Nektar++
PrismExp.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: PrismExp.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: PrismExp routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <boost/core/ignore_unused.hpp>
36
41
42using namespace std;
43
44namespace Nektar
45{
46namespace LocalRegions
47{
48
50 const LibUtilities::BasisKey &Bb,
51 const LibUtilities::BasisKey &Bc,
53 : StdExpansion(LibUtilities::StdPrismData::getNumberOfCoefficients(
54 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
55 3, Ba, Bb, Bc),
56 StdExpansion3D(LibUtilities::StdPrismData::getNumberOfCoefficients(
57 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
58 Ba, Bb, Bc),
59 StdPrismExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
60 m_matrixManager(
61 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
62 std::string("PrismExpMatrix")),
63 m_staticCondMatrixManager(std::bind(&Expansion::CreateStaticCondMatrix,
64 this, std::placeholders::_1),
65 std::string("PrismExpStaticCondMatrix"))
66{
67}
68
70 : StdExpansion(T), StdExpansion3D(T), StdPrismExp(T), Expansion(T),
71 Expansion3D(T), m_matrixManager(T.m_matrixManager),
72 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
73{
74}
75
76//-------------------------------
77// Integration Methods
78//-------------------------------
79
80/**
81 * \brief Integrate the physical point list \a inarray over prismatic
82 * region and return the value.
83 *
84 * Inputs:\n
85 *
86 * - \a inarray: definition of function to be returned at quadrature
87 * point of expansion.
88 *
89 * Outputs:\n
90 *
91 * - returns \f$\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1,
92 * \xi_2, \xi_3) J[i,j,k] d \bar \eta_1 d \xi_2 d \xi_3 \f$ \n \f$ =
93 * \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1}
94 * u(\bar \eta_{1i}^{0,0}, \xi_{2j}^{0,0},\xi_{3k}^{1,0})w_{i}^{0,0}
95 * w_{j}^{0,0} \hat w_{k}^{1,0} \f$ \n where \f$ inarray[i,j, k] =
96 * u(\bar \eta_{1i}^{0,0}, \xi_{2j}^{0,0},\xi_{3k}^{1,0}) \f$, \n
97 * \f$\hat w_{i}^{1,0} = \frac {w_{j}^{1,0}} {2} \f$ \n and \f$
98 * J[i,j,k] \f$ is the Jacobian evaluated at the quadrature point.
99 */
101{
102 int nquad0 = m_base[0]->GetNumPoints();
103 int nquad1 = m_base[1]->GetNumPoints();
104 int nquad2 = m_base[2]->GetNumPoints();
106 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
107
108 // Multiply inarray with Jacobian
109 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
110 {
111 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
112 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
113 }
114 else
115 {
116 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
117 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
118 }
119
120 // Call StdPrismExp version.
121 return StdPrismExp::v_Integral(tmp);
122}
123
124//----------------------------
125// Differentiation Methods
126//----------------------------
131{
132 int nqtot = GetTotPoints();
133
135 m_metricinfo->GetDerivFactors(GetPointsKeys());
136 Array<OneD, NekDouble> diff0(nqtot);
137 Array<OneD, NekDouble> diff1(nqtot);
138 Array<OneD, NekDouble> diff2(nqtot);
139
140 StdPrismExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
141
142 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
143 {
144 if (out_d0.size())
145 {
146 Vmath::Vmul(nqtot, &df[0][0], 1, &diff0[0], 1, &out_d0[0], 1);
147 Vmath::Vvtvp(nqtot, &df[1][0], 1, &diff1[0], 1, &out_d0[0], 1,
148 &out_d0[0], 1);
149 Vmath::Vvtvp(nqtot, &df[2][0], 1, &diff2[0], 1, &out_d0[0], 1,
150 &out_d0[0], 1);
151 }
152
153 if (out_d1.size())
154 {
155 Vmath::Vmul(nqtot, &df[3][0], 1, &diff0[0], 1, &out_d1[0], 1);
156 Vmath::Vvtvp(nqtot, &df[4][0], 1, &diff1[0], 1, &out_d1[0], 1,
157 &out_d1[0], 1);
158 Vmath::Vvtvp(nqtot, &df[5][0], 1, &diff2[0], 1, &out_d1[0], 1,
159 &out_d1[0], 1);
160 }
161
162 if (out_d2.size())
163 {
164 Vmath::Vmul(nqtot, &df[6][0], 1, &diff0[0], 1, &out_d2[0], 1);
165 Vmath::Vvtvp(nqtot, &df[7][0], 1, &diff1[0], 1, &out_d2[0], 1,
166 &out_d2[0], 1);
167 Vmath::Vvtvp(nqtot, &df[8][0], 1, &diff2[0], 1, &out_d2[0], 1,
168 &out_d2[0], 1);
169 }
170 }
171 else // regular geometry
172 {
173 if (out_d0.size())
174 {
175 Vmath::Smul(nqtot, df[0][0], &diff0[0], 1, &out_d0[0], 1);
176 Blas::Daxpy(nqtot, df[1][0], &diff1[0], 1, &out_d0[0], 1);
177 Blas::Daxpy(nqtot, df[2][0], &diff2[0], 1, &out_d0[0], 1);
178 }
179
180 if (out_d1.size())
181 {
182 Vmath::Smul(nqtot, df[3][0], &diff0[0], 1, &out_d1[0], 1);
183 Blas::Daxpy(nqtot, df[4][0], &diff1[0], 1, &out_d1[0], 1);
184 Blas::Daxpy(nqtot, df[5][0], &diff2[0], 1, &out_d1[0], 1);
185 }
186
187 if (out_d2.size())
188 {
189 Vmath::Smul(nqtot, df[6][0], &diff0[0], 1, &out_d2[0], 1);
190 Blas::Daxpy(nqtot, df[7][0], &diff1[0], 1, &out_d2[0], 1);
191 Blas::Daxpy(nqtot, df[8][0], &diff2[0], 1, &out_d2[0], 1);
192 }
193 }
194}
195
196//---------------------------------------
197// Transforms
198//---------------------------------------
199
200/**
201 * \brief Forward transform from physical quadrature space stored in
202 * \a inarray and evaluate the expansion coefficients and store in \a
203 * (this)->m_coeffs
204 *
205 * Inputs:\n
206 *
207 * - \a inarray: array of physical quadrature points to be transformed
208 *
209 * Outputs:\n
210 *
211 * - (this)->_coeffs: updated array of expansion coefficients.
212 */
214 Array<OneD, NekDouble> &outarray)
215{
216 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
217 m_base[2]->Collocation())
218 {
219 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
220 }
221 else
222 {
223 v_IProductWRTBase(inarray, outarray);
224
225 // get Mass matrix inverse
227 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
228
229 // copy inarray in case inarray == outarray
230 DNekVec in(m_ncoeffs, outarray);
231 DNekVec out(m_ncoeffs, outarray, eWrapper);
232
233 out = (*matsys) * in;
234 }
235}
236
237//---------------------------------------
238// Inner product functions
239//---------------------------------------
240
241/**
242 * \brief Calculate the inner product of inarray with respect to the
243 * basis B=base0*base1*base2 and put into outarray:
244 *
245 * \f$ \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = &
246 * \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a}
247 * (\bar \eta_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{pr}^{b} (\xi_{3k})
248 * w_i w_j w_k u(\bar \eta_{1,i} \xi_{2,j} \xi_{3,k}) J_{i,j,k}\\ & =
249 * & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i}) \sum_{j=0}^{nq_1}
250 * \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2} \psi_{pr}^b u(\bar
251 * \eta_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} \end{array} \f$ \n
252 *
253 * where
254 *
255 * \f$ \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1)
256 * \psi_{q}^a (\xi_2) \psi_{pr}^b (\xi_3) \f$ \n
257 *
258 * which can be implemented as \n \f$f_{pr} (\xi_{3k}) =
259 * \sum_{k=0}^{nq_3} \psi_{pr}^b u(\bar \eta_{1i},\xi_{2j},\xi_{3k})
260 * J_{i,j,k} = {\bf B_3 U} \f$ \n \f$ g_{q} (\xi_{3k}) =
261 * \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pr} (\xi_{3k}) = {\bf
262 * B_2 F} \f$ \n \f$ (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0}
263 * \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k}) = {\bf B_1 G} \f$
264 */
266 Array<OneD, NekDouble> &outarray)
267{
268 v_IProductWRTBase_SumFac(inarray, outarray);
269}
270
272 const Array<OneD, const NekDouble> &inarray,
273 Array<OneD, NekDouble> &outarray, bool multiplybyweights)
274{
275 const int nquad0 = m_base[0]->GetNumPoints();
276 const int nquad1 = m_base[1]->GetNumPoints();
277 const int nquad2 = m_base[2]->GetNumPoints();
278 const int order0 = m_base[0]->GetNumModes();
279 const int order1 = m_base[1]->GetNumModes();
280
281 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
282
283 if (multiplybyweights)
284 {
285 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
286
287 MultiplyByQuadratureMetric(inarray, tmp);
288
290 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
291 tmp, outarray, wsp, true, true, true);
292 }
293 else
294 {
296 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
297 inarray, outarray, wsp, true, true, true);
298 }
299}
300
301/**
302 * @brief Calculates the inner product \f$ I_{pqr} = (u,
303 * \partial_{x_i} \phi_{pqr}) \f$.
304 *
305 * The derivative of the basis functions is performed using the chain
306 * rule in order to incorporate the geometric factors. Assuming that
307 * the basis functions are a tensor product
308 * \f$\phi_{pqr}(\eta_1,\eta_2,\eta_3) =
309 * \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\f$, this yields the
310 * result
311 *
312 * \f[
313 * I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j}
314 * \frac{\partial \eta_j}{\partial x_i}\right)
315 * \f]
316 *
317 * In the tetrahedral element, we must also incorporate a second set
318 * of geometric factors which incorporate the collapsed co-ordinate
319 * system, so that
320 *
321 * \f[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3
322 * \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial
323 * x_i} \f]
324 *
325 * These derivatives can be found on p152 of Sherwin & Karniadakis.
326 *
327 * @param dir Direction in which to take the derivative.
328 * @param inarray The function \f$ u \f$.
329 * @param outarray Value of the inner product.
330 */
332 const int dir, const Array<OneD, const NekDouble> &inarray,
333 Array<OneD, NekDouble> &outarray)
334{
335 v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
336}
337
339 const int dir, const Array<OneD, const NekDouble> &inarray,
340 Array<OneD, NekDouble> &outarray)
341{
342 const int nquad0 = m_base[0]->GetNumPoints();
343 const int nquad1 = m_base[1]->GetNumPoints();
344 const int nquad2 = m_base[2]->GetNumPoints();
345 const int order0 = m_base[0]->GetNumModes();
346 const int order1 = m_base[1]->GetNumModes();
347 const int nqtot = nquad0 * nquad1 * nquad2;
348
349 Array<OneD, NekDouble> tmp1(nqtot);
350 Array<OneD, NekDouble> tmp2(nqtot);
351 Array<OneD, NekDouble> tmp3(nqtot);
352 Array<OneD, NekDouble> tmp4(nqtot);
354 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
355
356 MultiplyByQuadratureMetric(inarray, tmp1);
357
359 tmp2D[0] = tmp2;
360 tmp2D[1] = tmp3;
361 tmp2D[2] = tmp4;
362
364
365 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
366 m_base[2]->GetBdata(), tmp2, outarray, wsp,
367 true, true, true);
368
369 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
370 m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
371 true, true);
372
373 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
374
375 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
376 m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
377 true, true);
378
379 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
380}
381
383 const int dir, const Array<OneD, const NekDouble> &inarray,
385{
386 const int nquad0 = m_base[0]->GetNumPoints();
387 const int nquad1 = m_base[1]->GetNumPoints();
388 const int nquad2 = m_base[2]->GetNumPoints();
389 const int order0 = m_base[0]->GetNumModes();
390 const int order1 = m_base[1]->GetNumModes();
391 const int nqtot = nquad0 * nquad1 * nquad2;
392
393 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
394 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
395
396 Array<OneD, NekDouble> gfac0(nquad0);
397 Array<OneD, NekDouble> gfac2(nquad2);
398 Array<OneD, NekDouble> tmp1(nqtot);
399 Array<OneD, NekDouble> tmp5(nqtot);
401 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
402
403 Array<OneD, NekDouble> tmp2 = outarray[0];
404 Array<OneD, NekDouble> tmp3 = outarray[1];
405 Array<OneD, NekDouble> tmp4 = outarray[2];
406
408 m_metricinfo->GetDerivFactors(GetPointsKeys());
409
410 Vmath::Vcopy(nqtot, inarray, 1, tmp1, 1); // Dir3 metric
411
412 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
413 {
414 Vmath::Vmul(nqtot, &df[3 * dir][0], 1, tmp1.get(), 1, tmp2.get(), 1);
415 Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, tmp1.get(), 1, tmp3.get(),
416 1);
417 Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, tmp1.get(), 1, tmp4.get(),
418 1);
419 }
420 else
421 {
422 Vmath::Smul(nqtot, df[3 * dir][0], tmp1.get(), 1, tmp2.get(), 1);
423 Vmath::Smul(nqtot, df[3 * dir + 1][0], tmp1.get(), 1, tmp3.get(), 1);
424 Vmath::Smul(nqtot, df[3 * dir + 2][0], tmp1.get(), 1, tmp4.get(), 1);
425 }
426
427 // set up geometric factor: (1+z0)/2
428 for (int i = 0; i < nquad0; ++i)
429 {
430 gfac0[i] = 0.5 * (1 + z0[i]);
431 }
432
433 // Set up geometric factor: 2/(1-z2)
434 for (int i = 0; i < nquad2; ++i)
435 {
436 gfac2[i] = 2.0 / (1 - z2[i]);
437 }
438
439 const int nq01 = nquad0 * nquad1;
440
441 for (int i = 0; i < nquad2; ++i)
442 {
443 Vmath::Smul(nq01, gfac2[i], &tmp2[0] + i * nq01, 1, &tmp2[0] + i * nq01,
444 1);
445 Vmath::Smul(nq01, gfac2[i], &tmp4[0] + i * nq01, 1, &tmp5[0] + i * nq01,
446 1);
447 }
448
449 for (int i = 0; i < nquad1 * nquad2; ++i)
450 {
451 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp5[0] + i * nquad0, 1,
452 &tmp5[0] + i * nquad0, 1);
453 }
454
455 Vmath::Vadd(nqtot, &tmp2[0], 1, &tmp5[0], 1, &tmp2[0], 1);
456}
457
458//---------------------------------------
459// Evaluation functions
460//---------------------------------------
461
463{
465 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
466 m_base[2]->GetBasisKey());
467}
468
470{
472 m_base[0]->GetPointsKey());
474 m_base[1]->GetPointsKey());
476 m_base[2]->GetPointsKey());
477
479 bkey0, bkey1, bkey2);
480}
481
482/**
483 * @brief Get the coordinates #coords at the local coordinates
484 * #Lcoords.
485 */
488{
489 int i;
490
491 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
492 Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
493 "Local coordinates are not in region [-1,1]");
494
495 m_geom->FillGeom();
496
497 for (i = 0; i < m_geom->GetCoordim(); ++i)
498 {
499 coords[i] = m_geom->GetCoord(i, Lcoords);
500 }
501}
502
504 Array<OneD, NekDouble> &coords_1,
505 Array<OneD, NekDouble> &coords_2)
506{
507 Expansion::v_GetCoords(coords_0, coords_1, coords_2);
508}
509
510/**
511 * Given the local cartesian coordinate \a Lcoord evaluate the
512 * value of physvals at this point by calling through to the
513 * StdExpansion method
514 */
516 const Array<OneD, const NekDouble> &Lcoord,
517 const Array<OneD, const NekDouble> &physvals)
518{
519 // Evaluate point in local (eta) coordinates.
520 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
521}
522
524 const Array<OneD, const NekDouble> &physvals)
525{
526 Array<OneD, NekDouble> Lcoord(3);
527
528 ASSERTL0(m_geom, "m_geom not defined");
529
530 m_geom->GetLocCoords(coord, Lcoord);
531
532 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
533}
534
536 const Array<OneD, const NekDouble> &inarray,
537 std::array<NekDouble, 3> &firstOrderDerivs)
538{
539 Array<OneD, NekDouble> Lcoord(3);
540 ASSERTL0(m_geom, "m_geom not defined");
541 m_geom->GetLocCoords(coord, Lcoord);
542 return StdPrismExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
543}
544
545//---------------------------------------
546// Helper functions
547//---------------------------------------
548
550 const NekDouble *data, const std::vector<unsigned int> &nummodes,
551 const int mode_offset, NekDouble *coeffs,
552 std::vector<LibUtilities::BasisType> &fromType)
553{
554 boost::ignore_unused(fromType);
555
556 int data_order0 = nummodes[mode_offset];
557 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
558 int data_order1 = nummodes[mode_offset + 1];
559 int order1 = m_base[1]->GetNumModes();
560 int fillorder1 = min(order1, data_order1);
561 int data_order2 = nummodes[mode_offset + 2];
562 int order2 = m_base[2]->GetNumModes();
563 int fillorder2 = min(order2, data_order2);
564
565 switch (m_base[0]->GetBasisType())
566 {
568 {
569 int i, j;
570 int cnt = 0;
571 int cnt1 = 0;
572
574 "Extraction routine not set up for this basis");
576 "Extraction routine not set up for this basis");
577
578 Vmath::Zero(m_ncoeffs, coeffs, 1);
579 for (j = 0; j < fillorder0; ++j)
580 {
581 for (i = 0; i < fillorder1; ++i)
582 {
583 Vmath::Vcopy(fillorder2 - j, &data[cnt], 1, &coeffs[cnt1],
584 1);
585 cnt += data_order2 - j;
586 cnt1 += order2 - j;
587 }
588
589 // count out data for j iteration
590 for (i = fillorder1; i < data_order1; ++i)
591 {
592 cnt += data_order2 - j;
593 }
594
595 for (i = fillorder1; i < order1; ++i)
596 {
597 cnt1 += order2 - j;
598 }
599 }
600 }
601 break;
602 default:
603 ASSERTL0(false, "basis is either not set up or not "
604 "hierarchicial");
605 }
606}
607
608void PrismExp::v_GetTracePhysMap(const int face, Array<OneD, int> &outarray)
609{
610 int nquad0 = m_base[0]->GetNumPoints();
611 int nquad1 = m_base[1]->GetNumPoints();
612 int nquad2 = m_base[2]->GetNumPoints();
613 int nq0 = 0;
614 int nq1 = 0;
615
616 switch (face)
617 {
618 case 0:
619 nq0 = nquad0;
620 nq1 = nquad1;
621 if (outarray.size() != nq0 * nq1)
622 {
623 outarray = Array<OneD, int>(nq0 * nq1);
624 }
625
626 // Directions A and B positive
627 for (int i = 0; i < nquad0 * nquad1; ++i)
628 {
629 outarray[i] = i;
630 }
631 break;
632 case 1:
633
634 nq0 = nquad0;
635 nq1 = nquad2;
636 if (outarray.size() != nq0 * nq1)
637 {
638 outarray = Array<OneD, int>(nq0 * nq1);
639 }
640
641 // Direction A and B positive
642 for (int k = 0; k < nquad2; k++)
643 {
644 for (int i = 0; i < nquad0; ++i)
645 {
646 outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
647 }
648 }
649
650 break;
651 case 2:
652
653 nq0 = nquad1;
654 nq1 = nquad2;
655 if (outarray.size() != nq0 * nq1)
656 {
657 outarray = Array<OneD, int>(nq0 * nq1);
658 }
659
660 // Directions A and B positive
661 for (int j = 0; j < nquad1 * nquad2; ++j)
662 {
663 outarray[j] = nquad0 - 1 + j * nquad0;
664 }
665 break;
666 case 3:
667 nq0 = nquad0;
668 nq1 = nquad2;
669 if (outarray.size() != nq0 * nq1)
670 {
671 outarray = Array<OneD, int>(nq0 * nq1);
672 }
673
674 // Direction A and B positive
675 for (int k = 0; k < nquad2; k++)
676 {
677 for (int i = 0; i < nquad0; ++i)
678 {
679 outarray[k * nquad0 + i] =
680 nquad0 * (nquad1 - 1) + (nquad0 * nquad1 * k) + i;
681 }
682 }
683 break;
684 case 4:
685
686 nq0 = nquad1;
687 nq1 = nquad2;
688 if (outarray.size() != nq0 * nq1)
689 {
690 outarray = Array<OneD, int>(nq0 * nq1);
691 }
692
693 // Directions A and B positive
694 for (int j = 0; j < nquad1 * nquad2; ++j)
695 {
696 outarray[j] = j * nquad0;
697 }
698 break;
699 default:
700 ASSERTL0(false, "face value (> 4) is out of range");
701 break;
702 }
703}
704
705/** \brief Get the normals along specficied face
706 * Get the face normals interplated to a points0 x points 0
707 * type distribution
708 **/
710{
711 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
712 GetGeom()->GetMetricInfo();
713
715 for (int i = 0; i < ptsKeys.size(); ++i)
716 {
717 // Need at least 2 points for computing normals
718 if (ptsKeys[i].GetNumPoints() == 1)
719 {
720 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
721 ptsKeys[i] = pKey;
722 }
723 }
724
725 SpatialDomains::GeomType type = geomFactors->GetGtype();
727 geomFactors->GetDerivFactors(ptsKeys);
728 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
729
730 int nq0 = ptsKeys[0].GetNumPoints();
731 int nq1 = ptsKeys[1].GetNumPoints();
732 int nq2 = ptsKeys[2].GetNumPoints();
733 int nq01 = nq0 * nq1;
734 int nqtot;
735
736 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
737 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
738
739 // Number of quadrature points in face expansion.
740 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
741
742 int vCoordDim = GetCoordim();
743 int i;
744
747 for (i = 0; i < vCoordDim; ++i)
748 {
749 normal[i] = Array<OneD, NekDouble>(nq_face);
750 }
751
752 size_t nqb = nq_face;
753 size_t nbnd = face;
756
757 // Regular geometry case
758 if (type == SpatialDomains::eRegular ||
760 {
761 NekDouble fac;
762 // Set up normals
763 switch (face)
764 {
765 case 0:
766 {
767 for (i = 0; i < vCoordDim; ++i)
768 {
769 normal[i][0] = -df[3 * i + 2][0];
770 ;
771 }
772 break;
773 }
774 case 1:
775 {
776 for (i = 0; i < vCoordDim; ++i)
777 {
778 normal[i][0] = -df[3 * i + 1][0];
779 }
780 break;
781 }
782 case 2:
783 {
784 for (i = 0; i < vCoordDim; ++i)
785 {
786 normal[i][0] = df[3 * i][0] + df[3 * i + 2][0];
787 }
788 break;
789 }
790 case 3:
791 {
792 for (i = 0; i < vCoordDim; ++i)
793 {
794 normal[i][0] = df[3 * i + 1][0];
795 }
796 break;
797 }
798 case 4:
799 {
800 for (i = 0; i < vCoordDim; ++i)
801 {
802 normal[i][0] = -df[3 * i][0];
803 }
804 break;
805 }
806 default:
807 ASSERTL0(false, "face is out of range (face < 4)");
808 }
809
810 // Normalise resulting vector.
811 fac = 0.0;
812 for (i = 0; i < vCoordDim; ++i)
813 {
814 fac += normal[i][0] * normal[i][0];
815 }
816 fac = 1.0 / sqrt(fac);
817
818 Vmath::Fill(nqb, fac, length, 1);
819
820 for (i = 0; i < vCoordDim; ++i)
821 {
822 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
823 }
824 }
825 else
826 {
827 // Set up deformed normals.
828 int j, k;
829
830 // Determine number of quadrature points on the face of 3D elmt
831 if (face == 0)
832 {
833 nqtot = nq0 * nq1;
834 }
835 else if (face == 1 || face == 3)
836 {
837 nqtot = nq0 * nq2;
838 }
839 else
840 {
841 nqtot = nq1 * nq2;
842 }
843
846
847 Array<OneD, NekDouble> faceJac(nqtot);
848 Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
849
850 // Extract Jacobian along face and recover local derivatives
851 // (dx/dr) for polynomial interpolation by multiplying m_gmat by
852 // jacobian
853 switch (face)
854 {
855 case 0:
856 {
857 for (j = 0; j < nq01; ++j)
858 {
859 normals[j] = -df[2][j] * jac[j];
860 normals[nqtot + j] = -df[5][j] * jac[j];
861 normals[2 * nqtot + j] = -df[8][j] * jac[j];
862 faceJac[j] = jac[j];
863 }
864
865 points0 = ptsKeys[0];
866 points1 = ptsKeys[1];
867 break;
868 }
869
870 case 1:
871 {
872 for (j = 0; j < nq0; ++j)
873 {
874 for (k = 0; k < nq2; ++k)
875 {
876 int tmp = j + nq01 * k;
877 normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
878 normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
879 normals[2 * nqtot + j + k * nq0] =
880 -df[7][tmp] * jac[tmp];
881 faceJac[j + k * nq0] = jac[tmp];
882 }
883 }
884
885 points0 = ptsKeys[0];
886 points1 = ptsKeys[2];
887 break;
888 }
889
890 case 2:
891 {
892 for (j = 0; j < nq1; ++j)
893 {
894 for (k = 0; k < nq2; ++k)
895 {
896 int tmp = nq0 - 1 + nq0 * j + nq01 * k;
897 normals[j + k * nq1] =
898 (df[0][tmp] + df[2][tmp]) * jac[tmp];
899 normals[nqtot + j + k * nq1] =
900 (df[3][tmp] + df[5][tmp]) * jac[tmp];
901 normals[2 * nqtot + j + k * nq1] =
902 (df[6][tmp] + df[8][tmp]) * jac[tmp];
903 faceJac[j + k * nq1] = jac[tmp];
904 }
905 }
906
907 points0 = ptsKeys[1];
908 points1 = ptsKeys[2];
909 break;
910 }
911
912 case 3:
913 {
914 for (j = 0; j < nq0; ++j)
915 {
916 for (k = 0; k < nq2; ++k)
917 {
918 int tmp = nq0 * (nq1 - 1) + j + nq01 * k;
919 normals[j + k * nq0] = df[1][tmp] * jac[tmp];
920 normals[nqtot + j + k * nq0] = df[4][tmp] * jac[tmp];
921 normals[2 * nqtot + j + k * nq0] =
922 df[7][tmp] * jac[tmp];
923 faceJac[j + k * nq0] = jac[tmp];
924 }
925 }
926
927 points0 = ptsKeys[0];
928 points1 = ptsKeys[2];
929 break;
930 }
931
932 case 4:
933 {
934 for (j = 0; j < nq1; ++j)
935 {
936 for (k = 0; k < nq2; ++k)
937 {
938 int tmp = j * nq0 + nq01 * k;
939 normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
940 normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
941 normals[2 * nqtot + j + k * nq1] =
942 -df[6][tmp] * jac[tmp];
943 faceJac[j + k * nq1] = jac[tmp];
944 }
945 }
946
947 points0 = ptsKeys[1];
948 points1 = ptsKeys[2];
949 break;
950 }
951
952 default:
953 ASSERTL0(false, "face is out of range (face < 4)");
954 }
955
956 Array<OneD, NekDouble> work(nq_face, 0.0);
957 // Interpolate Jacobian and invert
958 LibUtilities::Interp2D(points0, points1, faceJac,
959 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
960 work);
961 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
962
963 // Interpolate normal and multiply by inverse Jacobian.
964 for (i = 0; i < vCoordDim; ++i)
965 {
966 LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
967 tobasis0.GetPointsKey(),
968 tobasis1.GetPointsKey(), &normal[i][0]);
969 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
970 }
971
972 // Normalise to obtain unit normals.
973 Vmath::Zero(nq_face, work, 1);
974 for (i = 0; i < GetCoordim(); ++i)
975 {
976 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
977 }
978
979 Vmath::Vsqrt(nq_face, work, 1, work, 1);
980 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
981
982 Vmath::Vcopy(nqb, work, 1, length, 1);
983
984 for (i = 0; i < GetCoordim(); ++i)
985 {
986 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
987 }
988 }
989}
990
992 Array<OneD, NekDouble> &outarray,
993 const StdRegions::StdMatrixKey &mkey)
994{
995 StdExpansion::MassMatrixOp_MatFree(inarray, outarray, mkey);
996}
997
999 Array<OneD, NekDouble> &outarray,
1000 const StdRegions::StdMatrixKey &mkey)
1001{
1002 PrismExp::LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
1003}
1004
1005void PrismExp::v_LaplacianMatrixOp(const int k1, const int k2,
1006 const Array<OneD, const NekDouble> &inarray,
1007 Array<OneD, NekDouble> &outarray,
1008 const StdRegions::StdMatrixKey &mkey)
1009{
1010 StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
1011}
1012
1014 Array<OneD, NekDouble> &outarray,
1015 const StdRegions::StdMatrixKey &mkey)
1016{
1017 PrismExp::v_HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
1018}
1019
1021 const StdRegions::StdMatrixKey &mkey)
1022{
1023 int nq = GetTotPoints();
1024
1025 // Calculate sqrt of the Jacobian
1027 Array<OneD, NekDouble> sqrt_jac(nq);
1028 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1029 {
1030 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1031 }
1032 else
1033 {
1034 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1035 }
1036
1037 // Multiply array by sqrt(Jac)
1038 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1039
1040 // Apply std region filter
1041 StdPrismExp::v_SVVLaplacianFilter(array, mkey);
1042
1043 // Divide by sqrt(Jac)
1044 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1045}
1046
1047//---------------------------------------
1048// Matrix creation functions
1049//---------------------------------------
1050
1052{
1053 DNekMatSharedPtr returnval;
1054
1055 switch (mkey.GetMatrixType())
1056 {
1064 returnval = Expansion3D::v_GenMatrix(mkey);
1065 break;
1066 default:
1067 returnval = StdPrismExp::v_GenMatrix(mkey);
1068 break;
1069 }
1070
1071 return returnval;
1072}
1073
1075 const StdRegions::StdMatrixKey &mkey)
1076{
1077 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1078 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1079 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1082
1083 return tmp->GetStdMatrix(mkey);
1084}
1085
1087{
1088 return m_matrixManager[mkey];
1089}
1090
1092{
1093 m_matrixManager.DeleteObject(mkey);
1094}
1095
1097 const MatrixKey &mkey)
1098{
1099 return m_staticCondMatrixManager[mkey];
1100}
1101
1103{
1104 m_staticCondMatrixManager.DeleteObject(mkey);
1105}
1106
1107/**
1108 * @brief Calculate the Laplacian multiplication in a matrix-free
1109 * manner.
1110 *
1111 * This function is the kernel of the Laplacian matrix-free operator,
1112 * and is used in #v_HelmholtzMatrixOp_MatFree to determine the effect
1113 * of the Helmholtz operator in a similar fashion.
1114 *
1115 * The majority of the calculation is precisely the same as in the
1116 * hexahedral expansion; however the collapsed co-ordinate system must
1117 * be taken into account when constructing the geometric factors. How
1118 * this is done is detailed more exactly in the tetrahedral expansion.
1119 * On entry to this function, the input #inarray must be in its
1120 * backwards-transformed state (i.e. \f$\mathbf{u} =
1121 * \mathbf{B}\hat{\mathbf{u}}\f$). The output is in coefficient space.
1122 *
1123 * @see %TetExp::v_HelmholtzMatrixOp_MatFree
1124 */
1126 const Array<OneD, const NekDouble> &inarray,
1128{
1129 int nquad0 = m_base[0]->GetNumPoints();
1130 int nquad1 = m_base[1]->GetNumPoints();
1131 int nquad2 = m_base[2]->GetNumPoints();
1132 int nqtot = nquad0 * nquad1 * nquad2;
1133 int i;
1134
1135 // Set up temporary storage.
1136 Array<OneD, NekDouble> alloc(11 * nqtot, 0.0);
1137 Array<OneD, NekDouble> wsp1(alloc); // TensorDeriv 1
1138 Array<OneD, NekDouble> wsp2(alloc + 1 * nqtot); // TensorDeriv 2
1139 Array<OneD, NekDouble> wsp3(alloc + 2 * nqtot); // TensorDeriv 3
1140 Array<OneD, NekDouble> g0(alloc + 3 * nqtot); // g0
1141 Array<OneD, NekDouble> g1(alloc + 4 * nqtot); // g1
1142 Array<OneD, NekDouble> g2(alloc + 5 * nqtot); // g2
1143 Array<OneD, NekDouble> g3(alloc + 6 * nqtot); // g3
1144 Array<OneD, NekDouble> g4(alloc + 7 * nqtot); // g4
1145 Array<OneD, NekDouble> g5(alloc + 8 * nqtot); // g5
1146 Array<OneD, NekDouble> h0(alloc + 3 * nqtot); // h0 == g0
1147 Array<OneD, NekDouble> h1(alloc + 6 * nqtot); // h1 == g3
1148 Array<OneD, NekDouble> wsp4(alloc + 4 * nqtot); // wsp4 == g1
1149 Array<OneD, NekDouble> wsp5(alloc + 5 * nqtot); // wsp5 == g2
1150 Array<OneD, NekDouble> wsp6(alloc + 8 * nqtot); // wsp6 == g5
1151 Array<OneD, NekDouble> wsp7(alloc + 3 * nqtot); // wsp7 == g0
1152 Array<OneD, NekDouble> wsp8(alloc + 9 * nqtot); // wsp8
1153 Array<OneD, NekDouble> wsp9(alloc + 10 * nqtot); // wsp9
1154
1155 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1156 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1157 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1158 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1159 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1160 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1161
1162 // Step 1. LAPLACIAN MATRIX OPERATION
1163 // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
1164 // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
1165 // wsp3 = du_dxi3 = D_xi3 * wsp0 = D_xi3 * u
1166 StdExpansion3D::PhysTensorDeriv(inarray, wsp1, wsp2, wsp3);
1167
1169 m_metricinfo->GetDerivFactors(GetPointsKeys());
1170 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1171 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1172
1173 // Step 2. Calculate the metric terms of the collapsed
1174 // coordinate transformation (Spencer's book P152)
1175 for (i = 0; i < nquad2; ++i)
1176 {
1177 Vmath::Fill(nquad0 * nquad1, 2.0 / (1.0 - z2[i]),
1178 &h0[0] + i * nquad0 * nquad1, 1);
1179 Vmath::Fill(nquad0 * nquad1, 2.0 / (1.0 - z2[i]),
1180 &h1[0] + i * nquad0 * nquad1, 1);
1181 }
1182 for (i = 0; i < nquad0; i++)
1183 {
1184 Blas::Dscal(nquad1 * nquad2, 0.5 * (1 + z0[i]), &h1[0] + i, nquad0);
1185 }
1186
1187 // Step 3. Construct combined metric terms for physical space to
1188 // collapsed coordinate system. Order of construction optimised
1189 // to minimise temporary storage
1190 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1191 {
1192 // wsp4 = d eta_1/d x_1
1193 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1,
1194 &wsp4[0], 1);
1195 // wsp5 = d eta_2/d x_1
1196 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1,
1197 &wsp5[0], 1);
1198 // wsp6 = d eta_3/d x_1d
1199 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1,
1200 &wsp6[0], 1);
1201
1202 // g0 (overwrites h0)
1203 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1204 1, &g0[0], 1);
1205 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1206
1207 // g3 (overwrites h1)
1208 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &wsp4[0], 1, &df[4][0], 1, &wsp5[0],
1209 1, &g3[0], 1);
1210 Vmath::Vvtvp(nqtot, &df[7][0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1211
1212 // g4
1213 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1214 1, &g4[0], 1);
1215 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1216
1217 // Overwrite wsp4/5/6 with g1/2/5
1218 // g1
1219 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &df[1][0], 1, &df[4][0], 1,
1220 &df[4][0], 1, &g1[0], 1);
1221 Vmath::Vvtvp(nqtot, &df[7][0], 1, &df[7][0], 1, &g1[0], 1, &g1[0], 1);
1222
1223 // g2
1224 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1225 &df[5][0], 1, &g2[0], 1);
1226 Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1227
1228 // g5
1229 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &df[2][0], 1, &df[4][0], 1,
1230 &df[5][0], 1, &g5[0], 1);
1231 Vmath::Vvtvp(nqtot, &df[7][0], 1, &df[8][0], 1, &g5[0], 1, &g5[0], 1);
1232 }
1233 else
1234 {
1235 // wsp4 = d eta_1/d x_1
1236 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1,
1237 &wsp4[0], 1);
1238 // wsp5 = d eta_2/d x_1
1239 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1,
1240 &wsp5[0], 1);
1241 // wsp6 = d eta_3/d x_1
1242 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1,
1243 &wsp6[0], 1);
1244
1245 // g0 (overwrites h0)
1246 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1247 1, &g0[0], 1);
1248 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g0[0], 1, &g0[0], 1);
1249
1250 // g3 (overwrites h1)
1251 Vmath::Svtsvtp(nqtot, df[1][0], &wsp4[0], 1, df[4][0], &wsp5[0], 1,
1252 &g3[0], 1);
1253 Vmath::Svtvp(nqtot, df[7][0], &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1254
1255 // g4
1256 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1257 &g4[0], 1);
1258 Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g4[0], 1, &g4[0], 1);
1259
1260 // Overwrite wsp4/5/6 with g1/2/5
1261 // g1
1262 Vmath::Fill(nqtot,
1263 df[1][0] * df[1][0] + df[4][0] * df[4][0] +
1264 df[7][0] * df[7][0],
1265 &g1[0], 1);
1266
1267 // g2
1268 Vmath::Fill(nqtot,
1269 df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1270 df[8][0] * df[8][0],
1271 &g2[0], 1);
1272
1273 // g5
1274 Vmath::Fill(nqtot,
1275 df[1][0] * df[2][0] + df[4][0] * df[5][0] +
1276 df[7][0] * df[8][0],
1277 &g5[0], 1);
1278 }
1279 // Compute component derivatives into wsp7, 8, 9 (wsp7 overwrites
1280 // g0).
1281 Vmath::Vvtvvtp(nqtot, &g0[0], 1, &wsp1[0], 1, &g3[0], 1, &wsp2[0], 1,
1282 &wsp7[0], 1);
1283 Vmath::Vvtvp(nqtot, &g4[0], 1, &wsp3[0], 1, &wsp7[0], 1, &wsp7[0], 1);
1284 Vmath::Vvtvvtp(nqtot, &g1[0], 1, &wsp2[0], 1, &g3[0], 1, &wsp1[0], 1,
1285 &wsp8[0], 1);
1286 Vmath::Vvtvp(nqtot, &g5[0], 1, &wsp3[0], 1, &wsp8[0], 1, &wsp8[0], 1);
1287 Vmath::Vvtvvtp(nqtot, &g2[0], 1, &wsp3[0], 1, &g4[0], 1, &wsp1[0], 1,
1288 &wsp9[0], 1);
1289 Vmath::Vvtvp(nqtot, &g5[0], 1, &wsp2[0], 1, &wsp9[0], 1, &wsp9[0], 1);
1290
1291 // Step 4.
1292 // Multiply by quadrature metric
1293 MultiplyByQuadratureMetric(wsp7, wsp7);
1294 MultiplyByQuadratureMetric(wsp8, wsp8);
1295 MultiplyByQuadratureMetric(wsp9, wsp9);
1296
1297 // Perform inner product w.r.t derivative bases.
1298 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp7, wsp1, wsp, false,
1299 true, true);
1300 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp8, wsp2, wsp, true,
1301 false, true);
1302 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp9, outarray, wsp,
1303 true, true, false);
1304
1305 // Step 5.
1306 // Sum contributions from wsp1, wsp2 and outarray.
1307 Vmath::Vadd(m_ncoeffs, wsp1.get(), 1, outarray.get(), 1, outarray.get(), 1);
1308 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1309}
1310
1312 bool oldstandard)
1313{
1314 boost::ignore_unused(oldstandard);
1315
1316 int np0 = m_base[0]->GetNumPoints();
1317 int np1 = m_base[1]->GetNumPoints();
1318 int np2 = m_base[2]->GetNumPoints();
1319 int np = max(np0, max(np1, np2));
1320 Array<OneD, int> prismpt(6);
1321 bool standard = true;
1322
1323 int vid0 = m_geom->GetVid(0);
1324 int vid1 = m_geom->GetVid(1);
1325 int vid2 = m_geom->GetVid(4);
1326 int rotate = 0;
1327
1328 // sort out prism rotation according to
1329 if ((vid2 < vid1) && (vid2 < vid0)) // top triangle vertex is lowest id
1330 {
1331 rotate = 0;
1332 if (vid0 > vid1)
1333 {
1334 standard = false; // reverse base direction
1335 }
1336 }
1337 else if ((vid1 < vid2) && (vid1 < vid0))
1338 {
1339 rotate = 1;
1340 if (vid2 > vid0)
1341 {
1342 standard = false; // reverse base direction
1343 }
1344 }
1345 else if ((vid0 < vid2) && (vid0 < vid1))
1346 {
1347 rotate = 2;
1348 if (vid1 > vid2)
1349 {
1350 standard = false; // reverse base direction
1351 }
1352 }
1353
1354 conn = Array<OneD, int>(12 * (np - 1) * (np - 1) * (np - 1));
1355
1356 int row = 0;
1357 int rowp1 = 0;
1358 int plane = 0;
1359 int row1 = 0;
1360 int row1p1 = 0;
1361 int planep1 = 0;
1362 int cnt = 0;
1363
1364 Array<OneD, int> rot(3);
1365
1366 rot[0] = (0 + rotate) % 3;
1367 rot[1] = (1 + rotate) % 3;
1368 rot[2] = (2 + rotate) % 3;
1369
1370 // lower diagonal along 1-3 on base
1371 for (int i = 0; i < np - 1; ++i)
1372 {
1373 planep1 += (np - i) * np;
1374 row = 0; // current plane row offset
1375 rowp1 = 0; // current plane row plus one offset
1376 row1 = 0; // next plane row offset
1377 row1p1 = 0; // nex plane row plus one offset
1378 if (standard == false)
1379 {
1380 for (int j = 0; j < np - 1; ++j)
1381 {
1382 rowp1 += np - i;
1383 row1p1 += np - i - 1;
1384 for (int k = 0; k < np - i - 2; ++k)
1385 {
1386 // bottom prism block
1387 prismpt[rot[0]] = plane + row + k;
1388 prismpt[rot[1]] = plane + row + k + 1;
1389 prismpt[rot[2]] = planep1 + row1 + k;
1390
1391 prismpt[3 + rot[0]] = plane + rowp1 + k;
1392 prismpt[3 + rot[1]] = plane + rowp1 + k + 1;
1393 prismpt[3 + rot[2]] = planep1 + row1p1 + k;
1394
1395 conn[cnt++] = prismpt[0];
1396 conn[cnt++] = prismpt[1];
1397 conn[cnt++] = prismpt[3];
1398 conn[cnt++] = prismpt[2];
1399
1400 conn[cnt++] = prismpt[5];
1401 conn[cnt++] = prismpt[2];
1402 conn[cnt++] = prismpt[3];
1403 conn[cnt++] = prismpt[4];
1404
1405 conn[cnt++] = prismpt[3];
1406 conn[cnt++] = prismpt[1];
1407 conn[cnt++] = prismpt[4];
1408 conn[cnt++] = prismpt[2];
1409
1410 // upper prism block.
1411 prismpt[rot[0]] = planep1 + row1 + k + 1;
1412 prismpt[rot[1]] = planep1 + row1 + k;
1413 prismpt[rot[2]] = plane + row + k + 1;
1414
1415 prismpt[3 + rot[0]] = planep1 + row1p1 + k + 1;
1416 prismpt[3 + rot[1]] = planep1 + row1p1 + k;
1417 prismpt[3 + rot[2]] = plane + rowp1 + k + 1;
1418
1419 conn[cnt++] = prismpt[0];
1420 conn[cnt++] = prismpt[1];
1421 conn[cnt++] = prismpt[2];
1422 conn[cnt++] = prismpt[5];
1423
1424 conn[cnt++] = prismpt[5];
1425 conn[cnt++] = prismpt[0];
1426 conn[cnt++] = prismpt[4];
1427 conn[cnt++] = prismpt[1];
1428
1429 conn[cnt++] = prismpt[3];
1430 conn[cnt++] = prismpt[4];
1431 conn[cnt++] = prismpt[0];
1432 conn[cnt++] = prismpt[5];
1433 }
1434
1435 // bottom prism block
1436 prismpt[rot[0]] = plane + row + np - i - 2;
1437 prismpt[rot[1]] = plane + row + np - i - 1;
1438 prismpt[rot[2]] = planep1 + row1 + np - i - 2;
1439
1440 prismpt[3 + rot[0]] = plane + rowp1 + np - i - 2;
1441 prismpt[3 + rot[1]] = plane + rowp1 + np - i - 1;
1442 prismpt[3 + rot[2]] = planep1 + row1p1 + np - i - 2;
1443
1444 conn[cnt++] = prismpt[0];
1445 conn[cnt++] = prismpt[1];
1446 conn[cnt++] = prismpt[3];
1447 conn[cnt++] = prismpt[2];
1448
1449 conn[cnt++] = prismpt[5];
1450 conn[cnt++] = prismpt[2];
1451 conn[cnt++] = prismpt[3];
1452 conn[cnt++] = prismpt[4];
1453
1454 conn[cnt++] = prismpt[3];
1455 conn[cnt++] = prismpt[1];
1456 conn[cnt++] = prismpt[4];
1457 conn[cnt++] = prismpt[2];
1458
1459 row += np - i;
1460 row1 += np - i - 1;
1461 }
1462 }
1463 else
1464 { // lower diagonal along 0-4 on base
1465 for (int j = 0; j < np - 1; ++j)
1466 {
1467 rowp1 += np - i;
1468 row1p1 += np - i - 1;
1469 for (int k = 0; k < np - i - 2; ++k)
1470 {
1471 // bottom prism block
1472 prismpt[rot[0]] = plane + row + k;
1473 prismpt[rot[1]] = plane + row + k + 1;
1474 prismpt[rot[2]] = planep1 + row1 + k;
1475
1476 prismpt[3 + rot[0]] = plane + rowp1 + k;
1477 prismpt[3 + rot[1]] = plane + rowp1 + k + 1;
1478 prismpt[3 + rot[2]] = planep1 + row1p1 + k;
1479
1480 conn[cnt++] = prismpt[0];
1481 conn[cnt++] = prismpt[1];
1482 conn[cnt++] = prismpt[4];
1483 conn[cnt++] = prismpt[2];
1484
1485 conn[cnt++] = prismpt[4];
1486 conn[cnt++] = prismpt[3];
1487 conn[cnt++] = prismpt[0];
1488 conn[cnt++] = prismpt[2];
1489
1490 conn[cnt++] = prismpt[3];
1491 conn[cnt++] = prismpt[4];
1492 conn[cnt++] = prismpt[5];
1493 conn[cnt++] = prismpt[2];
1494
1495 // upper prism block.
1496 prismpt[rot[0]] = planep1 + row1 + k + 1;
1497 prismpt[rot[1]] = planep1 + row1 + k;
1498 prismpt[rot[2]] = plane + row + k + 1;
1499
1500 prismpt[3 + rot[0]] = planep1 + row1p1 + k + 1;
1501 prismpt[3 + rot[1]] = planep1 + row1p1 + k;
1502 prismpt[3 + rot[2]] = plane + rowp1 + k + 1;
1503
1504 conn[cnt++] = prismpt[0];
1505 conn[cnt++] = prismpt[2];
1506 conn[cnt++] = prismpt[1];
1507 conn[cnt++] = prismpt[5];
1508
1509 conn[cnt++] = prismpt[3];
1510 conn[cnt++] = prismpt[5];
1511 conn[cnt++] = prismpt[0];
1512 conn[cnt++] = prismpt[1];
1513
1514 conn[cnt++] = prismpt[5];
1515 conn[cnt++] = prismpt[3];
1516 conn[cnt++] = prismpt[4];
1517 conn[cnt++] = prismpt[1];
1518 }
1519
1520 // bottom prism block
1521 prismpt[rot[0]] = plane + row + np - i - 2;
1522 prismpt[rot[1]] = plane + row + np - i - 1;
1523 prismpt[rot[2]] = planep1 + row1 + np - i - 2;
1524
1525 prismpt[3 + rot[0]] = plane + rowp1 + np - i - 2;
1526 prismpt[3 + rot[1]] = plane + rowp1 + np - i - 1;
1527 prismpt[3 + rot[2]] = planep1 + row1p1 + np - i - 2;
1528
1529 conn[cnt++] = prismpt[0];
1530 conn[cnt++] = prismpt[1];
1531 conn[cnt++] = prismpt[4];
1532 conn[cnt++] = prismpt[2];
1533
1534 conn[cnt++] = prismpt[4];
1535 conn[cnt++] = prismpt[3];
1536 conn[cnt++] = prismpt[0];
1537 conn[cnt++] = prismpt[2];
1538
1539 conn[cnt++] = prismpt[3];
1540 conn[cnt++] = prismpt[4];
1541 conn[cnt++] = prismpt[5];
1542 conn[cnt++] = prismpt[2];
1543
1544 row += np - i;
1545 row1 += np - i - 1;
1546 }
1547 }
1548 plane += (np - i) * np;
1549 }
1550}
1551
1552/** @brief: This method gets all of the factors which are
1553 required as part of the Gradient Jump Penalty
1554 stabilisation and involves the product of the normal and
1555 geometric factors along the element trace.
1556*/
1558 Array<OneD, Array<OneD, NekDouble>> &d0factors,
1559 Array<OneD, Array<OneD, NekDouble>> &d1factors,
1560 Array<OneD, Array<OneD, NekDouble>> &d2factors)
1561{
1562 int nquad0 = GetNumPoints(0);
1563 int nquad1 = GetNumPoints(1);
1564 int nquad2 = GetNumPoints(2);
1565
1567 m_metricinfo->GetDerivFactors(GetPointsKeys());
1568
1569 if (d0factors.size() != 5)
1570 {
1571 d0factors = Array<OneD, Array<OneD, NekDouble>>(5);
1572 d1factors = Array<OneD, Array<OneD, NekDouble>>(5);
1573 d2factors = Array<OneD, Array<OneD, NekDouble>>(5);
1574 }
1575
1576 if (d0factors[0].size() != nquad0 * nquad1)
1577 {
1578 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1579 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1580 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1581 }
1582
1583 if (d0factors[1].size() != nquad0 * nquad2)
1584 {
1585 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1586 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1587 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1588 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1589 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1590 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1591 }
1592
1593 if (d0factors[2].size() != nquad1 * nquad2)
1594 {
1595 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1596 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1597 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1598 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1599 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1600 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1601 }
1602
1603 // Outwards normals
1605 GetTraceNormal(0);
1607 GetTraceNormal(1);
1609 GetTraceNormal(2);
1611 GetTraceNormal(3);
1613 GetTraceNormal(4);
1614
1615 int ncoords = normal_0.size();
1616
1617 // first gather together standard cartesian inner products
1618 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1619 {
1620 // face 0
1621 for (int i = 0; i < nquad0 * nquad1; ++i)
1622 {
1623 d0factors[0][i] = df[0][i] * normal_0[0][i];
1624 d1factors[0][i] = df[1][i] * normal_0[0][i];
1625 d2factors[0][i] = df[2][i] * normal_0[0][i];
1626 }
1627
1628 for (int n = 1; n < ncoords; ++n)
1629 {
1630 for (int i = 0; i < nquad0 * nquad1; ++i)
1631 {
1632 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1633 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1634 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1635 }
1636 }
1637
1638 // faces 1 and 3
1639 for (int j = 0; j < nquad2; ++j)
1640 {
1641 for (int i = 0; i < nquad0; ++i)
1642 {
1643 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1644 normal_1[0][j * nquad0 + i];
1645 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1646 normal_1[0][j * nquad0 + i];
1647 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1648 normal_1[0][j * nquad0 + i];
1649
1650 d0factors[3][j * nquad0 + i] =
1651 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1652 normal_3[0][j * nquad0 + i];
1653 d1factors[3][j * nquad0 + i] =
1654 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1655 normal_3[0][j * nquad0 + i];
1656 d2factors[3][j * nquad0 + i] =
1657 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1658 normal_3[0][j * nquad0 + i];
1659 }
1660 }
1661
1662 for (int n = 1; n < ncoords; ++n)
1663 {
1664 for (int j = 0; j < nquad2; ++j)
1665 {
1666 for (int i = 0; i < nquad0; ++i)
1667 {
1668 d0factors[1][j * nquad0 + i] +=
1669 df[3 * n][j * nquad0 * nquad1 + i] *
1670 normal_1[n][j * nquad0 + i];
1671 d1factors[1][j * nquad0 + i] +=
1672 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1673 normal_1[n][j * nquad0 + i];
1674 d2factors[1][j * nquad0 + i] +=
1675 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1676 normal_1[n][j * nquad0 + i];
1677
1678 d0factors[3][j * nquad0 + i] +=
1679 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1680 normal_3[n][j * nquad0 + i];
1681 d1factors[3][j * nquad0 + i] +=
1682 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1683 normal_3[n][j * nquad0 + i];
1684 d2factors[3][j * nquad0 + i] +=
1685 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1686 normal_3[n][j * nquad0 + i];
1687 }
1688 }
1689 }
1690
1691 // faces 2 and 4
1692 for (int j = 0; j < nquad2; ++j)
1693 {
1694 for (int i = 0; i < nquad1; ++i)
1695 {
1696 d0factors[2][j * nquad1 + i] =
1697 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1698 normal_2[0][j * nquad1 + i];
1699 d1factors[2][j * nquad1 + i] =
1700 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1701 normal_2[0][j * nquad1 + i];
1702 d2factors[2][j * nquad1 + i] =
1703 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1704 normal_2[0][j * nquad1 + i];
1705
1706 d0factors[4][j * nquad1 + i] =
1707 df[0][j * nquad0 * nquad1 + i * nquad0] *
1708 normal_4[0][j * nquad1 + i];
1709 d1factors[4][j * nquad1 + i] =
1710 df[1][j * nquad0 * nquad1 + i * nquad0] *
1711 normal_4[0][j * nquad1 + i];
1712 d2factors[4][j * nquad1 + i] =
1713 df[2][j * nquad0 * nquad1 + i * nquad0] *
1714 normal_4[0][j * nquad1 + i];
1715 }
1716 }
1717
1718 for (int n = 1; n < ncoords; ++n)
1719 {
1720 for (int j = 0; j < nquad2; ++j)
1721 {
1722 for (int i = 0; i < nquad1; ++i)
1723 {
1724 d0factors[2][j * nquad1 + i] +=
1725 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1726 normal_2[n][j * nquad1 + i];
1727 d1factors[2][j * nquad1 + i] +=
1728 df[3 * n + 1]
1729 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1730 normal_2[n][j * nquad1 + i];
1731 d2factors[2][j * nquad1 + i] +=
1732 df[3 * n + 2]
1733 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1734 normal_2[n][j * nquad1 + i];
1735
1736 d0factors[4][j * nquad1 + i] +=
1737 df[3 * n][j * nquad0 * nquad1 + i * nquad0] *
1738 normal_4[n][j * nquad1 + i];
1739 d1factors[4][j * nquad1 + i] +=
1740 df[3 * n + 1][j * nquad0 * nquad1 + i * nquad0] *
1741 normal_4[n][j * nquad1 + i];
1742 d2factors[4][j * nquad1 + i] +=
1743 df[3 * n + 2][j * nquad0 * nquad1 + i * nquad0] *
1744 normal_4[n][j * nquad1 + i];
1745 }
1746 }
1747 }
1748 }
1749 else
1750 {
1751 // Face 0
1752 for (int i = 0; i < nquad0 * nquad1; ++i)
1753 {
1754 d0factors[0][i] = df[0][0] * normal_0[0][i];
1755 d1factors[0][i] = df[1][0] * normal_0[0][i];
1756 d2factors[0][i] = df[2][0] * normal_0[0][i];
1757 }
1758
1759 for (int n = 1; n < ncoords; ++n)
1760 {
1761 for (int i = 0; i < nquad0 * nquad1; ++i)
1762 {
1763 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1764 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1765 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1766 }
1767 }
1768
1769 // faces 1 and 3
1770 for (int i = 0; i < nquad0 * nquad2; ++i)
1771 {
1772 d0factors[1][i] = df[0][0] * normal_1[0][i];
1773 d0factors[3][i] = df[0][0] * normal_3[0][i];
1774
1775 d1factors[1][i] = df[1][0] * normal_1[0][i];
1776 d1factors[3][i] = df[1][0] * normal_3[0][i];
1777
1778 d2factors[1][i] = df[2][0] * normal_1[0][i];
1779 d2factors[3][i] = df[2][0] * normal_3[0][i];
1780 }
1781
1782 for (int n = 1; n < ncoords; ++n)
1783 {
1784 for (int i = 0; i < nquad0 * nquad2; ++i)
1785 {
1786 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1787 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1788
1789 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1790 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1791
1792 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1793 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1794 }
1795 }
1796
1797 // faces 2 and 4
1798 for (int i = 0; i < nquad1 * nquad2; ++i)
1799 {
1800 d0factors[2][i] = df[0][0] * normal_2[0][i];
1801 d0factors[4][i] = df[0][0] * normal_4[0][i];
1802
1803 d1factors[2][i] = df[1][0] * normal_2[0][i];
1804 d1factors[4][i] = df[1][0] * normal_4[0][i];
1805
1806 d2factors[2][i] = df[2][0] * normal_2[0][i];
1807 d2factors[4][i] = df[2][0] * normal_4[0][i];
1808 }
1809
1810 for (int n = 1; n < ncoords; ++n)
1811 {
1812 for (int i = 0; i < nquad1 * nquad2; ++i)
1813 {
1814 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1815 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1816
1817 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1818 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1819
1820 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1821 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1822 }
1823 }
1824 }
1825}
1826} // namespace LocalRegions
1827} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
Describes the specification for a Basis.
Definition: Basis.h:47
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:122
PointsKey GetPointsKey() const
Return distribution of points.
Definition: Basis.h:139
Defines a specification for a set of points.
Definition: Points.h:55
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:278
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:288
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:171
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:275
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:535
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:276
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:255
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: PrismExp.cpp:1074
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
Definition: PrismExp.cpp:1051
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const override
Definition: PrismExp.cpp:462
virtual void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: PrismExp.cpp:998
void v_DropLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: PrismExp.cpp:1102
virtual void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: PrismExp.cpp:1013
virtual void v_GetSimplexEquiSpacedConnectivity(Array< OneD, int > &conn, bool standard=true) override
Definition: PrismExp.cpp:1311
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition: PrismExp.cpp:265
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey) override
Definition: PrismExp.cpp:1086
void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculates the inner product .
Definition: PrismExp.cpp:331
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
Calculate the derivative of the physical points.
Definition: PrismExp.cpp:127
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PrismExp.h:202
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: PrismExp.cpp:271
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
Definition: PrismExp.cpp:549
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
Get the coordinates #coords at the local coordinates #Lcoords.
Definition: PrismExp.cpp:486
virtual void v_NormalTraceDerivFactors(Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors, Array< OneD, Array< OneD, NekDouble > > &d2factors) override
: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabili...
Definition: PrismExp.cpp:1557
virtual void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: PrismExp.cpp:382
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp(void) const override
Definition: PrismExp.cpp:469
void v_ComputeTraceNormal(const int face) override
Get the normals along specficied face Get the face normals interplated to a points0 x points 0 type d...
Definition: PrismExp.cpp:709
virtual void v_MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
Definition: PrismExp.cpp:991
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
Calculate the Laplacian multiplication in a matrix-free manner.
Definition: PrismExp.cpp:1125
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: PrismExp.cpp:338
virtual NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
Definition: PrismExp.cpp:515
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Forward transform from physical quadrature space stored in inarray and evaluate the expansion coeffic...
Definition: PrismExp.cpp:213
PrismExp(const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::PrismGeomSharedPtr &geom)
Constructor using BasisKey class for quadrature points and order definition.
Definition: PrismExp.cpp:49
virtual void v_GetTracePhysMap(const int face, Array< OneD, int > &outarray) override
Definition: PrismExp.cpp:608
void v_DropLocMatrix(const MatrixKey &mkey) override
Definition: PrismExp.cpp:1091
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
Definition: PrismExp.cpp:523
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
Definition: PrismExp.cpp:1020
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PrismExp.h:200
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey) override
Definition: PrismExp.cpp:1096
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray) override
Integrate the physical point list inarray over prismatic region and return the value.
Definition: PrismExp.cpp:100
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: PrismExp.cpp:503
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162
const LibUtilities::PointsKeyVector GetPointsKeys() const
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:305
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:373
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:211
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:224
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
Array< OneD, LibUtilities::BasisSharedPtr > m_base
MatrixType GetMatrixType() const
Definition: StdMatrixKey.h:87
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:151
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:137
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:103
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:51
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
std::shared_ptr< PrismGeom > PrismGeomSharedPtr
Definition: PrismGeom.h:85
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
std::shared_ptr< StdPrismExp > StdPrismExpSharedPtr
Definition: StdPrismExp.h:239
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
std::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:79
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:529
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
svtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:746
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.cpp:319
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:687
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294