Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion3D Class Referenceabstract

#include <StdExpansion3D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion3D:
[legend]

Public Member Functions

 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D () override
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
virtual void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 

Private Member Functions

virtual int v_GetShapeDimension () const override final
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 51 of file StdExpansion3D.h.

Constructor & Destructor Documentation

◆ StdExpansion3D() [1/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( )

Definition at line 49 of file StdExpansion3D.cpp.

50{
51}

◆ StdExpansion3D() [2/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc 
)

Definition at line 53 of file StdExpansion3D.cpp.

56 : StdExpansion(numcoeffs, 3, Ba, Bb, Bc)
57{
58}
StdExpansion()
Default Constructor.

◆ StdExpansion3D() [3/3]

Nektar::StdRegions::StdExpansion3D::StdExpansion3D ( const StdExpansion3D T)

Definition at line 60 of file StdExpansion3D.cpp.

60 : StdExpansion(T)
61{
62}

◆ ~StdExpansion3D()

Nektar::StdRegions::StdExpansion3D::~StdExpansion3D ( )
overridevirtual

Definition at line 64 of file StdExpansion3D.cpp.

65{
66}

Member Function Documentation

◆ BaryTensorDeriv()

NekDouble Nektar::StdRegions::StdExpansion3D::BaryTensorDeriv ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
inlineprotected

Performs tensor product evaluation in 3D to evaluate the physical and derivative values in each direction at input coordinate

Parameters
coordusing input physical values at quadrature points
inarray.Returns via reference the derivatives.
coordGlobal coordinate
inarrayPhys values
out_d0Return by reference parameter for 0th derivative
out_d1Return by reference parameter for 1st derivative
out_d2Return by reference parameter for 2nd derivative
Returns
Physical value at
Parameters
coord

Definition at line 232 of file StdExpansion3D.h.

236 {
237 const int nq0 = m_base[0]->GetNumPoints();
238 const int nq1 = m_base[1]->GetNumPoints();
239 const int nq2 = m_base[2]->GetNumPoints();
240
241 const NekDouble *ptr = &inarray[0];
242 Array<OneD, NekDouble> deriv0(nq1 * nq2, 0.0);
243 Array<OneD, NekDouble> phys0(nq1 * nq2, 0.0);
244 Array<OneD, NekDouble> deriv0phys1(nq1, 0.0);
245 Array<OneD, NekDouble> phys0deriv1(nq1, 0.0);
246 Array<OneD, NekDouble> phys0phys1(nq1, 0.0);
247
248 for (int j = 0; j < nq1 * nq2; ++j, ptr += nq0)
249 {
250 phys0[j] =
251 StdExpansion::BaryEvaluate<0, true>(coord[0], ptr, deriv0[j]);
252 }
253
254 for (int j = 0; j < nq2; ++j)
255 {
256 deriv0phys1[j] = StdExpansion::BaryEvaluate<1, false>(
257 coord[1], &deriv0[j * nq1]);
258 }
259 firstOrderDerivs[0] =
260 StdExpansion::BaryEvaluate<2, false>(coord[2], &deriv0phys1[0]);
261
262 for (int j = 0; j < nq2; ++j)
263 {
264 phys0phys1[j] = StdExpansion::BaryEvaluate<1, true>(
265 coord[1], &phys0[j * nq1], phys0deriv1[j]);
266 }
267 firstOrderDerivs[1] =
268 StdExpansion::BaryEvaluate<2, false>(coord[2], &phys0deriv1[0]);
269
270 return StdExpansion::BaryEvaluate<2, true>(coord[2], &phys0phys1[0],
271 firstOrderDerivs[2]);
272 }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
double NekDouble

References Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_PhysEvaluate(), Nektar::StdRegions::StdPrismExp::v_PhysEvaluate(), Nektar::StdRegions::StdPyrExp::v_PhysEvaluate(), and Nektar::StdRegions::StdTetExp::v_PhysEvaluate().

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 110 of file StdExpansion3D.cpp.

117{
118 v_BwdTrans_SumFacKernel(base0, base1, base2, inarray, outarray, wsp,
119 doCheckCollDir0, doCheckCollDir1, doCheckCollDir2);
120}
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdHexExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdPrismExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTetExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
inline

Definition at line 145 of file StdExpansion3D.h.

149 {
150 v_GetEdgeInteriorToElementMap(tid, maparray, signarray, traceOrient);
151 }
virtual void v_GetEdgeInteriorToElementMap(const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)

References v_GetEdgeInteriorToElementMap().

Referenced by Nektar::LocalRegions::Expansion3D::GetEdgeInverseBoundaryMap(), and Nektar::LocalRegions::Expansion3D::GetInverseBoundaryMaps().

◆ GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::GetEdgeNcoeffs ( const int  i) const
inline

This function returns the number of expansion coefficients belonging to the i-th edge.

This function is a wrapper around the virtual function v_GetEdgeNcoeffs()

Parameters
ispecifies which edge
Returns
returns the number of expansion coefficients belonging to the i-th edge

Definition at line 140 of file StdExpansion3D.h.

141 {
142 return v_GetEdgeNcoeffs(i);
143 }
virtual int v_GetEdgeNcoeffs(const int i) const

References v_GetEdgeNcoeffs().

Referenced by Nektar::LocalRegions::Expansion3D::GetEdgeInverseBoundaryMap(), Nektar::LocalRegions::Expansion3D::GetInverseBoundaryMaps(), Nektar::LocalRegions::Expansion3D::v_BuildInverseTransformationMatrix(), Nektar::MultiRegions::PreconditionerLowEnergy::v_BuildPreconditioner(), Nektar::LocalRegions::Expansion3D::v_BuildTransformationMatrix(), and Nektar::StdRegions::StdHexExp::v_GetEdgeInteriorToElementMap().

◆ GetNedges()

int Nektar::StdRegions::StdExpansion3D::GetNedges ( ) const
inline

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)

Definition at line 122 of file StdExpansion3D.cpp.

129{
130 v_IProductWRTBase_SumFacKernel(base0, base1, base2, inarray, outarray, wsp,
131 doCheckCollDir0, doCheckCollDir1,
132 doCheckCollDir2);
133}
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0

References v_IProductWRTBase_SumFacKernel().

Referenced by v_GenStdMatBwdDeriv(), v_HelmholtzMatrixOp_MatFree(), Nektar::StdRegions::StdHexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTBase_SumFac(), Nektar::LocalRegions::TetExp::v_IProductWRTDerivBase(), Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdHexExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPrismExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdPyrExp::v_IProductWRTDerivBase_SumFac(), Nektar::StdRegions::StdTetExp::v_IProductWRTDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_IProductWRTDirectionalDerivBase_SumFac(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel(), and Nektar::LocalRegions::PrismExp::v_LaplacianMatrixOp_MatFree_Kernel().

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion3D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d1,
Array< OneD, NekDouble > &  outarray_d2,
Array< OneD, NekDouble > &  outarray_d3 
)

Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
  • \( \frac{d}{d\eta_3} \rightarrow {\bf D_2 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d1the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d1 as output of the function
outarray_d2the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d2 as output of the function
outarray_d3the resulting array of derivative in the \(\eta_3\) direction will be stored in outarray_d3 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Hexahedral} & -1 \leq \xi_1,\xi_2, \xi_3 \leq 1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2, \eta_3 = \xi_3 \\ \mbox{Tetrahedral} & -1 \leq \xi_1,\xi_2,\xi_3; \xi_1+\xi_2 +\xi_3 \leq -1 & -1 \leq \eta_1,\eta_2, \eta_3 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{-\xi_2 -\xi_3}-1, \eta_2 = \frac{2(1+\xi_2)}{1 - \xi_3}-1, \eta_3 = \xi_3 \\ \end{array} \)

Definition at line 68 of file StdExpansion3D.cpp.

71{
72 const int nquad0 = m_base[0]->GetNumPoints();
73 const int nquad1 = m_base[1]->GetNumPoints();
74 const int nquad2 = m_base[2]->GetNumPoints();
75
76 Array<OneD, NekDouble> wsp(nquad0 * nquad1 * nquad2);
77
78 // copy inarray to wsp in case inarray is used as outarray
79 Vmath::Vcopy(nquad0 * nquad1 * nquad2, &inarray[0], 1, &wsp[0], 1);
80
81 if (out_dx.size() > 0)
82 {
83 NekDouble *D0 = &((m_base[0]->GetD())->GetPtr())[0];
84
85 Blas::Dgemm('N', 'N', nquad0, nquad1 * nquad2, nquad0, 1.0, D0, nquad0,
86 &wsp[0], nquad0, 0.0, &out_dx[0], nquad0);
87 }
88
89 if (out_dy.size() > 0)
90 {
91 NekDouble *D1 = &((m_base[1]->GetD())->GetPtr())[0];
92 for (int j = 0; j < nquad2; ++j)
93 {
94 Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0,
95 &wsp[j * nquad0 * nquad1], nquad0, D1, nquad1, 0.0,
96 &out_dy[j * nquad0 * nquad1], nquad0);
97 }
98 }
99
100 if (out_dz.size() > 0)
101 {
102 NekDouble *D2 = &((m_base[2]->GetD())->GetPtr())[0];
103
104 Blas::Dgemm('N', 'T', nquad0 * nquad1, nquad2, nquad2, 1.0, &wsp[0],
105 nquad0 * nquad1, D2, nquad2, 0.0, &out_dz[0],
106 nquad0 * nquad1);
107 }
108}
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:385
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdHexExp::v_PhysDeriv(), Nektar::StdRegions::StdPrismExp::v_PhysDeriv(), Nektar::StdRegions::StdPyrExp::v_PhysDeriv(), and Nektar::StdRegions::StdTetExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion3D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 135 of file StdExpansion3D.cpp.

136{
137 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
138
139 const int nq0 = m_base[0]->GetNumPoints();
140 const int nq1 = m_base[1]->GetNumPoints();
141 const int nq2 = m_base[2]->GetNumPoints();
142 const int nq = nq0 * nq1 * nq2;
143 const int nm0 = m_base[0]->GetNumModes();
144 const int nm1 = m_base[1]->GetNumModes();
145
146 Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1),
147 0.0);
148 Array<OneD, NekDouble> tmp1(alloc); // Quad metric
149 Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
150 Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
151 Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
152 Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
153 Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
154 switch (dir)
155 {
156 case 0:
157 for (int i = 0; i < nq; i++)
158 {
159 tmp2[i] = 1.0;
161 m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
162 m_base[2]->GetBdata(), tmp2, tmp5, wsp, false, true, true);
163
164 tmp2[i] = 0.0;
165
166 for (int j = 0; j < m_ncoeffs; j++)
167 {
168 (*mat)(j, i) = tmp5[j];
169 }
170 }
171 break;
172 case 1:
173 for (int i = 0; i < nq; i++)
174 {
175 tmp2[i] = 1.0;
177 m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
178 m_base[2]->GetBdata(), tmp2, tmp5, wsp, true, false, true);
179
180 tmp2[i] = 0.0;
181
182 for (int j = 0; j < m_ncoeffs; j++)
183 {
184 (*mat)(j, i) = tmp5[j];
185 }
186 }
187 break;
188 case 2:
189 for (int i = 0; i < nq; i++)
190 {
191 tmp2[i] = 1.0;
193 m_base[0]->GetBdata(), m_base[1]->GetBdata(),
194 m_base[2]->GetDbdata(), tmp2, tmp5, wsp, true, true, false);
195 tmp2[i] = 0.0;
196
197 for (int j = 0; j < m_ncoeffs; j++)
198 {
199 (*mat)(j, i) = tmp5[j];
200 }
201 }
202 break;
203 default:
204 NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
205 break;
206 }
207}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetEdgeInteriorToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetEdgeInteriorToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient = eForwards 
)
protectedvirtual

Reimplemented in Nektar::StdRegions::StdHexExp, Nektar::StdRegions::StdPrismExp, Nektar::StdRegions::StdPyrExp, and Nektar::StdRegions::StdTetExp.

Definition at line 424 of file StdExpansion3D.cpp.

427{
428 boost::ignore_unused(tid, maparray, signarray, traceOrient);
429 NEKERROR(ErrorUtil::efatal, "Method does not exist for this shape");
430}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeInteriorToElementMap().

◆ v_GetEdgeNcoeffs()

int Nektar::StdRegions::StdExpansion3D::v_GetEdgeNcoeffs ( const int  i) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdHexExp, Nektar::StdRegions::StdPrismExp, Nektar::StdRegions::StdPyrExp, and Nektar::StdRegions::StdTetExp.

Definition at line 417 of file StdExpansion3D.cpp.

418{
419 boost::ignore_unused(i);
420 NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
421 return 0;
422}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetEdgeNcoeffs().

◆ v_GetNedges()

int Nektar::StdRegions::StdExpansion3D::v_GetNedges ( void  ) const
protectedvirtual

Reimplemented in Nektar::StdRegions::StdHexExp, Nektar::StdRegions::StdPrismExp, Nektar::StdRegions::StdPyrExp, and Nektar::StdRegions::StdTetExp.

Definition at line 411 of file StdExpansion3D.cpp.

412{
413 NEKERROR(ErrorUtil::efatal, "This function is not valid or not defined");
414 return 0;
415}

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetNedges().

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion3D::v_GetShapeDimension ( ) const
inlinefinaloverrideprivatevirtual

Implements Nektar::StdRegions::StdExpansion.

Definition at line 287 of file StdExpansion3D.h.

288 {
289 return 3;
290 }

◆ v_GetTraceToElementMap()

void Nektar::StdRegions::StdExpansion3D::v_GetTraceToElementMap ( const int  tid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  traceOrient,
int  P,
int  Q 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 432 of file StdExpansion3D.cpp.

437{
438 Array<OneD, unsigned int> map1, map2;
439 GetTraceCoeffMap(tid, map1);
440 GetElmtTraceToTraceMap(tid, map2, signarray, traceOrient, P, Q);
441
442 if (maparray.size() != map2.size())
443 {
444 maparray = Array<OneD, unsigned int>(map2.size());
445 }
446
447 for (int i = 0; i < map2.size(); ++i)
448 {
449 maparray[i] = map1[map2[i]];
450 }
451}
void GetElmtTraceToTraceMap(const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
Definition: StdExpansion.h:705
void GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray)
Definition: StdExpansion.h:699
@ P
Monomial polynomials .
Definition: BasisType.h:64

References Nektar::StdRegions::StdExpansion::GetElmtTraceToTraceMap(), Nektar::StdRegions::StdExpansion::GetTraceCoeffMap(), and Nektar::LibUtilities::P.

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 339 of file StdExpansion3D.cpp.

342{
343 if (mkey.GetNVarCoeff() == 0 &&
344 !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00))
345 {
346 using std::max;
347
348 int nquad0 = m_base[0]->GetNumPoints();
349 int nquad1 = m_base[1]->GetNumPoints();
350 int nquad2 = m_base[2]->GetNumPoints();
351 int nmodes0 = m_base[0]->GetNumModes();
352 int nmodes1 = m_base[1]->GetNumModes();
353 int nmodes2 = m_base[2]->GetNumModes();
354 int wspsize = max(nquad0 * nmodes2 * (nmodes1 + nquad1),
355 nquad0 * nquad1 * (nquad2 + nmodes0) +
356 nmodes0 * nmodes1 * nquad2);
357
358 NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
359
360 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
361 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
362 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
363 Array<OneD, NekDouble> wsp0(8 * wspsize);
364 Array<OneD, NekDouble> wsp1(wsp0 + 1 * wspsize);
365 Array<OneD, NekDouble> wsp2(wsp0 + 2 * wspsize);
366
367 if (!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
368 m_base[2]->Collocation()))
369 {
370 // MASS MATRIX OPERATION
371 // The following is being calculated:
372 // wsp0 = B * u_hat = u
373 // wsp1 = W * wsp0
374 // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
375 BwdTrans_SumFacKernel(base0, base1, base2, inarray, wsp0, wsp2,
376 true, true, true);
377 MultiplyByQuadratureMetric(wsp0, wsp1);
378 IProductWRTBase_SumFacKernel(base0, base1, base2, wsp1, outarray,
379 wsp2, true, true, true);
380 LaplacianMatrixOp_MatFree_Kernel(wsp0, wsp1, wsp2);
381 }
382 else
383 {
384 // specialised implementation for the classical spectral
385 // element method
386 MultiplyByQuadratureMetric(inarray, outarray);
387 LaplacianMatrixOp_MatFree_Kernel(inarray, wsp1, wsp2);
388 }
389
390 // outarray = lambda * outarray + wsp1
391 // = (lambda * M + L ) * u_hat
392 Vmath::Svtvp(m_ncoeffs, lambda, &outarray[0], 1, &wsp1[0], 1,
393 &outarray[0], 1);
394 }
395 else
396 {
398 mkey);
399 }
400}
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdHexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp(), Nektar::LocalRegions::PrismExp::v_HelmholtzMatrixOp(), and Nektar::LocalRegions::TetExp::v_HelmholtzMatrixOp().

◆ v_Integral()

NekDouble Nektar::StdRegions::StdExpansion3D::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::HexExp, Nektar::LocalRegions::PrismExp, Nektar::LocalRegions::PyrExp, and Nektar::LocalRegions::TetExp.

Definition at line 402 of file StdExpansion3D.cpp.

404{
405 const int nqtot = GetTotPoints();
406 Array<OneD, NekDouble> tmp(GetTotPoints());
408 return Vmath::Vsum(nqtot, tmp, 1);
409}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
virtual void v_MultiplyByStdQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:890

References Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::v_MultiplyByStdQuadratureMetric(), and Vmath::Vsum().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion3D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  base2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1,
bool  doCheckCollDir2 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual
Parameters
inarrayInput coefficients.
outputOutput coefficients.
mkeyMatrix key

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 296 of file StdExpansion3D.cpp.

299{
300 if (mkey.GetNVarCoeff() == 0 &&
301 !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
302 !mkey.ConstFactorExists(eFactorSVVCutoffRatio))
303 {
304 // This implementation is only valid when there are no
305 // coefficients associated to the Laplacian operator
306 int nqtot = GetTotPoints();
307
308 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
309 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
310 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
311
312 // Allocate temporary storage
313 Array<OneD, NekDouble> wsp0(7 * nqtot);
314 Array<OneD, NekDouble> wsp1(wsp0 + nqtot);
315
316 if (!(m_base[0]->Collocation() && m_base[1]->Collocation() &&
317 m_base[2]->Collocation()))
318 {
319 // LAPLACIAN MATRIX OPERATION
320 // wsp0 = u = B * u_hat
321 // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
322 // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
323 BwdTrans_SumFacKernel(base0, base1, base2, inarray, wsp0, wsp1,
324 true, true, true);
325 LaplacianMatrixOp_MatFree_Kernel(wsp0, outarray, wsp1);
326 }
327 else
328 {
329 LaplacianMatrixOp_MatFree_Kernel(inarray, outarray, wsp1);
330 }
331 }
332 else
333 {
335 mkey);
336 }
337}
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdHexExp::v_LaplacianMatrixOp(), Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp(), and Nektar::LocalRegions::TetExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate() [1/3]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::PrismExp, Nektar::LocalRegions::PyrExp, Nektar::LocalRegions::HexExp, and Nektar::LocalRegions::TetExp.

Definition at line 209 of file StdExpansion3D.cpp.

212{
213 Array<OneD, NekDouble> eta(3);
214
215 WARNINGL2(coords[0] >= -1 - NekConstants::kNekZeroTol, "coord[0] < -1");
216 WARNINGL2(coords[0] <= 1 + NekConstants::kNekZeroTol, "coord[0] > 1");
217 WARNINGL2(coords[1] >= -1 - NekConstants::kNekZeroTol, "coord[1] < -1");
218 WARNINGL2(coords[1] <= 1 + NekConstants::kNekZeroTol, "coord[1] > 1");
219 WARNINGL2(coords[2] >= -1 - NekConstants::kNekZeroTol, "coord[2] < -1");
220 WARNINGL2(coords[2] <= 1 + NekConstants::kNekZeroTol, "coord[2] > 1");
221
222 // Obtain local collapsed corodinate from Cartesian coordinate.
223 LocCoordToLocCollapsed(coords, eta);
224
225 const int nq0 = m_base[0]->GetNumPoints();
226 const int nq1 = m_base[1]->GetNumPoints();
227 const int nq2 = m_base[2]->GetNumPoints();
228
229 Array<OneD, NekDouble> wsp1(nq1 * nq2), wsp2(nq2);
230
231 // Construct the 2D square...
232 const NekDouble *ptr = &physvals[0];
233 for (int i = 0; i < nq1 * nq2; ++i, ptr += nq0)
234 {
235 wsp1[i] = StdExpansion::BaryEvaluate<0>(eta[0], ptr);
236 }
237
238 for (int i = 0; i < nq2; ++i)
239 {
240 wsp2[i] = StdExpansion::BaryEvaluate<1>(eta[1], &wsp1[i * nq1]);
241 }
242
243 return StdExpansion::BaryEvaluate<2>(eta[2], &wsp2[0]);
244}
#define WARNINGL2(condition, msg)
Definition: ErrorUtil.hpp:273
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), Nektar::StdRegions::StdExpansion::m_base, and WARNINGL2.

Referenced by Nektar::StdRegions::StdNodalPrismExp::GenNBasisTransMatrix(), and Nektar::StdRegions::StdNodalTetExp::GenNBasisTransMatrix().

◆ v_PhysEvaluate() [2/3]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 246 of file StdExpansion3D.cpp.

249{
250 NekDouble value;
251
252 int Qx = m_base[0]->GetNumPoints();
253 int Qy = m_base[1]->GetNumPoints();
254 int Qz = m_base[2]->GetNumPoints();
255
256 Array<OneD, NekDouble> sumFactorization_qr =
257 Array<OneD, NekDouble>(Qy * Qz);
258 Array<OneD, NekDouble> sumFactorization_r = Array<OneD, NekDouble>(Qz);
259
260 // Lagrangian interpolation matrix
261 NekDouble *interpolatingNodes = 0;
262
263 // Interpolate first coordinate direction
264 interpolatingNodes = &I[0]->GetPtr()[0];
265
266 Blas::Dgemv('T', Qx, Qy * Qz, 1.0, &physvals[0], Qx, &interpolatingNodes[0],
267 1, 0.0, &sumFactorization_qr[0], 1);
268
269 // Interpolate in second coordinate direction
270 interpolatingNodes = &I[1]->GetPtr()[0];
271
272 Blas::Dgemv('T', Qy, Qz, 1.0, &sumFactorization_qr[0], Qy,
273 &interpolatingNodes[0], 1, 0.0, &sumFactorization_r[0], 1);
274
275 // Interpolate in third coordinate direction
276 interpolatingNodes = &I[2]->GetPtr()[0];
277 value = Blas::Ddot(Qz, interpolatingNodes, 1, &sumFactorization_r[0], 1);
278
279 return value;
280}
static void Dgemv(const char &trans, const int &m, const int &n, const double &alpha, const double *a, const int &lda, const double *x, const int &incx, const double &beta, double *y, const int &incy)
BLAS level 2: Matrix vector multiply y = alpha A x plus beta y where A[m x n].
Definition: Blas.hpp:213
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:165

References Blas::Ddot(), Blas::Dgemv(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_PhysEvaluate() [3/3]

NekDouble Nektar::StdRegions::StdExpansion3D::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual