n)
1508  {
1509  for (int j = 0; j < nquad2; ++j)
1510  {
1511  for (int i = 0; i < nquad1; ++i)
1512  {
1513  d0factors[2][j * nquad1 + i] +=
1514  df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1515  normal_2[n][j * nquad0 + i];
1516  d0factors[3][j * nquad0 + i] +=
1517  df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1518  normal_3[n][j * nquad0 + i];
1519  d1factors[2][j * nquad1 + i] +=
1520  df[3 * n + 1]
1521  [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1522  normal_2[n][j * nquad0 + i];
1523  d1factors[3][j * nquad0 + i] +=
1524  df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1525  normal_3[n][j * nquad0 + i];
1526  d2factors[2][j * nquad1 + i] +=
1527  df[3 * n + 2]
1528  [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1529  normal_2[n][j * nquad0 + i];
1530  d2factors[3][j * nquad0 + i] +=
1531  df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1532  normal_3[n][j * nquad0 + i];
1533  }
1534  }
1535  }
1536  }
1537  else
1538  {
1539  // Face 0
1540  for (int i = 0; i < nquad0 * nquad1; ++i)
1541  {
1542  d0factors[0][i] = df[0][0] * normal_0[0][i];
1543  d1factors[0][i] = df[1][0] * normal_0[0][i];
1544  d2factors[0][i] = df[2][0] * normal_0[0][i];
1545  }
1546 
1547  for (int n = 1; n < ncoords; ++n)
1548  {
1549  for (int i = 0; i < nquad0 * nquad1; ++i)
1550  {
1551  d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1552  d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1553  d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1554  }
1555  }
1556 
1557  // face 1
1558  for (int i = 0; i < nquad0 * nquad2; ++i)
1559  {
1560  d0factors[1][i] = df[0][0] * normal_1[0][i];
1561  d1factors[1][i] = df[1][0] * normal_1[0][i];
1562  d2factors[1][i] = df[2][0] * normal_1[0][i];
1563  }
1564 
1565  for (int n = 1; n < ncoords; ++n)
1566  {
1567  for (int i = 0; i < nquad0 * nquad2; ++i)
1568  {
1569  d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1570  d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1571  d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1572  }
1573  }
1574 
1575  // faces 2 and 3
1576  for (int i = 0; i < nquad1 * nquad2; ++i)
1577  {
1578  d0factors[2][i] = df[0][0] * normal_2[0][i];
1579  d0factors[3][i] = df[0][0] * normal_3[0][i];
1580 
1581  d1factors[2][i] = df[1][0] * normal_2[0][i];
1582  d1factors[3][i] = df[1][0] * normal_3[0][i];
1583 
1584  d2factors[2][i] = df[2][0] * normal_2[0][i];
1585  d2factors[3][i] = df[2][0] * normal_3[0][i];
1586  }
1587 
1588  for (int n = 1; n < ncoords; ++n)
1589  {
1590  for (int i = 0; i < nquad1 * nquad2; ++i)
1591  {
1592  d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1593  d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1594 
1595  d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1596  d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1597 
1598  d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1599  d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1600  }
1601  }
1602  }
1603 }
1604 } // namespace LocalRegions
1605 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Describes the specification for a Basis.
Definition: Basis.h:50
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:130
PointsKey GetPointsKey() const
Return distribution of points.
Definition: Basis.h:147
Defines a specification for a set of points.
Definition: Points.h:59
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:278
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:288
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:171
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:275
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:535
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:276
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:88
void v_ComputeTraceNormal(const int face) override
Compute the normal of a triangular face.
Definition: TetExp.cpp:706
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
Definition: TetExp.cpp:473
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrate the physical point list inarray over region.
Definition: TetExp.cpp:106
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey) override
Definition: TetExp.cpp:1051
virtual NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
Definition: TetExp.cpp:461
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
Differentiate inarray in the three coordinate directions.
Definition: TetExp.cpp:145
void v_DropLocMatrix(const MatrixKey &mkey) override
Definition: TetExp.cpp:1056
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TetExp.h:204
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TetExp.h:202
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: TetExp.cpp:1018
virtual void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TetExp.cpp:973
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: TetExp.cpp:286
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: TetExp.cpp:1061
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
Get the coordinates "coords" at the local coordinates "Lcoords".
Definition: TetExp.cpp:500
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=m_base0*m_base1*m_base2 and put in...
Definition: TetExp.cpp:280
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: TetExp.cpp:227
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const override
Definition: TetExp.cpp:536
virtual LibUtilities::ShapeType v_DetShapeType() const override
Return Shape of region, using ShapeType enum list.
Definition: TetExp.cpp:531
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: TetExp.cpp:1040
virtual void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculates the inner product .
Definition: TetExp.cpp:345
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const override
Definition: TetExp.cpp:543
TetExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::TetGeomSharedPtr &geom)
Constructor using BasisKey class for quadrature points and order definition.
Definition: TetExp.cpp:61
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: TetExp.cpp:517
void GeneralMatrixOp_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
Definition: TetExp.cpp:1071
void v_DropLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: TetExp.cpp:1066
virtual void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
Definition: TetExp.cpp:390
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
Definition: TetExp.cpp:988
virtual void v_GetTracePhysMap(const int face, Array< OneD, int > &outarray) override
Returns the physical values at the quadrature points of a face.
Definition: TetExp.cpp:618
virtual void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: TetExp.cpp:966
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
Definition: TetExp.cpp:1094
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
Definition: TetExp.cpp:556
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162
const LibUtilities::PointsKeyVector GetPointsKeys() const
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:305
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:534
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:211
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:224
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
Array< OneD, LibUtilities::BasisSharedPtr > m_base
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:85
LibUtilities::ShapeType DetShapeType() const
Definition: StdTetExp.h:64
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = A x where A[m x n].
Definition: Blas.hpp:246
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:154
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:106
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:51
@ eModified_C
Principle Modified Functions .
Definition: BasisType.h:52
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< TetGeom > TetGeomSharedPtr
Definition: TetGeom.h:85
std::shared_ptr< StdTetExp > StdTetExpSharedPtr
Definition: StdTetExp.h:255
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:79
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:534
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:324
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294