Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::HexExp Class Reference

#include <HexExp.h>

Inheritance diagram for Nektar::LocalRegions::HexExp:
[legend]

Public Member Functions

 HexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::HexGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 HexExp (const HexExp &T)
 Copy Constructor. More...
 
virtual ~HexExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdHexExp
 StdHexExp ()
 
 StdHexExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdHexExp (const StdHexExp &T)
 
virtual ~StdHexExp () override
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D () override
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
virtual ~Expansion3D () override=default
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1) override
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray) override
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetTraceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
void SetTraceExp (const int traceid, ExpansionSharedPtr &f)
 
ExpansionSharedPtr GetTraceExp (const int traceid)
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
void AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
ExpansionSharedPtr GetLeftAdjacentElementExp () const
 
ExpansionSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementTrace () const
 
int GetRightAdjacentElementTrace () const
 
void SetAdjacentElementExp (int traceid, ExpansionSharedPtr &e)
 
StdRegions::Orientation GetTraceOrient (int trace)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights. More...
 
void GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=StdRegions::eNoOrientation)
 
void GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
void ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1)
 
const NormalVectorGetTraceNormal (const int id)
 
void ComputeTraceNormal (const int id)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
void SetUpPhysNormals (const int trace)
 
void AddRobinMassMatrix (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
void AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
const Array< OneD, const NekDouble > & GetElmtBndNormDirElmtLen (const int nbnd) const
 
void StdDerivBaseOnTraceMat (Array< OneD, DNekMatSharedPtr > &DerivMat)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over region. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the derivative of the physical points in a single direction. More...
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out) override
 Physical derivative along a direction vector. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the inner product of inarray with respect to the elements basis. More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \). More...
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
 
virtual void v_IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
 Retrieves the physical coordinates of a given set of reference coordinates. More...
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual LibUtilities::ShapeType v_DetShapeType () const override
 Return the region shape using the enum-list of ShapeType. More...
 
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const override
 
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const override
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
 
virtual void v_GetTracePhysMap (const int face, Array< OneD, int > &outarray) override
 
void v_ComputeTraceNormal (const int face) override
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey) override
 
void v_DropLocMatrix (const MatrixKey &mkey) override
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey) override
 
virtual void v_ComputeLaplacianMetric () override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdHexExp
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Differentiation Methods. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multbyweights=true) override
 
void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
virtual void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual int v_GetNverts () const override
 
virtual int v_GetNedges () const override
 
virtual int v_GetNtraces () const override
 
virtual LibUtilities::ShapeType v_DetShapeType () const override
 
virtual int v_NumBndryCoeffs () const override
 
virtual int v_NumDGBndryCoeffs () const override
 
virtual int v_GetTraceNcoeffs (const int i) const override
 
virtual int v_GetTraceIntNcoeffs (const int i) const override
 
virtual int v_GetTraceNumPoints (const int i) const override
 
virtual LibUtilities::PointsKey v_GetTracePointsKey (const int i, const int j) const override
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
virtual const LibUtilities::BasisKey v_GetTraceBasisKey (const int i, const int k) const override
 
virtual bool v_IsBoundaryInteriorExpansion () const override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_x, Array< OneD, NekDouble > &coords_y, Array< OneD, NekDouble > &coords_z) override
 
virtual void v_GetTraceNumModes (const int fid, int &numModes0, int &numModes1, Orientation faceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
virtual int v_GetEdgeNcoeffs (const int i) const override
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
virtual void v_GetTraceCoeffMap (const unsigned int fid, Array< OneD, unsigned int > &maparray) override
 
virtual void v_GetElmtTraceToTraceMap (const unsigned int fid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation faceOrient, int P, int Q) override
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
void v_GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
virtual DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true) override
 
void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey) override
 
void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
void v_ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
virtual void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d) override
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) override
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat) override
 
virtual StdRegions::Orientation v_GetTraceOrient (int face) override
 
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
 Extract the physical values along face face from inarray into outarray following the local face orientation and point distribution defined by defined in FaceExp. More...
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp) override
 
void GetPhysFaceVarCoeffsFromElement (const int face, ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType) override
 
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &transformationmatrix) override
 Build inverse and inverse transposed transformation matrix: \(\mathbf{R^{-1}}\) and \(\mathbf{R^{-T}}\). More...
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd) override
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p) override
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
Array< OneD, NekDoubleGetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual int v_GetCoordim () const override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual StdRegions::Orientation v_GetTraceOrient (int trace)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1=-1)
 
virtual void v_ComputeTraceNormal (const int id)
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals ()
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int id)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp)
 

Private Member Functions

virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors) override
 : This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace. More...
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion3D
std::map< int, NormalVectorm_faceNormals
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_indexMapManager
 
std::map< int, ExpansionWeakPtrm_traceExp
 
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 
std::map< int, NormalVectorm_traceNormals
 
ExpansionWeakPtr m_elementLeft
 
ExpansionWeakPtr m_elementRight
 
int m_elementTraceLeft = -1
 
int m_elementTraceRight = -1
 
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
 the element length in each element boundary(Vertex, edge or face) normal direction calculated based on the local m_metricinfo times the standard element length (which is 2.0) More...
 

Detailed Description

Defines a hexahedral local expansion.

Definition at line 50 of file HexExp.h.

Constructor & Destructor Documentation

◆ HexExp() [1/2]

Nektar::LocalRegions::HexExp::HexExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::HexGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Parameters
BaBasis key for first coordinate.
BbBasis key for second coordinate.
BcBasis key for third coordinate.

Definition at line 59 of file HexExp.cpp.

63 : StdExpansion(Ba.GetNumModes() * Bb.GetNumModes() * Bc.GetNumModes(), 3,
64 Ba, Bb, Bc),
65 StdExpansion3D(Ba.GetNumModes() * Bb.GetNumModes() * Bc.GetNumModes(), Ba,
66 Bb, Bc),
67 StdHexExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
69 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
70 std::string("HexExpMatrix")),
72 this, std::placeholders::_1),
73 std::string("HexExpStaticCondMatrix"))
74{
75}
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:61
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: Expansion.cpp:277
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:47
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: HexExp.h:246
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: HexExp.h:248
StdExpansion()
Default Constructor.

◆ HexExp() [2/2]

Nektar::LocalRegions::HexExp::HexExp ( const HexExp T)

Copy Constructor.

Parameters
THexExp to copy.

Definition at line 82 of file HexExp.cpp.

84 Expansion3D(T), m_matrixManager(T.m_matrixManager),
85 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
86{
87}

◆ ~HexExp()

virtual Nektar::LocalRegions::HexExp::~HexExp ( )
overridevirtualdefault

Member Function Documentation

◆ v_AlignVectorToCollapsedDir()

void Nektar::LocalRegions::HexExp::v_AlignVectorToCollapsedDir ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 474 of file HexExp.cpp.

477{
478 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
479
480 const int nq0 = m_base[0]->GetNumPoints();
481 const int nq1 = m_base[1]->GetNumPoints();
482 const int nq2 = m_base[2]->GetNumPoints();
483 const int nq = nq0 * nq1 * nq2;
484
485 const Array<TwoD, const NekDouble> &df =
486 m_metricinfo->GetDerivFactors(GetPointsKeys());
487
488 Array<OneD, NekDouble> tmp1(nq); // Quad metric
489
490 Array<OneD, NekDouble> tmp2 = outarray[0]; // Dir1 metric
491 Array<OneD, NekDouble> tmp3 = outarray[1]; // Dir2 metric
492 Array<OneD, NekDouble> tmp4 = outarray[2];
493
494 Vmath::Vcopy(nq, inarray, 1, tmp1, 1); // Dir3 metric
495
496 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
497 {
498 Vmath::Vmul(nq, &df[3 * dir][0], 1, tmp1.get(), 1, tmp2.get(), 1);
499 Vmath::Vmul(nq, &df[3 * dir + 1][0], 1, tmp1.get(), 1, tmp3.get(), 1);
500 Vmath::Vmul(nq, &df[3 * dir + 2][0], 1, tmp1.get(), 1, tmp4.get(), 1);
501 }
502 else
503 {
504 Vmath::Smul(nq, df[3 * dir][0], tmp1.get(), 1, tmp2.get(), 1);
505 Vmath::Smul(nq, df[3 * dir + 1][0], tmp1.get(), 1, tmp3.get(), 1);
506 Vmath::Smul(nq, df[3 * dir + 2][0], tmp1.get(), 1, tmp4.get(), 1);
507 }
508}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:276
const LibUtilities::PointsKeyVector GetPointsKeys() const
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ eDeformed
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase_SumFac().

◆ v_ComputeLaplacianMetric()

void Nektar::LocalRegions::HexExp::v_ComputeLaplacianMetric ( )
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1428 of file HexExp.cpp.

1429{
1430 if (m_metrics.count(eMetricQuadrature) == 0)
1431 {
1433 }
1434
1435 const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1436 const unsigned int nqtot = GetTotPoints();
1437 const unsigned int dim = 3;
1438 const MetricType m[3][3] = {
1442
1443 for (unsigned int i = 0; i < dim; ++i)
1444 {
1445 for (unsigned int j = i; j < dim; ++j)
1446 {
1447 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1448 const Array<TwoD, const NekDouble> &gmat =
1449 m_metricinfo->GetGmat(GetPointsKeys());
1450 if (type == SpatialDomains::eDeformed)
1451 {
1452 Vmath::Vcopy(nqtot, &gmat[i * dim + j][0], 1,
1453 &m_metrics[m[i][j]][0], 1);
1454 }
1455 else
1456 {
1457 Vmath::Fill(nqtot, gmat[i * dim + j][0], &m_metrics[m[i][j]][0],
1458 1);
1459 }
1461 }
1462 }
1463}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
GeomType
Indicates the type of element geometry.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Vcopy().

◆ v_ComputeTraceNormal()

void Nektar::LocalRegions::HexExp::v_ComputeTraceNormal ( const int  face)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 882 of file HexExp.cpp.

883{
884 int i;
885 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
886 GetGeom()->GetMetricInfo();
887 SpatialDomains::GeomType type = geomFactors->GetGtype();
888
890 for (i = 0; i < ptsKeys.size(); ++i)
891 {
892 // Need at least 2 points for computing normals
893 if (ptsKeys[i].GetNumPoints() == 1)
894 {
895 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
896 ptsKeys[i] = pKey;
897 }
898 }
899
900 const Array<TwoD, const NekDouble> &df =
901 geomFactors->GetDerivFactors(ptsKeys);
902 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
903
904 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
905 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
906
907 // Number of quadrature points in face expansion.
908 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
909
910 int vCoordDim = GetCoordim();
911
912 m_traceNormals[face] = Array<OneD, Array<OneD, NekDouble>>(vCoordDim);
913 Array<OneD, Array<OneD, NekDouble>> &normal = m_traceNormals[face];
914 for (i = 0; i < vCoordDim; ++i)
915 {
916 normal[i] = Array<OneD, NekDouble>(nq_face);
917 }
918
919 size_t nqb = nq_face;
920 size_t nbnd = face;
921 m_elmtBndNormDirElmtLen[nbnd] = Array<OneD, NekDouble>{nqb, 0.0};
922 Array<OneD, NekDouble> &length = m_elmtBndNormDirElmtLen[nbnd];
923
924 // Regular geometry case
925 if ((type == SpatialDomains::eRegular) ||
927 {
928 NekDouble fac;
929 // Set up normals
930 switch (face)
931 {
932 case 0:
933 for (i = 0; i < vCoordDim; ++i)
934 {
935 normal[i][0] = -df[3 * i + 2][0];
936 }
937 break;
938 case 1:
939 for (i = 0; i < vCoordDim; ++i)
940 {
941 normal[i][0] = -df[3 * i + 1][0];
942 }
943 break;
944 case 2:
945 for (i = 0; i < vCoordDim; ++i)
946 {
947 normal[i][0] = df[3 * i][0];
948 }
949 break;
950 case 3:
951 for (i = 0; i < vCoordDim; ++i)
952 {
953 normal[i][0] = df[3 * i + 1][0];
954 }
955 break;
956 case 4:
957 for (i = 0; i < vCoordDim; ++i)
958 {
959 normal[i][0] = -df[3 * i][0];
960 }
961 break;
962 case 5:
963 for (i = 0; i < vCoordDim; ++i)
964 {
965 normal[i][0] = df[3 * i + 2][0];
966 }
967 break;
968 default:
969 ASSERTL0(false, "face is out of range (edge < 5)");
970 }
971
972 // normalise
973 fac = 0.0;
974 for (i = 0; i < vCoordDim; ++i)
975 {
976 fac += normal[i][0] * normal[i][0];
977 }
978 fac = 1.0 / sqrt(fac);
979
980 Vmath::Fill(nqb, fac, length, 1);
981 for (i = 0; i < vCoordDim; ++i)
982 {
983 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
984 }
985 }
986 else // Set up deformed normals
987 {
988 int j, k;
989
990 int nqe0 = ptsKeys[0].GetNumPoints();
991 int nqe1 = ptsKeys[1].GetNumPoints();
992 int nqe2 = ptsKeys[2].GetNumPoints();
993 int nqe01 = nqe0 * nqe1;
994 int nqe02 = nqe0 * nqe2;
995 int nqe12 = nqe1 * nqe2;
996
997 int nqe;
998 if (face == 0 || face == 5)
999 {
1000 nqe = nqe01;
1001 }
1002 else if (face == 1 || face == 3)
1003 {
1004 nqe = nqe02;
1005 }
1006 else
1007 {
1008 nqe = nqe12;
1009 }
1010
1011 LibUtilities::PointsKey points0;
1012 LibUtilities::PointsKey points1;
1013
1014 Array<OneD, NekDouble> faceJac(nqe);
1015 Array<OneD, NekDouble> normals(vCoordDim * nqe, 0.0);
1016
1017 // Extract Jacobian along face and recover local
1018 // derivates (dx/dr) for polynomial interpolation by
1019 // multiplying m_gmat by jacobian
1020 switch (face)
1021 {
1022 case 0:
1023 for (j = 0; j < nqe; ++j)
1024 {
1025 normals[j] = -df[2][j] * jac[j];
1026 normals[nqe + j] = -df[5][j] * jac[j];
1027 normals[2 * nqe + j] = -df[8][j] * jac[j];
1028 faceJac[j] = jac[j];
1029 }
1030
1031 points0 = ptsKeys[0];
1032 points1 = ptsKeys[1];
1033 break;
1034 case 1:
1035 for (j = 0; j < nqe0; ++j)
1036 {
1037 for (k = 0; k < nqe2; ++k)
1038 {
1039 int idx = j + nqe01 * k;
1040 normals[j + k * nqe0] = -df[1][idx] * jac[idx];
1041 normals[nqe + j + k * nqe0] = -df[4][idx] * jac[idx];
1042 normals[2 * nqe + j + k * nqe0] =
1043 -df[7][idx] * jac[idx];
1044 faceJac[j + k * nqe0] = jac[idx];
1045 }
1046 }
1047 points0 = ptsKeys[0];
1048 points1 = ptsKeys[2];
1049 break;
1050 case 2:
1051 for (j = 0; j < nqe1; ++j)
1052 {
1053 for (k = 0; k < nqe2; ++k)
1054 {
1055 int idx = nqe0 - 1 + nqe0 * j + nqe01 * k;
1056 normals[j + k * nqe1] = df[0][idx] * jac[idx];
1057 normals[nqe + j + k * nqe1] = df[3][idx] * jac[idx];
1058 normals[2 * nqe + j + k * nqe1] = df[6][idx] * jac[idx];
1059 faceJac[j + k * nqe1] = jac[idx];
1060 }
1061 }
1062 points0 = ptsKeys[1];
1063 points1 = ptsKeys[2];
1064 break;
1065 case 3:
1066 for (j = 0; j < nqe0; ++j)
1067 {
1068 for (k = 0; k < nqe2; ++k)
1069 {
1070 int idx = nqe0 * (nqe1 - 1) + j + nqe01 * k;
1071 normals[j + k * nqe0] = df[1][idx] * jac[idx];
1072 normals[nqe + j + k * nqe0] = df[4][idx] * jac[idx];
1073 normals[2 * nqe + j + k * nqe0] = df[7][idx] * jac[idx];
1074 faceJac[j + k * nqe0] = jac[idx];
1075 }
1076 }
1077 points0 = ptsKeys[0];
1078 points1 = ptsKeys[2];
1079 break;
1080 case 4:
1081 for (j = 0; j < nqe1; ++j)
1082 {
1083 for (k = 0; k < nqe2; ++k)
1084 {
1085 int idx = j * nqe0 + nqe01 * k;
1086 normals[j + k * nqe1] = -df[0][idx] * jac[idx];
1087 normals[nqe + j + k * nqe1] = -df[3][idx] * jac[idx];
1088 normals[2 * nqe + j + k * nqe1] =
1089 -df[6][idx] * jac[idx];
1090 faceJac[j + k * nqe1] = jac[idx];
1091 }
1092 }
1093 points0 = ptsKeys[1];
1094 points1 = ptsKeys[2];
1095 break;
1096 case 5:
1097 for (j = 0; j < nqe01; ++j)
1098 {
1099 int idx = j + nqe01 * (nqe2 - 1);
1100 normals[j] = df[2][idx] * jac[idx];
1101 normals[nqe + j] = df[5][idx] * jac[idx];
1102 normals[2 * nqe + j] = df[8][idx] * jac[idx];
1103 faceJac[j] = jac[idx];
1104 }
1105 points0 = ptsKeys[0];
1106 points1 = ptsKeys[1];
1107 break;
1108 default:
1109 ASSERTL0(false, "face is out of range (face < 5)");
1110 }
1111
1112 Array<OneD, NekDouble> work(nq_face, 0.0);
1113 // Interpolate Jacobian and invert
1114 LibUtilities::Interp2D(points0, points1, faceJac,
1115 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
1116 work);
1117
1118 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
1119
1120 // interpolate
1121 for (i = 0; i < GetCoordim(); ++i)
1122 {
1123 LibUtilities::Interp2D(points0, points1, &normals[i * nqe],
1124 tobasis0.GetPointsKey(),
1125 tobasis1.GetPointsKey(), &normal[i][0]);
1126 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
1127 }
1128
1129 // normalise normal vectors
1130 Vmath::Zero(nq_face, work, 1);
1131 for (i = 0; i < GetCoordim(); ++i)
1132 {
1133 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
1134 }
1135
1136 Vmath::Vsqrt(nq_face, work, 1, work, 1);
1137 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
1138
1139 Vmath::Vcopy(nqb, work, 1, length, 1);
1140
1141 for (i = 0; i < GetCoordim(); ++i)
1142 {
1143 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
1144 }
1145 }
1146}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:278
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:288
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:171
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:305
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:211
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:224
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:103
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:529
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.cpp:319
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetTraceBasisKey(), Nektar::LibUtilities::Interp2D(), Nektar::LocalRegions::Expansion::m_elmtBndNormDirElmtLen, Nektar::LocalRegions::Expansion::m_traceNormals, Vmath::Sdiv(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1323 of file HexExp.cpp.

1324{
1325 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1326 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1327 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1328
1331
1332 return tmp->GetStdMatrix(mkey);
1333}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< StdHexExp > StdHexExpSharedPtr
Definition: StdHexExp.h:255

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_DetShapeType()

LibUtilities::ShapeType Nektar::LocalRegions::HexExp::v_DetShapeType ( ) const
overrideprotectedvirtual

Return the region shape using the enum-list of ShapeType.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 659 of file HexExp.cpp.

660{
662}

References Nektar::LibUtilities::eHexahedron.

◆ v_DropLocMatrix()

void Nektar::LocalRegions::HexExp::v_DropLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1340 of file HexExp.cpp.

1341{
1342 m_matrixManager.DeleteObject(mkey);
1343}

References m_matrixManager.

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::HexExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1350 of file HexExp.cpp.

1351{
1352 m_staticCondMatrixManager.DeleteObject(mkey);
1353}

References m_staticCondMatrixManager.

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::HexExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 664 of file HexExp.cpp.

668{
669 int data_order0 = nummodes[mode_offset];
670 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
671 int data_order1 = nummodes[mode_offset + 1];
672 int order1 = m_base[1]->GetNumModes();
673 int fillorder1 = min(order1, data_order1);
674 int data_order2 = nummodes[mode_offset + 2];
675 int order2 = m_base[2]->GetNumModes();
676 int fillorder2 = min(order2, data_order2);
677
678 // Check if same basis
679 if (fromType[0] != m_base[0]->GetBasisType() ||
680 fromType[1] != m_base[1]->GetBasisType() ||
681 fromType[2] != m_base[2]->GetBasisType())
682 {
683 // Construct a hex with the appropriate basis type at our
684 // quadrature points, and one more to do a forwards
685 // transform. We can then copy the output to coeffs.
686 StdRegions::StdHexExp tmpHex(
687 LibUtilities::BasisKey(fromType[0], data_order0,
688 m_base[0]->GetPointsKey()),
689 LibUtilities::BasisKey(fromType[1], data_order1,
690 m_base[1]->GetPointsKey()),
691 LibUtilities::BasisKey(fromType[2], data_order2,
692 m_base[2]->GetPointsKey()));
693 StdRegions::StdHexExp tmpHex2(m_base[0]->GetBasisKey(),
694 m_base[1]->GetBasisKey(),
695 m_base[2]->GetBasisKey());
696
697 Array<OneD, const NekDouble> tmpData(tmpHex.GetNcoeffs(), data);
698 Array<OneD, NekDouble> tmpBwd(tmpHex2.GetTotPoints());
699 Array<OneD, NekDouble> tmpOut(tmpHex2.GetNcoeffs());
700
701 tmpHex.BwdTrans(tmpData, tmpBwd);
702 tmpHex2.FwdTrans(tmpBwd, tmpOut);
703 Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
704
705 return;
706 }
707
708 switch (m_base[0]->GetBasisType())
709 {
711 {
712 int i, j;
713 int cnt = 0;
714 int cnt1 = 0;
715
717 "Extraction routine not set up for this basis");
719 "Extraction routine not set up for this basis");
720
721 Vmath::Zero(m_ncoeffs, coeffs, 1);
722 for (j = 0; j < fillorder0; ++j)
723 {
724 for (i = 0; i < fillorder1; ++i)
725 {
726 Vmath::Vcopy(fillorder2, &data[cnt], 1, &coeffs[cnt1], 1);
727 cnt += data_order2;
728 cnt1 += order2;
729 }
730
731 // count out data for j iteration
732 for (i = fillorder1; i < data_order1; ++i)
733 {
734 cnt += data_order2;
735 }
736
737 for (i = fillorder1; i < order1; ++i)
738 {
739 cnt1 += order2;
740 }
741 }
742 break;
743 }
745 {
746 LibUtilities::PointsKey p0(nummodes[0],
748 LibUtilities::PointsKey p1(nummodes[1],
750 LibUtilities::PointsKey p2(nummodes[2],
752 LibUtilities::PointsKey t0(m_base[0]->GetNumModes(),
754 LibUtilities::PointsKey t1(m_base[1]->GetNumModes(),
756 LibUtilities::PointsKey t2(m_base[2]->GetNumModes(),
758 LibUtilities::Interp3D(p0, p1, p2, data, t0, t1, t2, coeffs);
759 }
760 break;
761 default:
762 ASSERTL0(false, "basis is either not set up or not "
763 "hierarchicial");
764 }
765}
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
Definition: Interp.cpp:164
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:53
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:58
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50

References ASSERTL0, ASSERTL1, Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LibUtilities::Interp3D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

◆ v_FwdTrans()

void Nektar::LocalRegions::HexExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->_coeffs.

Parameters
inarrayInput array
outarrayOutput array

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 299 of file HexExp.cpp.

301{
302 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
303 m_base[2]->Collocation())
304 {
305 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
306 }
307 else
308 {
309 IProductWRTBase(inarray, outarray);
310
311 // get Mass matrix inverse
312 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
313 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
314
315 // copy inarray in case inarray == outarray
316 DNekVec in(m_ncoeffs, outarray);
317 DNekVec out(m_ncoeffs, outarray, eWrapper);
318
319 out = (*matsys) * in;
320 }
321}
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:534
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:373
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:48

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::HexExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1301 of file HexExp.cpp.

1302{
1303 DNekMatSharedPtr returnval;
1304
1305 switch (mkey.GetMatrixType())
1306 {
1314 returnval = Expansion3D::v_GenMatrix(mkey);
1315 break;
1316 default:
1317 returnval = StdHexExp::v_GenMatrix(mkey);
1318 }
1319
1320 return returnval;
1321}
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

◆ v_GetCoord()

void Nektar::LocalRegions::HexExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
overrideprotectedvirtual

Retrieves the physical coordinates of a given set of reference coordinates.

Parameters
LcoordsLocal coordinates in reference space.
coordsCorresponding coordinates in physical space.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 630 of file HexExp.cpp.

632{
633 int i;
634
635 ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[0] <= 1.0 && Lcoords[1] >= -1.0 &&
636 Lcoords[1] <= 1.0 && Lcoords[2] >= -1.0 && Lcoords[2] <= 1.0,
637 "Local coordinates are not in region [-1,1]");
638
639 m_geom->FillGeom();
640
641 for (i = 0; i < m_geom->GetCoordim(); ++i)
642 {
643 coords[i] = m_geom->GetCoord(i, Lcoords);
644 }
645}
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:275

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_GetCoords()

void Nektar::LocalRegions::HexExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 647 of file HexExp.cpp.

650{
651 Expansion::v_GetCoords(coords_0, coords_1, coords_2);
652}
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:535

References Nektar::LocalRegions::Expansion::v_GetCoords().

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::HexExp::v_GetLinStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 610 of file HexExp.cpp.

611{
612 LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(), 2,
613 m_base[0]->GetPointsKey());
614 LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(), 2,
615 m_base[1]->GetPointsKey());
616 LibUtilities::BasisKey bkey2(m_base[2]->GetBasisType(), 2,
617 m_base[2]->GetPointsKey());
618
620 bkey2);
621}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1335 of file HexExp.cpp.

1336{
1337 return m_matrixManager[mkey];
1338}

References m_matrixManager.

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::HexExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1345 of file HexExp.cpp.

1346{
1347 return m_staticCondMatrixManager[mkey];
1348}

References m_staticCondMatrixManager.

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::HexExp::v_GetStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 603 of file HexExp.cpp.

604{
606 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
607 m_base[2]->GetBasisKey());
608}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePhysMap()

void Nektar::LocalRegions::HexExp::v_GetTracePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 767 of file HexExp.cpp.

768{
769 int nquad0 = m_base[0]->GetNumPoints();
770 int nquad1 = m_base[1]->GetNumPoints();
771 int nquad2 = m_base[2]->GetNumPoints();
772
773 int nq0 = 0;
774 int nq1 = 0;
775
776 switch (face)
777 {
778 case 0:
779 nq0 = nquad0;
780 nq1 = nquad1;
781
782 // Directions A and B positive
783 if (outarray.size() != nq0 * nq1)
784 {
785 outarray = Array<OneD, int>(nq0 * nq1);
786 }
787
788 for (int i = 0; i < nquad0 * nquad1; ++i)
789 {
790 outarray[i] = i;
791 }
792
793 break;
794 case 1:
795 nq0 = nquad0;
796 nq1 = nquad2;
797 // Direction A and B positive
798 if (outarray.size() != nq0 * nq1)
799 {
800 outarray = Array<OneD, int>(nq0 * nq1);
801 }
802
803 // Direction A and B positive
804 for (int k = 0; k < nquad2; k++)
805 {
806 for (int i = 0; i < nquad0; ++i)
807 {
808 outarray[k * nquad0 + i] = nquad0 * nquad1 * k + i;
809 }
810 }
811 break;
812 case 2:
813 nq0 = nquad1;
814 nq1 = nquad2;
815
816 // Direction A and B positive
817 if (outarray.size() != nq0 * nq1)
818 {
819 outarray = Array<OneD, int>(nq0 * nq1);
820 }
821
822 for (int i = 0; i < nquad1 * nquad2; i++)
823 {
824 outarray[i] = nquad0 - 1 + i * nquad0;
825 }
826 break;
827 case 3:
828 nq0 = nquad0;
829 nq1 = nquad2;
830
831 // Direction A and B positive
832 if (outarray.size() != nq0 * nq1)
833 {
834 outarray = Array<OneD, int>(nq0 * nq1);
835 }
836
837 for (int k = 0; k < nquad2; k++)
838 {
839 for (int i = 0; i < nquad0; i++)
840 {
841 outarray[k * nquad0 + i] =
842 (nquad0 * (nquad1 - 1)) + (k * nquad0 * nquad1) + i;
843 }
844 }
845 break;
846 case 4:
847 nq0 = nquad1;
848 nq1 = nquad2;
849
850 // Direction A and B positive
851 if (outarray.size() != nq0 * nq1)
852 {
853 outarray = Array<OneD, int>(nq0 * nq1);
854 }
855
856 for (int i = 0; i < nquad1 * nquad2; i++)
857 {
858 outarray[i] = i * nquad0;
859 }
860 break;
861 case 5:
862 nq0 = nquad0;
863 nq1 = nquad1;
864 // Directions A and B positive
865 if (outarray.size() != nq0 * nq1)
866 {
867 outarray = Array<OneD, int>(nq0 * nq1);
868 }
869
870 for (int i = 0; i < nquad0 * nquad1; i++)
871 {
872 outarray[i] = nquad0 * nquad1 * (nquad2 - 1) + i;
873 }
874
875 break;
876 default:
877 ASSERTL0(false, "face value (> 5) is out of range");
878 break;
879 }
880}

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_HelmholtzMatrixOp()

void Nektar::LocalRegions::HexExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1195 of file HexExp.cpp.

1198{
1199 HexExp::v_HelmholtzMatrixOp_MatFree(inarray, outarray, mkey);
1200}
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override

References Nektar::StdRegions::StdExpansion3D::v_HelmholtzMatrixOp_MatFree().

◆ v_Integral()

NekDouble Nektar::LocalRegions::HexExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrate the physical point list inarray over region.

Parameters
inarraydefinition of function to be returned at quadrature points of expansion.
Returns
\(\int^1_{-1}\int^1_{-1} \int^1_{-1} u(\eta_1, \eta_2, \eta_3) J[i,j,k] d \eta_1 d \eta_2 d \eta_3 \) where \(inarray[i,j,k] = u(\eta_{1i},\eta_{2j},\eta_{3k}) \) and \( J[i,j,k] \) is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 103 of file HexExp.cpp.

104{
105 int nquad0 = m_base[0]->GetNumPoints();
106 int nquad1 = m_base[1]->GetNumPoints();
107 int nquad2 = m_base[2]->GetNumPoints();
108 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
109 NekDouble returnVal;
110 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
111
112 // multiply inarray with Jacobian
113
114 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
115 {
116 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
117 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
118 }
119 else
120 {
121 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
122 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
123 }
124
125 // call StdHexExp version;
126 returnVal = StdHexExp::v_Integral(tmp);
127
128 return returnVal;
129}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase()

void Nektar::LocalRegions::HexExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculate the inner product of inarray with respect to the elements basis.

Parameters
inarrayInput array of physical space data.
outarrayOutput array of data.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 334 of file HexExp.cpp.

336{
337 HexExp::v_IProductWRTBase_SumFac(inarray, outarray);
338}
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.
Definition: HexExp.cpp:372

References v_IProductWRTBase_SumFac().

◆ v_IProductWRTBase_SumFac()

void Nektar::LocalRegions::HexExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
overrideprotectedvirtual

Calculate the inner product of inarray with respect to the given basis B = base0 * base1 * base2.

\( \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\xi_{1i}) \psi_{q}^{a} (\xi_{2j}) \psi_{r}^{a} (\xi_{3k}) w_i w_j w_k u(\xi_{1,i} \xi_{2,j} \xi_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\xi_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\xi_{2,j}) \sum_{k=0}^{nq_2} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} \end{array} \)
where \( \phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a ( \xi_1) \psi_{q}^a (\xi_2) \psi_{r}^a (\xi_3) \)
which can be implemented as
\(f_{r} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{r}^a u(\xi_{1i},\xi_{2j},\xi_{3k}) J_{i,j,k} = {\bf B_3 U} \)
\( g_{q} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{r} (\xi_{3k}) = {\bf B_2 F} \)
\( (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{q} (\xi_{3k}) = {\bf B_1 G} \)

Parameters
base0Basis to integrate wrt in first dimension.
base1Basis to integrate wrt in second dimension.
base2Basis to integrate wrt in third dimension.
inarrayInput array.
outarrayOutput array.
coll_check(not used)

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 372 of file HexExp.cpp.

375{
376 int nquad0 = m_base[0]->GetNumPoints();
377 int nquad1 = m_base[1]->GetNumPoints();
378 int nquad2 = m_base[2]->GetNumPoints();
379 int order0 = m_base[0]->GetNumModes();
380 int order1 = m_base[1]->GetNumModes();
381
382 Array<OneD, NekDouble> wsp(nquad0 * nquad1 * (nquad2 + order0) +
383 order0 * order1 * nquad2);
384
385 if (multiplybyweights)
386 {
387 Array<OneD, NekDouble> tmp(inarray.size());
388
389 MultiplyByQuadratureMetric(inarray, tmp);
391 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
392 tmp, outarray, wsp, true, true, true);
393 }
394 else
395 {
397 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
398 inarray, outarray, wsp, true, true, true);
399 }
400}
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 402 of file HexExp.cpp.

405{
406 HexExp::v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
407}
virtual void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculates the inner product .
Definition: HexExp.cpp:429

References v_IProductWRTDerivBase_SumFac().

◆ v_IProductWRTDerivBase_SumFac()

void Nektar::LocalRegions::HexExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \).

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product \(\phi_{pqr}(\xi_1,\xi_2,\xi_3) = \phi_1(\xi_1)\phi_2(\xi_2)\phi_3(\xi_3)\), in the hexahedral element, this is straightforward and yields the result

\[ I_{pqr} = \sum_{k=1}^3 \left(u, \frac{\partial u}{\partial \xi_k} \frac{\partial \xi_k}{\partial x_i}\right) \]

Parameters
dirDirection in which to take the derivative.
inarrayThe function \( u \).
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 429 of file HexExp.cpp.

432{
433 ASSERTL1((dir == 0) || (dir == 1) || (dir == 2), "Invalid direction.");
434
435 const int nq0 = m_base[0]->GetNumPoints();
436 const int nq1 = m_base[1]->GetNumPoints();
437 const int nq2 = m_base[2]->GetNumPoints();
438 const int nq = nq0 * nq1 * nq2;
439 const int nm0 = m_base[0]->GetNumModes();
440 const int nm1 = m_base[1]->GetNumModes();
441
442 Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1));
443 Array<OneD, NekDouble> tmp1(alloc); // Quad metric
444 Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
445 Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
446 Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
447 Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
448 Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
449
450 MultiplyByQuadratureMetric(inarray, tmp1);
451
452 Array<OneD, Array<OneD, NekDouble>> tmp2D{3};
453 tmp2D[0] = tmp2;
454 tmp2D[1] = tmp3;
455 tmp2D[2] = tmp4;
456
457 HexExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
458
459 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
460 m_base[2]->GetBdata(), tmp2, outarray, wsp,
461 false, true, true);
462
463 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
464 m_base[2]->GetBdata(), tmp3, tmp5, wsp, true,
465 false, true);
466 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
467
468 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
469 m_base[2]->GetDbdata(), tmp4, tmp5, wsp, true,
470 true, false);
471 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
472}
virtual void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: HexExp.cpp:474
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354

References ASSERTL1, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), v_AlignVectorToCollapsedDir(), and Vmath::Vadd().

Referenced by v_IProductWRTDerivBase().

◆ v_IProductWRTDirectionalDerivBase()

virtual void Nektar::LocalRegions::HexExp::v_IProductWRTDirectionalDerivBase ( const Array< OneD, const NekDouble > &  direction,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
inlineoverrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 117 of file HexExp.h.

121 {
122 IProductWRTDirectionalDerivBase_SumFac(direction, inarray, outarray);
123 }
void IProductWRTDirectionalDerivBase_SumFac(const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)

References Nektar::StdRegions::StdExpansion::IProductWRTDirectionalDerivBase_SumFac().

◆ v_IProductWRTDirectionalDerivBase_SumFac()

void Nektar::LocalRegions::HexExp::v_IProductWRTDirectionalDerivBase_SumFac ( const Array< OneD, const NekDouble > &  direction,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Parameters
dirVector direction in which to take the derivative.
inarrayThe function \( u \).
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 516 of file HexExp.cpp.

520{
521 int shapedim = 3;
522 const int nq0 = m_base[0]->GetNumPoints();
523 const int nq1 = m_base[1]->GetNumPoints();
524 const int nq2 = m_base[2]->GetNumPoints();
525 const int nq = nq0 * nq1 * nq2;
526 const int nm0 = m_base[0]->GetNumModes();
527 const int nm1 = m_base[1]->GetNumModes();
528
529 const Array<TwoD, const NekDouble> &df =
530 m_metricinfo->GetDerivFactors(GetPointsKeys());
531
532 Array<OneD, NekDouble> alloc(4 * nq + m_ncoeffs + nm0 * nq2 * (nq1 + nm1));
533 Array<OneD, NekDouble> tmp1(alloc); // Quad metric
534 Array<OneD, NekDouble> tmp2(alloc + nq); // Dir1 metric
535 Array<OneD, NekDouble> tmp3(alloc + 2 * nq); // Dir2 metric
536 Array<OneD, NekDouble> tmp4(alloc + 3 * nq); // Dir3 metric
537 Array<OneD, NekDouble> tmp5(alloc + 4 * nq); // iprod tmp
538 Array<OneD, NekDouble> wsp(tmp5 + m_ncoeffs); // Wsp
539
540 MultiplyByQuadratureMetric(inarray, tmp1);
541
542 Array<OneD, Array<OneD, NekDouble>> dfdir(shapedim);
543 Expansion::ComputeGmatcdotMF(df, direction, dfdir);
544
545 Vmath::Vmul(nq, &dfdir[0][0], 1, tmp1.get(), 1, tmp2.get(), 1);
546 Vmath::Vmul(nq, &dfdir[1][0], 1, tmp1.get(), 1, tmp3.get(), 1);
547 Vmath::Vmul(nq, &dfdir[2][0], 1, tmp1.get(), 1, tmp4.get(), 1);
548
549 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
550 m_base[2]->GetBdata(), tmp2, outarray, wsp,
551 false, true, true);
552
553 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
554 m_base[2]->GetBdata(), tmp3, tmp5, wsp, true,
555 false, true);
556
557 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
558
559 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
560 m_base[2]->GetDbdata(), tmp4, tmp5, wsp, true,
561 true, false);
562
563 Vmath::Vadd(m_ncoeffs, tmp5, 1, outarray, 1, outarray, 1);
564}
void ComputeGmatcdotMF(const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
Definition: Expansion.cpp:608

References Nektar::LocalRegions::Expansion::ComputeGmatcdotMF(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Vadd(), and Vmath::Vmul().

◆ v_LaplacianMatrixOp() [1/2]

void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1158 of file HexExp.cpp.

1161{
1162 HexExp::v_LaplacianMatrixOp_MatFree(inarray, outarray, mkey);
1163}
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override

References Nektar::StdRegions::StdExpansion3D::v_LaplacianMatrixOp_MatFree().

◆ v_LaplacianMatrixOp() [2/2]

void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1165 of file HexExp.cpp.

1169{
1170 StdExpansion::LaplacianMatrixOp_MatFree(k1, k2, inarray, outarray, mkey);
1171}

◆ v_LaplacianMatrixOp_MatFree_Kernel()

void Nektar::LocalRegions::HexExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
overrideprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1355 of file HexExp.cpp.

1358{
1359 // This implementation is only valid when there are no
1360 // coefficients associated to the Laplacian operator
1361 if (m_metrics.count(eMetricLaplacian00) == 0)
1362 {
1364 }
1365
1366 int nquad0 = m_base[0]->GetNumPoints();
1367 int nquad1 = m_base[1]->GetNumPoints();
1368 int nquad2 = m_base[2]->GetNumPoints();
1369 int nqtot = nquad0 * nquad1 * nquad2;
1370
1371 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1372
1373 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1374 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1375 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1376 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1377 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1378 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1379 const Array<OneD, const NekDouble> &metric00 =
1381 const Array<OneD, const NekDouble> &metric01 =
1383 const Array<OneD, const NekDouble> &metric02 =
1385 const Array<OneD, const NekDouble> &metric11 =
1387 const Array<OneD, const NekDouble> &metric12 =
1389 const Array<OneD, const NekDouble> &metric22 =
1391
1392 // Allocate temporary storage
1393 Array<OneD, NekDouble> wsp0(wsp);
1394 Array<OneD, NekDouble> wsp1(wsp + 1 * nqtot);
1395 Array<OneD, NekDouble> wsp2(wsp + 2 * nqtot);
1396 Array<OneD, NekDouble> wsp3(wsp + 3 * nqtot);
1397 Array<OneD, NekDouble> wsp4(wsp + 4 * nqtot);
1398 Array<OneD, NekDouble> wsp5(wsp + 5 * nqtot);
1399
1400 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1401
1402 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1403 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1404 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1405 // especially for this purpose
1406 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1407 &wsp1[0], 1, &wsp3[0], 1);
1408 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1409 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1410 &wsp1[0], 1, &wsp4[0], 1);
1411 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1412 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1413 &wsp1[0], 1, &wsp5[0], 1);
1414 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1415
1416 // outarray = m = (D_xi1 * B)^T * k
1417 // wsp1 = n = (D_xi2 * B)^T * l
1418 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1419 false, true, true);
1420 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1421 false, true);
1422 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1423 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1424 true, false);
1425 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1426}
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:687

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

◆ v_MassLevelCurvatureMatrixOp()

void Nektar::LocalRegions::HexExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1188 of file HexExp.cpp.

1191{
1192 StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray, outarray, mkey);
1193}

◆ v_MassMatrixOp()

void Nektar::LocalRegions::HexExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1151 of file HexExp.cpp.

1154{
1155 StdExpansion::MassMatrixOp_MatFree(inarray, outarray, mkey);
1156}

◆ v_NormalTraceDerivFactors()

void Nektar::LocalRegions::HexExp::v_NormalTraceDerivFactors ( Array< OneD, Array< OneD, NekDouble > > &  factors,
Array< OneD, Array< OneD, NekDouble > > &  d0factors,
Array< OneD, Array< OneD, NekDouble > > &  d1factors 
)
overrideprivatevirtual

: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1470 of file HexExp.cpp.

1474{
1475 int nquad0 = GetNumPoints(0);
1476 int nquad1 = GetNumPoints(1);
1477 int nquad2 = GetNumPoints(2);
1478
1479 const Array<TwoD, const NekDouble> &df =
1480 m_metricinfo->GetDerivFactors(GetPointsKeys());
1481
1482 if (d0factors.size() != 6)
1483 {
1484 d0factors = Array<OneD, Array<OneD, NekDouble>>(6);
1485 d1factors = Array<OneD, Array<OneD, NekDouble>>(6);
1486 d2factors = Array<OneD, Array<OneD, NekDouble>>(6);
1487 }
1488
1489 if (d0factors[0].size() != nquad0 * nquad1)
1490 {
1491 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1492 d0factors[5] = Array<OneD, NekDouble>(nquad0 * nquad1);
1493 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1494 d1factors[5] = Array<OneD, NekDouble>(nquad0 * nquad1);
1495 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1496 d2factors[5] = Array<OneD, NekDouble>(nquad0 * nquad1);
1497 }
1498
1499 if (d0factors[1].size() != nquad0 * nquad2)
1500 {
1501 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1502 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1503 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1504 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1505 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1506 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1507 }
1508
1509 if (d0factors[2].size() != nquad1 * nquad2)
1510 {
1511 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1512 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1513 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1514 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1515 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1516 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1517 }
1518
1519 // Outwards normals
1520 const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1521 GetTraceNormal(0);
1522 const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1523 GetTraceNormal(1);
1524 const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1525 GetTraceNormal(2);
1526 const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1527 GetTraceNormal(3);
1528 const Array<OneD, const Array<OneD, NekDouble>> &normal_4 =
1529 GetTraceNormal(4);
1530 const Array<OneD, const Array<OneD, NekDouble>> &normal_5 =
1531 GetTraceNormal(5);
1532
1533 int ncoords = normal_0.size();
1534
1535 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1536 {
1537 // faces 0 and 5
1538 for (int i = 0; i < nquad0 * nquad1; ++i)
1539 {
1540 d0factors[0][i] = df[0][i] * normal_0[0][i];
1541 d1factors[0][i] = df[1][i] * normal_0[0][i];
1542 d2factors[0][i] = df[2][i] * normal_0[0][i];
1543
1544 d0factors[5][i] =
1545 df[0][nquad0 * nquad1 * (nquad2 - 1) + i] * normal_5[0][i];
1546 d1factors[5][i] =
1547 df[1][nquad0 * nquad1 * (nquad2 - 1) + i] * normal_5[0][i];
1548 d2factors[5][i] =
1549 df[2][nquad0 * nquad1 * (nquad2 - 1) + i] * normal_5[0][i];
1550 }
1551
1552 for (int n = 1; n < ncoords; ++n)
1553 {
1554 for (int i = 0; i < nquad0 * nquad1; ++i)
1555 {
1556 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1557 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1558 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1559
1560 d0factors[5][i] +=
1561 df[3 * n][nquad0 * nquad1 * (nquad2 - 1) + i] *
1562 normal_5[n][i];
1563 d1factors[5][i] +=
1564 df[3 * n + 1][nquad0 * nquad1 * (nquad2 - 1) + i] *
1565 normal_5[n][i];
1566 d2factors[5][i] +=
1567 df[3 * n + 2][nquad0 * nquad1 * (nquad2 - 1) + i] *
1568 normal_5[n][i];
1569 }
1570 }
1571
1572 // faces 1 and 3
1573 for (int j = 0; j < nquad2; ++j)
1574 {
1575 for (int i = 0; i < nquad0; ++i)
1576 {
1577 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1578 normal_1[0][j * nquad0 + i];
1579 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1580 normal_1[0][j * nquad0 + i];
1581 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1582 normal_1[0][j * nquad0 + i];
1583
1584 d0factors[3][j * nquad0 + i] =
1585 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1586 normal_3[0][j * nquad0 + i];
1587 d1factors[3][j * nquad0 + i] =
1588 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1589 normal_3[0][j * nquad0 + i];
1590 d2factors[3][j * nquad0 + i] =
1591 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1592 normal_3[0][j * nquad0 + i];
1593 }
1594 }
1595
1596 for (int n = 1; n < ncoords; ++n)
1597 {
1598 for (int j = 0; j < nquad2; ++j)
1599 {
1600 for (int i = 0; i < nquad0; ++i)
1601 {
1602 d0factors[1][j * nquad0 + i] +=
1603 df[3 * n][j * nquad0 * nquad1 + i] *
1604 normal_1[0][j * nquad0 + i];
1605 d1factors[1][j * nquad0 + i] +=
1606 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1607 normal_1[0][j * nquad0 + i];
1608 d2factors[1][j * nquad0 + i] +=
1609 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1610 normal_1[0][j * nquad0 + i];
1611
1612 d0factors[3][j * nquad0 + i] +=
1613 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1614 normal_3[0][j * nquad0 + i];
1615 d1factors[3][j * nquad0 + i] +=
1616 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1617 normal_3[0][j * nquad0 + i];
1618 d2factors[3][j * nquad0 + i] +=
1619 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1620 normal_3[0][j * nquad0 + i];
1621 }
1622 }
1623 }
1624
1625 // faces 2 and 4
1626 for (int j = 0; j < nquad2; ++j)
1627 {
1628 for (int i = 0; i < nquad1; ++i)
1629 {
1630 d0factors[2][j * nquad1 + i] =
1631 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1632 normal_2[0][j * nquad1 + i];
1633 d1factors[2][j * nquad1 + i] =
1634 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1635 normal_2[0][j * nquad1 + i];
1636 d2factors[2][j * nquad1 + i] =
1637 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1638 normal_2[0][j * nquad1 + i];
1639
1640 d0factors[4][j * nquad1 + i] =
1641 df[0][j * nquad0 * nquad1 + i * nquad0] *
1642 normal_4[0][j * nquad1 + i];
1643 d1factors[4][j * nquad1 + i] =
1644 df[1][j * nquad0 * nquad1 + i * nquad0] *
1645 normal_4[0][j * nquad1 + i];
1646 d2factors[4][j * nquad1 + i] =
1647 df[2][j * nquad0 * nquad1 + i * nquad0] *
1648 normal_4[0][j * nquad1 + i];
1649 }
1650 }
1651
1652 for (int n = 1; n < ncoords; ++n)
1653 {
1654 for (int j = 0; j < nquad2; ++j)
1655 {
1656 for (int i = 0; i < nquad1; ++i)
1657 {
1658 d0factors[2][j * nquad1 + i] +=
1659 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1660 normal_2[n][j * nquad1 + i];
1661 d1factors[2][j * nquad1 + i] +=
1662 df[3 * n + 1]
1663 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1664 normal_2[n][j * nquad1 + i];
1665 d2factors[2][j * nquad1 + i] +=
1666 df[3 * n + 2]
1667 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1668 normal_2[n][j * nquad1 + i];
1669
1670 d0factors[4][j * nquad1 + i] +=
1671 df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1672 normal_4[n][j * nquad1 + i];
1673 d1factors[4][j * nquad1 + i] +=
1674 df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1675 normal_4[n][j * nquad1 + i];
1676 d2factors[4][j * nquad1 + i] +=
1677 df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1678 normal_4[n][j * nquad1 + i];
1679 }
1680 }
1681 }
1682 }
1683 else
1684 {
1685 // Faces 0 and 5
1686 for (int i = 0; i < nquad0 * nquad1; ++i)
1687 {
1688 d0factors[0][i] = df[0][0] * normal_0[0][i];
1689 d0factors[5][i] = df[0][0] * normal_5[0][i];
1690
1691 d1factors[0][i] = df[1][0] * normal_0[0][i];
1692 d1factors[5][i] = df[1][0] * normal_5[0][i];
1693
1694 d2factors[0][i] = df[2][0] * normal_0[0][i];
1695 d2factors[5][i] = df[2][0] * normal_5[0][i];
1696 }
1697
1698 for (int n = 1; n < ncoords; ++n)
1699 {
1700 for (int i = 0; i < nquad0 * nquad1; ++i)
1701 {
1702 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1703 d0factors[5][i] += df[3 * n][0] * normal_5[n][i];
1704
1705 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1706 d1factors[5][i] += df[3 * n + 1][0] * normal_5[n][i];
1707
1708 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1709 d2factors[5][i] += df[3 * n + 2][0] * normal_5[n][i];
1710 }
1711 }
1712
1713 // faces 1 and 3
1714 for (int i = 0; i < nquad0 * nquad2; ++i)
1715 {
1716 d0factors[1][i] = df[0][0] * normal_1[0][i];
1717 d0factors[3][i] = df[0][0] * normal_3[0][i];
1718
1719 d1factors[1][i] = df[1][0] * normal_1[0][i];
1720 d1factors[3][i] = df[1][0] * normal_3[0][i];
1721
1722 d2factors[1][i] = df[2][0] * normal_1[0][i];
1723 d2factors[3][i] = df[2][0] * normal_3[0][i];
1724 }
1725
1726 for (int n = 1; n < ncoords; ++n)
1727 {
1728 for (int i = 0; i < nquad0 * nquad2; ++i)
1729 {
1730 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1731 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1732
1733 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1734 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1735
1736 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1737 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1738 }
1739 }
1740
1741 // faces 2 and 4
1742 for (int i = 0; i < nquad1 * nquad2; ++i)
1743 {
1744 d0factors[2][i] = df[0][0] * normal_2[0][i];
1745 d0factors[4][i] = df[0][0] * normal_4[0][i];
1746
1747 d1factors[2][i] = df[1][0] * normal_2[0][i];
1748 d1factors[4][i] = df[1][0] * normal_4[0][i];
1749
1750 d2factors[2][i] = df[2][0] * normal_2[0][i];
1751 d2factors[4][i] = df[2][0] * normal_4[0][i];
1752 }
1753
1754 for (int n = 1; n < ncoords; ++n)
1755 {
1756 for (int i = 0; i < nquad1 * nquad2; ++i)
1757 {
1758 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1759 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1760
1761 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1762 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1763
1764 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1765 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1766 }
1767 }
1768 }
1769}
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:255

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LocalRegions::Expansion::GetTraceNormal(), and Nektar::LocalRegions::Expansion::m_metricinfo.

◆ v_PhysDeriv() [1/2]

void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 
)
overrideprotectedvirtual

Calculate the derivative of the physical points.

For Hexahedral region can use the Tensor_Deriv function defined under StdExpansion.

Parameters
inarrayInput array
out_d0Derivative of inarray in first direction.
out_d1Derivative of inarray in second direction.
out_d2Derivative of inarray in third direction.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 144 of file HexExp.cpp.

148{
149 int nquad0 = m_base[0]->GetNumPoints();
150 int nquad1 = m_base[1]->GetNumPoints();
151 int nquad2 = m_base[2]->GetNumPoints();
152 int ntot = nquad0 * nquad1 * nquad2;
153
154 Array<TwoD, const NekDouble> df =
155 m_metricinfo->GetDerivFactors(GetPointsKeys());
156 Array<OneD, NekDouble> Diff0 = Array<OneD, NekDouble>(ntot);
157 Array<OneD, NekDouble> Diff1 = Array<OneD, NekDouble>(ntot);
158 Array<OneD, NekDouble> Diff2 = Array<OneD, NekDouble>(ntot);
159
160 StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
161
162 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
163 {
164 if (out_d0.size())
165 {
166 Vmath::Vmul(ntot, &df[0][0], 1, &Diff0[0], 1, &out_d0[0], 1);
167 Vmath::Vvtvp(ntot, &df[1][0], 1, &Diff1[0], 1, &out_d0[0], 1,
168 &out_d0[0], 1);
169 Vmath::Vvtvp(ntot, &df[2][0], 1, &Diff2[0], 1, &out_d0[0], 1,
170 &out_d0[0], 1);
171 }
172
173 if (out_d1.size())
174 {
175 Vmath::Vmul(ntot, &df[3][0], 1, &Diff0[0], 1, &out_d1[0], 1);
176 Vmath::Vvtvp(ntot, &df[4][0], 1, &Diff1[0], 1, &out_d1[0], 1,
177 &out_d1[0], 1);
178 Vmath::Vvtvp(ntot, &df[5][0], 1, &Diff2[0], 1, &out_d1[0], 1,
179 &out_d1[0], 1);
180 }
181
182 if (out_d2.size())
183 {
184 Vmath::Vmul(ntot, &df[6][0], 1, &Diff0[0], 1, &out_d2[0], 1);
185 Vmath::Vvtvp(ntot, &df[7][0], 1, &Diff1[0], 1, &out_d2[0], 1,
186 &out_d2[0], 1);
187 Vmath::Vvtvp(ntot, &df[8][0], 1, &Diff2[0], 1, &out_d2[0], 1,
188 &out_d2[0], 1);
189 }
190 }
191 else // regular geometry
192 {
193 if (out_d0.size())
194 {
195 Vmath::Smul(ntot, df[0][0], &Diff0[0], 1, &out_d0[0], 1);
196 Blas::Daxpy(ntot, df[1][0], &Diff1[0], 1, &out_d0[0], 1);
197 Blas::Daxpy(ntot, df[2][0], &Diff2[0], 1, &out_d0[0], 1);
198 }
199
200 if (out_d1.size())
201 {
202 Vmath::Smul(ntot, df[3][0], &Diff0[0], 1, &out_d1[0], 1);
203 Blas::Daxpy(ntot, df[4][0], &Diff1[0], 1, &out_d1[0], 1);
204 Blas::Daxpy(ntot, df[5][0], &Diff2[0], 1, &out_d1[0], 1);
205 }
206
207 if (out_d2.size())
208 {
209 Vmath::Smul(ntot, df[6][0], &Diff0[0], 1, &out_d2[0], 1);
210 Blas::Daxpy(ntot, df[7][0], &Diff1[0], 1, &out_d2[0], 1);
211 Blas::Daxpy(ntot, df[8][0], &Diff2[0], 1, &out_d2[0], 1);
212 }
213 }
214}
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:137

References Blas::Daxpy(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_PhysDeriv() [2/2]

void Nektar::LocalRegions::HexExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculate the derivative of the physical points in a single direction.

Parameters
dirDirection in which to compute derivative. Valid values are 0, 1, 2.
inarrayInput array.
outarrayOutput array.

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 225 of file HexExp.cpp.

228{
229 switch (dir)
230 {
231 case 0:
232 {
233 PhysDeriv(inarray, outarray, NullNekDouble1DArray,
235 }
236 break;
237 case 1:
238 {
239 PhysDeriv(inarray, NullNekDouble1DArray, outarray,
241 }
242 break;
243 case 2:
244 {
246 outarray);
247 }
248 break;
249 default:
250 {
251 ASSERTL1(false, "input dir is out of range");
252 }
253 break;
254 }
255}
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Definition: StdExpansion.h:855
static Array< OneD, NekDouble > NullNekDouble1DArray

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

◆ v_PhysDirectionalDeriv()

void Nektar::LocalRegions::HexExp::v_PhysDirectionalDeriv ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  direction,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Physical derivative along a direction vector.

See also
StdRegions::StdExpansion::PhysDirectionalDeriv

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 257 of file HexExp.cpp.

261{
262
263 int shapedim = 3;
264 int nquad0 = m_base[0]->GetNumPoints();
265 int nquad1 = m_base[1]->GetNumPoints();
266 int nquad2 = m_base[2]->GetNumPoints();
267 int ntot = nquad0 * nquad1 * nquad2;
268
269 Array<TwoD, const NekDouble> df =
270 m_metricinfo->GetDerivFactors(GetPointsKeys());
271 Array<OneD, NekDouble> Diff0 = Array<OneD, NekDouble>(ntot);
272 Array<OneD, NekDouble> Diff1 = Array<OneD, NekDouble>(ntot);
273 Array<OneD, NekDouble> Diff2 = Array<OneD, NekDouble>(ntot);
274
275 StdHexExp::v_PhysDeriv(inarray, Diff0, Diff1, Diff2);
276
277 Array<OneD, Array<OneD, NekDouble>> dfdir(shapedim);
278 Expansion::ComputeGmatcdotMF(df, direction, dfdir);
279
280 Vmath::Vmul(ntot, &dfdir[0][0], 1, &Diff0[0], 1, &outarray[0], 1);
281 Vmath::Vvtvp(ntot, &dfdir[1][0], 1, &Diff1[0], 1, &outarray[0], 1,
282 &outarray[0], 1);
283 Vmath::Vvtvp(ntot, &dfdir[2][0], 1, &Diff2[0], 1, &outarray[0], 1,
284 &outarray[0], 1);
285}

References Nektar::LocalRegions::Expansion::ComputeGmatcdotMF(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::LocalRegions::HexExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 583 of file HexExp.cpp.

585{
586 Array<OneD, NekDouble> Lcoord = Array<OneD, NekDouble>(3);
587
588 ASSERTL0(m_geom, "m_geom not defined");
589 m_geom->GetLocCoords(coord, Lcoord);
590 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
591}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::LocalRegions::HexExp::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 593 of file HexExp.cpp.

596{
597 Array<OneD, NekDouble> Lcoord(3);
598 ASSERTL0(m_geom, "m_geom not defined");
599 m_geom->GetLocCoords(coord, Lcoord);
600 return StdHexExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
601}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_ReduceOrderCoeffs()

void Nektar::LocalRegions::HexExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

This function is used to compute exactly the advective numerical flux on the interface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1213 of file HexExp.cpp.

1216{
1217 int n_coeffs = inarray.size();
1218 int nmodes0 = m_base[0]->GetNumModes();
1219 int nmodes1 = m_base[1]->GetNumModes();
1220 int nmodes2 = m_base[2]->GetNumModes();
1221 int numMax = nmodes0;
1222
1223 Array<OneD, NekDouble> coeff(n_coeffs);
1224 Array<OneD, NekDouble> coeff_tmp1(nmodes0 * nmodes1, 0.0);
1225 Array<OneD, NekDouble> coeff_tmp2(n_coeffs, 0.0);
1226 Array<OneD, NekDouble> tmp, tmp2, tmp3, tmp4;
1227
1228 Vmath::Vcopy(n_coeffs, inarray, 1, coeff_tmp2, 1);
1229
1230 const LibUtilities::PointsKey Pkey0(nmodes0,
1232 const LibUtilities::PointsKey Pkey1(nmodes1,
1234 const LibUtilities::PointsKey Pkey2(nmodes2,
1236
1237 LibUtilities::BasisKey b0(m_base[0]->GetBasisType(), nmodes0, Pkey0);
1238 LibUtilities::BasisKey b1(m_base[1]->GetBasisType(), nmodes1, Pkey1);
1239 LibUtilities::BasisKey b2(m_base[2]->GetBasisType(), nmodes2, Pkey2);
1240 LibUtilities::BasisKey bortho0(LibUtilities::eOrtho_A, nmodes0, Pkey0);
1241 LibUtilities::BasisKey bortho1(LibUtilities::eOrtho_A, nmodes1, Pkey1);
1242 LibUtilities::BasisKey bortho2(LibUtilities::eOrtho_A, nmodes2, Pkey2);
1243
1244 LibUtilities::InterpCoeff3D(b0, b1, b2, coeff_tmp2, bortho0, bortho1,
1245 bortho2, coeff);
1246
1247 Vmath::Zero(n_coeffs, coeff_tmp2, 1);
1248
1249 int cnt = 0, cnt2 = 0;
1250
1251 for (int u = 0; u < numMin + 1; ++u)
1252 {
1253 for (int i = 0; i < numMin; ++i)
1254 {
1255 Vmath::Vcopy(numMin, tmp = coeff + cnt + cnt2, 1,
1256 tmp2 = coeff_tmp1 + cnt, 1);
1257
1258 cnt = i * numMax;
1259 }
1260
1261 Vmath::Vcopy(nmodes0 * nmodes1, tmp3 = coeff_tmp1, 1,
1262 tmp4 = coeff_tmp2 + cnt2, 1);
1263
1264 cnt2 = u * nmodes0 * nmodes1;
1265 }
1266
1267 LibUtilities::InterpCoeff3D(bortho0, bortho1, bortho2, coeff_tmp2, b0, b1,
1268 b2, outarray);
1269}
void InterpCoeff3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:44

References Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::LibUtilities::eOrtho_A, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::LibUtilities::InterpCoeff3D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Vcopy(), and Vmath::Zero().

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::HexExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 575 of file HexExp.cpp.

578{
579 // Evaluate point in local coordinates.
580 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
581}

◆ v_SVVLaplacianFilter()

void Nektar::LocalRegions::HexExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1271 of file HexExp.cpp.

1273{
1274 int nq = GetTotPoints();
1275
1276 // Calculate sqrt of the Jacobian
1277 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
1278 Array<OneD, NekDouble> sqrt_jac(nq);
1279 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1280 {
1281 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1282 }
1283 else
1284 {
1285 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1286 }
1287
1288 // Multiply array by sqrt(Jac)
1289 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1290
1291 // Apply std region filter
1292 StdHexExp::v_SVVLaplacianFilter(array, mkey);
1293
1294 // Divide by sqrt(Jac)
1295 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1296}
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, tinysimd::sqrt(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

◆ v_WeakDerivMatrixOp()

void Nektar::LocalRegions::HexExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdHexExp.

Definition at line 1173 of file HexExp.cpp.

1177{
1178 StdExpansion::WeakDerivMatrixOp_MatFree(i, inarray, outarray, mkey);
1179}

◆ v_WeakDirectionalDerivMatrixOp()

void Nektar::LocalRegions::HexExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1181 of file HexExp.cpp.

1184{
1185 StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray, outarray, mkey);
1186}

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_matrixManager
private

Definition at line 246 of file HexExp.h.

Referenced by v_DropLocMatrix(), v_FwdTrans(), and v_GetLocMatrix().

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::HexExp::m_staticCondMatrixManager
private

Definition at line 248 of file HexExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().