Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::PyrExp Class Reference

#include <PyrExp.h>

Inheritance diagram for Nektar::LocalRegions::PyrExp:
[legend]

Public Member Functions

 PyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, const SpatialDomains::PyrGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 PyrExp (const PyrExp &T)
 
virtual ~PyrExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdPyrExp
 StdPyrExp ()=default
 
 StdPyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdPyrExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc, NekDouble *coeffs, NekDouble *phys)
 
 StdPyrExp (const StdPyrExp &T)
 
 ~StdPyrExp () override=default
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion3D
 StdExpansion3D ()
 
 StdExpansion3D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const LibUtilities::BasisKey &Bc)
 
 StdExpansion3D (const StdExpansion3D &T)
 
virtual ~StdExpansion3D () override
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d1, Array< OneD, NekDouble > &outarray_d2, Array< OneD, NekDouble > &outarray_d3)
 Calculate the 3D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)
 
int GetNedges () const
 return the number of edges in 3D expansion More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
void GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp () const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion () const
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 This function evaluates the first derivative of the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs, std::array< NekDouble, 6 > &secondOrderDerivs)
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion3D
 Expansion3D (SpatialDomains::Geometry3DSharedPtr pGeom)
 
virtual ~Expansion3D () override=default
 
void SetTraceToGeomOrientation (Array< OneD, NekDouble > &inout)
 Align trace orientation with the geometry orientation. More...
 
void SetFaceToGeomOrientation (const int face, Array< OneD, NekDouble > &inout)
 Align face orientation with the geometry orientation. More...
 
void AddHDGHelmholtzFaceTerms (const NekDouble tau, const int edge, Array< OneD, NekDouble > &facePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddFaceBoundaryInt (const int face, ExpansionSharedPtr &FaceExp, Array< OneD, NekDouble > &facePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::Geometry3DSharedPtr GetGeom3D () const
 
void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1) override
 
void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray) override
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetTraceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=StdRegions::eNoOrientation, int P1=-1, int P2=-1)
 
void GetInverseBoundaryMaps (Array< OneD, unsigned int > &vmap, Array< OneD, Array< OneD, unsigned int > > &emap, Array< OneD, Array< OneD, unsigned int > > &fmap)
 
DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
void SetTraceExp (const int traceid, ExpansionSharedPtr &f)
 
ExpansionSharedPtr GetTraceExp (const int traceid)
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 
DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
const SpatialDomains::GeomFactorsSharedPtrGetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
NekDouble VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
void NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
void AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
ExpansionSharedPtr GetLeftAdjacentElementExp () const
 
ExpansionSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementTrace () const
 
int GetRightAdjacentElementTrace () const
 
void SetAdjacentElementExp (int traceid, ExpansionSharedPtr &e)
 
StdRegions::Orientation GetTraceOrient (int trace)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Divided by the metric jacobi and quadrature weights. More...
 
void GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=StdRegions::eNoOrientation)
 
void GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
void ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1)
 
const NormalVectorGetTraceNormal (const int id)
 
void ComputeTraceNormal (const int id)
 
const Array< OneD, const NekDouble > & GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
void SetUpPhysNormals (const int trace)
 
void AddRobinMassMatrix (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
void AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
const Array< OneD, const NekDouble > & GetElmtBndNormDirElmtLen (const int nbnd) const
 
void StdDerivBaseOnTraceMat (Array< OneD, DNekMatSharedPtr > &DerivMat)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrate the physical point list inarray over pyramidic region and return the value. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs. More...
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray: More...
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \). More...
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
 
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp (void) const override
 
virtual StdRegions::StdExpansionSharedPtr v_GetLinStdExp (void) const override
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords) override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType) override
 
NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_GetTracePhysMap (const int face, Array< OneD, int > &outarray) override
 
void v_ComputeTraceNormal (const int face) override
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey) override
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey) override
 
void v_DropLocMatrix (const MatrixKey &mkey) override
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey) override
 
virtual void v_ComputeLaplacianMetric () override
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors, Array< OneD, Array< OneD, NekDouble > > &d2factors) override
 : This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace. More...
 
- Protected Member Functions inherited from Nektar::StdRegions::StdPyrExp
void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 Calculate the derivative of the physical points. More...
 
void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Calculate the derivative of the physical points in a given direction. More...
 
void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) override
 
void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Backward transformation is evaluated at the quadrature points. More...
 
void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in outarray. More...
 
void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 Inner product of inarray over region with respect to the expansion basis m_base[0]->GetBdata(),m_base[1]->GetBdata(), m_base[2]->GetBdata() and return in outarray. More...
 
void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
 
void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2) override
 
void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta) override
 
void v_LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi) override
 
void v_GetCoords (Array< OneD, NekDouble > &xi_x, Array< OneD, NekDouble > &xi_y, Array< OneD, NekDouble > &xi_z) override
 
void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray) override
 
void v_GetTraceNumModes (const int fid, int &numModes0, int &numModes1, Orientation faceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
NekDouble v_PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode) final
 
NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
int v_GetNverts () const override
 
int v_GetNedges () const override
 
int v_GetNtraces () const override
 
LibUtilities::ShapeType v_DetShapeType () const override
 
int v_NumBndryCoeffs () const override
 
int v_NumDGBndryCoeffs () const override
 
int v_GetTraceNcoeffs (const int i) const override
 
int v_GetTraceIntNcoeffs (const int i) const override
 
int v_GetTraceNumPoints (const int i) const override
 
int v_GetEdgeNcoeffs (const int i) const override
 
int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset) override
 
const LibUtilities::BasisKey v_GetTraceBasisKey (const int i, const int k) const override
 
int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false) override
 
void v_GetInteriorMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray) override
 
void v_GetTraceCoeffMap (const unsigned int fid, Array< OneD, unsigned int > &maparray) override
 
void v_GetElmtTraceToTraceMap (const unsigned int fid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation faceOrient, int P, int Q) override
 
void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
void v_GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2) override
 
DNekMatSharedPtr v_GenMatrix (const StdMatrixKey &mkey) override
 
DNekMatSharedPtr v_CreateStdMatrix (const StdMatrixKey &mkey) override
 
void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey) override
 
void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion3D
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals) override
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs) override
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
 
virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray) override
 Integrates the specified function over the domain. More...
 
virtual int v_GetNedges (void) const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
NekDouble BaryTensorDeriv (const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
 
virtual void v_GetEdgeInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards)
 
virtual void v_GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient, int P, int Q) override
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat) override
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv, NekDouble &deriv2)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 Helper function to pass an unused value by reference into BaryEvaluate. More...
 
template<int DIR, bool DERIV = false, bool DERIV2 = false>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals, NekDouble &deriv)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion3D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &FaceExp, Array< OneD, Array< OneD, NekDouble > > &faceCoeffs, Array< OneD, NekDouble > &out_d) override
 Evaluate coefficients of weak deriviative in the direction dir given the input coefficicents incoeffs and the imposed boundary values in EdgeExp (which will have its phys space updated). More...
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey) override
 
virtual void v_AddFaceNormBoundaryInt (const int face, const ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) override
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat) override
 
virtual StdRegions::Orientation v_GetTraceOrient (int face) override
 
virtual void v_GetTracePhysVals (const int face, const StdRegions::StdExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient) override
 Extract the physical values along face face from inarray into outarray following the local face orientation and point distribution defined by defined in FaceExp. More...
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp) override
 
void GetPhysFaceVarCoeffsFromElement (const int face, ExpansionSharedPtr &FaceExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType) override
 
virtual DNekMatSharedPtr v_BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &transformationmatrix) override
 Build inverse and inverse transposed transformation matrix: \(\mathbf{R^{-1}}\) and \(\mathbf{R^{-T}}\). More...
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd) override
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p) override
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
void ComputeGmatcdotMF (const Array< TwoD, const NekDouble > &df, const Array< OneD, const NekDouble > &direction, Array< OneD, Array< OneD, NekDouble > > &dfdir)
 
Array< OneD, NekDoubleGetMF (const int dir, const int shapedim, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFDiv (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
Array< OneD, NekDoubleGetMFMag (const int dir, const StdRegions::VarCoeffMap &varcoeffs)
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual int v_GetCoordim () const override
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs, std::vector< LibUtilities::BasisType > &fromType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const std::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const std::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 
virtual NekDouble v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &vec)
 
virtual void v_NormalTraceDerivFactors (Array< OneD, Array< OneD, NekDouble > > &factors, Array< OneD, Array< OneD, NekDouble > > &d0factors, Array< OneD, Array< OneD, NekDouble > > &d1factors)
 
virtual void v_AlignVectorToCollapsedDir (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
virtual StdRegions::Orientation v_GetTraceOrient (int trace)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
 
virtual void v_GetTraceQFactors (const int trace, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int trace, const StdRegions::StdExpansionSharedPtr &TraceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetTracePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual void v_ReOrientTracePhysMap (const StdRegions::Orientation orient, Array< OneD, int > &idmap, const int nq0, const int nq1=-1)
 
virtual void v_ComputeTraceNormal (const int id)
 
virtual const Array< OneD, const NekDouble > & v_GetPhysNormals ()
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_SetUpPhysNormals (const int id)
 
virtual void v_AddRobinMassMatrix (const int face, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinTraceContribution (const int traceid, const Array< OneD, const NekDouble > &primCoeffs, const Array< OneD, NekDouble > &incoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual void v_TraceNormLen (const int traceid, NekDouble &h, NekDouble &p)
 
virtual void v_GenTraceExp (const int traceid, ExpansionSharedPtr &exp)
 

Private Member Functions

virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp) override
 

Private Attributes

LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLessm_matrixManager
 
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLessm_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion3D
std::map< int, NormalVectorm_faceNormals
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
LibUtilities::NekManager< IndexMapKey, IndexMapValues, IndexMapKey::opLessm_indexMapManager
 
std::map< int, ExpansionWeakPtrm_traceExp
 
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 
std::map< int, NormalVectorm_traceNormals
 
ExpansionWeakPtr m_elementLeft
 
ExpansionWeakPtr m_elementRight
 
int m_elementTraceLeft = -1
 
int m_elementTraceRight = -1
 
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
 the element length in each element boundary(Vertex, edge or face) normal direction calculated based on the local m_metricinfo times the standard element length (which is 2.0) More...
 

Detailed Description

Definition at line 50 of file PyrExp.h.

Constructor & Destructor Documentation

◆ PyrExp() [1/2]

Nektar::LocalRegions::PyrExp::PyrExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const LibUtilities::BasisKey Bc,
const SpatialDomains::PyrGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 45 of file PyrExp.cpp.

50 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
51 3, Ba, Bb, Bc),
53 Ba.GetNumModes(), Bb.GetNumModes(), Bc.GetNumModes()),
54 Ba, Bb, Bc),
55 StdPyrExp(Ba, Bb, Bc), Expansion(geom), Expansion3D(geom),
57 std::bind(&Expansion3D::CreateMatrix, this, std::placeholders::_1),
58 std::string("PyrExpMatrix")),
60 this, std::placeholders::_1),
61 std::string("PyrExpStaticCondMatrix"))
62{
63}
Expansion3D(SpatialDomains::Geometry3DSharedPtr pGeom)
Definition: Expansion3D.h:61
DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: Expansion.cpp:277
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:47
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: PyrExp.h:176
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: PyrExp.h:178
StdExpansion()
Default Constructor.
int getNumberOfCoefficients(int Na, int Nb, int Nc)
Definition: ShapeType.hpp:237

◆ PyrExp() [2/2]

Nektar::LocalRegions::PyrExp::PyrExp ( const PyrExp T)

Definition at line 65 of file PyrExp.cpp.

67 Expansion3D(T), m_matrixManager(T.m_matrixManager),
68 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
69{
70}

◆ ~PyrExp()

virtual Nektar::LocalRegions::PyrExp::~PyrExp ( )
overridevirtualdefault

Member Function Documentation

◆ v_AlignVectorToCollapsedDir()

void Nektar::LocalRegions::PyrExp::v_AlignVectorToCollapsedDir ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 396 of file PyrExp.cpp.

399{
400 const int nquad0 = m_base[0]->GetNumPoints();
401 const int nquad1 = m_base[1]->GetNumPoints();
402 const int nquad2 = m_base[2]->GetNumPoints();
403 const int order0 = m_base[0]->GetNumModes();
404 const int order1 = m_base[1]->GetNumModes();
405 const int nqtot = nquad0 * nquad1 * nquad2;
406
407 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
408 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
409 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
410
411 Array<OneD, NekDouble> gfac0(nquad0);
412 Array<OneD, NekDouble> gfac1(nquad1);
413 Array<OneD, NekDouble> gfac2(nquad2);
414 Array<OneD, NekDouble> tmp5(nqtot);
415 Array<OneD, NekDouble> wsp(
416 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
417
418 Array<OneD, NekDouble> tmp2 = outarray[0];
419 Array<OneD, NekDouble> tmp3 = outarray[1];
420 Array<OneD, NekDouble> tmp4 = outarray[2];
421
422 const Array<TwoD, const NekDouble> &df =
423 m_metricinfo->GetDerivFactors(GetPointsKeys());
424
425 Array<OneD, NekDouble> tmp1;
426 tmp1 = inarray;
427
428 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
429 {
430 Vmath::Vmul(nqtot, &df[3 * dir][0], 1, tmp1.get(), 1, tmp2.get(), 1);
431 Vmath::Vmul(nqtot, &df[3 * dir + 1][0], 1, tmp1.get(), 1, tmp3.get(),
432 1);
433 Vmath::Vmul(nqtot, &df[3 * dir + 2][0], 1, tmp1.get(), 1, tmp4.get(),
434 1);
435 }
436 else
437 {
438 Vmath::Smul(nqtot, df[3 * dir][0], tmp1.get(), 1, tmp2.get(), 1);
439 Vmath::Smul(nqtot, df[3 * dir + 1][0], tmp1.get(), 1, tmp3.get(), 1);
440 Vmath::Smul(nqtot, df[3 * dir + 2][0], tmp1.get(), 1, tmp4.get(), 1);
441 }
442
443 // set up geometric factor: (1+z0)/2
444 for (int i = 0; i < nquad0; ++i)
445 {
446 gfac0[i] = 0.5 * (1 + z0[i]);
447 }
448
449 // set up geometric factor: (1+z1)/2
450 for (int i = 0; i < nquad1; ++i)
451 {
452 gfac1[i] = 0.5 * (1 + z1[i]);
453 }
454
455 // Set up geometric factor: 2/(1-z2)
456 for (int i = 0; i < nquad2; ++i)
457 {
458 gfac2[i] = 2.0 / (1 - z2[i]);
459 }
460
461 const int nq01 = nquad0 * nquad1;
462
463 for (int i = 0; i < nquad2; ++i)
464 {
465 Vmath::Smul(nq01, gfac2[i], &tmp2[0] + i * nq01, 1, &tmp2[0] + i * nq01,
466 1); // 2/(1-z2) for d/dxi_0
467 Vmath::Smul(nq01, gfac2[i], &tmp3[0] + i * nq01, 1, &tmp3[0] + i * nq01,
468 1); // 2/(1-z2) for d/dxi_1
469 Vmath::Smul(nq01, gfac2[i], &tmp4[0] + i * nq01, 1, &tmp5[0] + i * nq01,
470 1); // 2/(1-z2) for d/dxi_2
471 }
472
473 // (1+z0)/(1-z2) for d/d eta_0
474 for (int i = 0; i < nquad1 * nquad2; ++i)
475 {
476 Vmath::Vmul(nquad0, &gfac0[0], 1, &tmp5[0] + i * nquad0, 1,
477 &wsp[0] + i * nquad0, 1);
478 }
479
480 Vmath::Vadd(nqtot, &tmp2[0], 1, &wsp[0], 1, &tmp2[0], 1);
481
482 // (1+z1)/(1-z2) for d/d eta_1
483 for (int i = 0; i < nquad1 * nquad2; ++i)
484 {
485 Vmath::Smul(nquad0, gfac1[i % nquad1], &tmp5[0] + i * nquad0, 1,
486 &tmp5[0] + i * nquad0, 1);
487 }
488 Vmath::Vadd(nqtot, &tmp3[0], 1, &tmp5[0], 1, &tmp3[0], 1);
489}
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:276
const LibUtilities::PointsKeyVector GetPointsKeys() const
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ eDeformed
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

Referenced by v_IProductWRTDerivBase_SumFac().

◆ v_ComputeLaplacianMetric()

void Nektar::LocalRegions::PyrExp::v_ComputeLaplacianMetric ( )
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1097 of file PyrExp.cpp.

1098{
1099 if (m_metrics.count(eMetricQuadrature) == 0)
1100 {
1102 }
1103
1104 int i, j;
1105 const unsigned int nqtot = GetTotPoints();
1106 const unsigned int dim = 3;
1107 const MetricType m[3][3] = {
1111
1112 for (unsigned int i = 0; i < dim; ++i)
1113 {
1114 for (unsigned int j = i; j < dim; ++j)
1115 {
1116 m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1117 }
1118 }
1119
1120 // Define shorthand synonyms for m_metrics storage
1121 Array<OneD, NekDouble> g0(m_metrics[m[0][0]]);
1122 Array<OneD, NekDouble> g1(m_metrics[m[1][1]]);
1123 Array<OneD, NekDouble> g2(m_metrics[m[2][2]]);
1124 Array<OneD, NekDouble> g3(m_metrics[m[0][1]]);
1125 Array<OneD, NekDouble> g4(m_metrics[m[0][2]]);
1126 Array<OneD, NekDouble> g5(m_metrics[m[1][2]]);
1127
1128 // Allocate temporary storage
1129 Array<OneD, NekDouble> alloc(9 * nqtot, 0.0);
1130 Array<OneD, NekDouble> h0(nqtot, alloc);
1131 Array<OneD, NekDouble> h1(nqtot, alloc + 1 * nqtot);
1132 Array<OneD, NekDouble> h2(nqtot, alloc + 2 * nqtot);
1133 Array<OneD, NekDouble> wsp1(nqtot, alloc + 3 * nqtot);
1134 Array<OneD, NekDouble> wsp2(nqtot, alloc + 4 * nqtot);
1135 Array<OneD, NekDouble> wsp3(nqtot, alloc + 5 * nqtot);
1136 Array<OneD, NekDouble> wsp4(nqtot, alloc + 6 * nqtot);
1137 Array<OneD, NekDouble> wsp5(nqtot, alloc + 7 * nqtot);
1138 Array<OneD, NekDouble> wsp6(nqtot, alloc + 8 * nqtot);
1139
1140 const Array<TwoD, const NekDouble> &df =
1141 m_metricinfo->GetDerivFactors(GetPointsKeys());
1142 const Array<OneD, const NekDouble> &z0 = m_base[0]->GetZ();
1143 const Array<OneD, const NekDouble> &z1 = m_base[1]->GetZ();
1144 const Array<OneD, const NekDouble> &z2 = m_base[2]->GetZ();
1145 const unsigned int nquad0 = m_base[0]->GetNumPoints();
1146 const unsigned int nquad1 = m_base[1]->GetNumPoints();
1147 const unsigned int nquad2 = m_base[2]->GetNumPoints();
1148
1149 // Populate collapsed coordinate arrays h0, h1 and h2.
1150 for (j = 0; j < nquad2; ++j)
1151 {
1152 for (i = 0; i < nquad1; ++i)
1153 {
1154 Vmath::Fill(nquad0, 2.0 / (1.0 - z2[j]),
1155 &h0[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1156 Vmath::Fill(nquad0, 1.0 / (1.0 - z2[j]),
1157 &h1[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1158 Vmath::Fill(nquad0, (1.0 + z1[i]) / (1.0 - z2[j]),
1159 &h2[0] + i * nquad0 + j * nquad0 * nquad1, 1);
1160 }
1161 }
1162 for (i = 0; i < nquad0; i++)
1163 {
1164 Blas::Dscal(nquad1 * nquad2, 1 + z0[i], &h1[0] + i, nquad0);
1165 }
1166
1167 // Step 3. Construct combined metric terms for physical space to
1168 // collapsed coordinate system.
1169 // Order of construction optimised to minimise temporary storage
1170 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1171 {
1172 // f_{1k}
1173 Vmath::Vvtvvtp(nqtot, &df[0][0], 1, &h0[0], 1, &df[2][0], 1, &h1[0], 1,
1174 &wsp1[0], 1);
1175 Vmath::Vvtvvtp(nqtot, &df[3][0], 1, &h0[0], 1, &df[5][0], 1, &h1[0], 1,
1176 &wsp2[0], 1);
1177 Vmath::Vvtvvtp(nqtot, &df[6][0], 1, &h0[0], 1, &df[8][0], 1, &h1[0], 1,
1178 &wsp3[0], 1);
1179
1180 // g0
1181 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1182 1, &g0[0], 1);
1183 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1184
1185 // g4
1186 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp1[0], 1, &df[5][0], 1, &wsp2[0],
1187 1, &g4[0], 1);
1188 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1189
1190 // f_{2k}
1191 Vmath::Vvtvvtp(nqtot, &df[1][0], 1, &h0[0], 1, &df[2][0], 1, &h2[0], 1,
1192 &wsp4[0], 1);
1193 Vmath::Vvtvvtp(nqtot, &df[4][0], 1, &h0[0], 1, &df[5][0], 1, &h2[0], 1,
1194 &wsp5[0], 1);
1195 Vmath::Vvtvvtp(nqtot, &df[7][0], 1, &h0[0], 1, &df[8][0], 1, &h2[0], 1,
1196 &wsp6[0], 1);
1197
1198 // g1
1199 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1200 1, &g1[0], 1);
1201 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1202
1203 // g3
1204 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1205 1, &g3[0], 1);
1206 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1207
1208 // g5
1209 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &wsp4[0], 1, &df[5][0], 1, &wsp5[0],
1210 1, &g5[0], 1);
1211 Vmath::Vvtvp(nqtot, &df[8][0], 1, &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1212
1213 // g2
1214 Vmath::Vvtvvtp(nqtot, &df[2][0], 1, &df[2][0], 1, &df[5][0], 1,
1215 &df[5][0], 1, &g2[0], 1);
1216 Vmath::Vvtvp(nqtot, &df[8][0], 1, &df[8][0], 1, &g2[0], 1, &g2[0], 1);
1217 }
1218 else
1219 {
1220 // f_{1k}
1221 Vmath::Svtsvtp(nqtot, df[0][0], &h0[0], 1, df[2][0], &h1[0], 1,
1222 &wsp1[0], 1);
1223 Vmath::Svtsvtp(nqtot, df[3][0], &h0[0], 1, df[5][0], &h1[0], 1,
1224 &wsp2[0], 1);
1225 Vmath::Svtsvtp(nqtot, df[6][0], &h0[0], 1, df[8][0], &h1[0], 1,
1226 &wsp3[0], 1);
1227
1228 // g0
1229 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp1[0], 1, &wsp2[0], 1, &wsp2[0],
1230 1, &g0[0], 1);
1231 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp3[0], 1, &g0[0], 1, &g0[0], 1);
1232
1233 // g4
1234 Vmath::Svtsvtp(nqtot, df[2][0], &wsp1[0], 1, df[5][0], &wsp2[0], 1,
1235 &g4[0], 1);
1236 Vmath::Svtvp(nqtot, df[8][0], &wsp3[0], 1, &g4[0], 1, &g4[0], 1);
1237
1238 // f_{2k}
1239 Vmath::Svtsvtp(nqtot, df[1][0], &h0[0], 1, df[2][0], &h2[0], 1,
1240 &wsp4[0], 1);
1241 Vmath::Svtsvtp(nqtot, df[4][0], &h0[0], 1, df[5][0], &h2[0], 1,
1242 &wsp5[0], 1);
1243 Vmath::Svtsvtp(nqtot, df[7][0], &h0[0], 1, df[8][0], &h2[0], 1,
1244 &wsp6[0], 1);
1245
1246 // g1
1247 Vmath::Vvtvvtp(nqtot, &wsp4[0], 1, &wsp4[0], 1, &wsp5[0], 1, &wsp5[0],
1248 1, &g1[0], 1);
1249 Vmath::Vvtvp(nqtot, &wsp6[0], 1, &wsp6[0], 1, &g1[0], 1, &g1[0], 1);
1250
1251 // g3
1252 Vmath::Vvtvvtp(nqtot, &wsp1[0], 1, &wsp4[0], 1, &wsp2[0], 1, &wsp5[0],
1253 1, &g3[0], 1);
1254 Vmath::Vvtvp(nqtot, &wsp3[0], 1, &wsp6[0], 1, &g3[0], 1, &g3[0], 1);
1255
1256 // g5
1257 Vmath::Svtsvtp(nqtot, df[2][0], &wsp4[0], 1, df[5][0], &wsp5[0], 1,
1258 &g5[0], 1);
1259 Vmath::Svtvp(nqtot, df[8][0], &wsp6[0], 1, &g5[0], 1, &g5[0], 1);
1260
1261 // g2
1262 Vmath::Fill(nqtot,
1263 df[2][0] * df[2][0] + df[5][0] * df[5][0] +
1264 df[8][0] * df[8][0],
1265 &g2[0], 1);
1266 }
1267
1268 for (unsigned int i = 0; i < dim; ++i)
1269 {
1270 for (unsigned int j = i; j < dim; ++j)
1271 {
1273 }
1274 }
1275}
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:140
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:729
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:151
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
svtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:746
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:687

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Blas::Dscal(), Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

◆ v_ComputeTraceNormal()

void Nektar::LocalRegions::PyrExp::v_ComputeTraceNormal ( const int  face)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 731 of file PyrExp.cpp.

732{
733 const SpatialDomains::GeomFactorsSharedPtr &geomFactors =
734 GetGeom()->GetMetricInfo();
735
737 for (int i = 0; i < ptsKeys.size(); ++i)
738 {
739 // Need at least 2 points for computing normals
740 if (ptsKeys[i].GetNumPoints() == 1)
741 {
742 LibUtilities::PointsKey pKey(2, ptsKeys[i].GetPointsType());
743 ptsKeys[i] = pKey;
744 }
745 }
746
747 SpatialDomains::GeomType type = geomFactors->GetGtype();
748 const Array<TwoD, const NekDouble> &df =
749 geomFactors->GetDerivFactors(ptsKeys);
750 const Array<OneD, const NekDouble> &jac = geomFactors->GetJac(ptsKeys);
751
752 LibUtilities::BasisKey tobasis0 = GetTraceBasisKey(face, 0);
753 LibUtilities::BasisKey tobasis1 = GetTraceBasisKey(face, 1);
754
755 // Number of quadrature points in face expansion.
756 int nq_face = tobasis0.GetNumPoints() * tobasis1.GetNumPoints();
757
758 int vCoordDim = GetCoordim();
759 int i;
760
761 m_traceNormals[face] = Array<OneD, Array<OneD, NekDouble>>(vCoordDim);
762 Array<OneD, Array<OneD, NekDouble>> &normal = m_traceNormals[face];
763 for (i = 0; i < vCoordDim; ++i)
764 {
765 normal[i] = Array<OneD, NekDouble>(nq_face);
766 }
767
768 size_t nqb = nq_face;
769 size_t nbnd = face;
770 m_elmtBndNormDirElmtLen[nbnd] = Array<OneD, NekDouble>{nqb, 0.0};
771 Array<OneD, NekDouble> &length = m_elmtBndNormDirElmtLen[nbnd];
772
773 // Regular geometry case
774 if (type == SpatialDomains::eRegular ||
776 {
777 NekDouble fac;
778 // Set up normals
779 switch (face)
780 {
781 case 0:
782 {
783 for (i = 0; i < vCoordDim; ++i)
784 {
785 normal[i][0] = -df[3 * i + 2][0];
786 }
787 break;
788 }
789 case 1:
790 {
791 for (i = 0; i < vCoordDim; ++i)
792 {
793 normal[i][0] = -df[3 * i + 1][0];
794 }
795 break;
796 }
797 case 2:
798 {
799 for (i = 0; i < vCoordDim; ++i)
800 {
801 normal[i][0] = df[3 * i][0] + df[3 * i + 2][0];
802 }
803 break;
804 }
805 case 3:
806 {
807 for (i = 0; i < vCoordDim; ++i)
808 {
809 normal[i][0] = df[3 * i + 1][0] + df[3 * i + 2][0];
810 }
811 break;
812 }
813 case 4:
814 {
815 for (i = 0; i < vCoordDim; ++i)
816 {
817 normal[i][0] = -df[3 * i][0];
818 }
819 break;
820 }
821 default:
822 ASSERTL0(false, "face is out of range (face < 4)");
823 }
824
825 // Normalise resulting vector.
826 fac = 0.0;
827 for (i = 0; i < vCoordDim; ++i)
828 {
829 fac += normal[i][0] * normal[i][0];
830 }
831 fac = 1.0 / sqrt(fac);
832
833 Vmath::Fill(nqb, fac, length, 1);
834
835 for (i = 0; i < vCoordDim; ++i)
836 {
837 Vmath::Fill(nq_face, fac * normal[i][0], normal[i], 1);
838 }
839 }
840 else
841 {
842 // Set up deformed normals.
843 int j, k;
844
845 int nq0 = ptsKeys[0].GetNumPoints();
846 int nq1 = ptsKeys[1].GetNumPoints();
847 int nq2 = ptsKeys[2].GetNumPoints();
848 int nq01 = nq0 * nq1;
849 int nqtot;
850
851 // Determine number of quadrature points on the face.
852 if (face == 0)
853 {
854 nqtot = nq0 * nq1;
855 }
856 else if (face == 1 || face == 3)
857 {
858 nqtot = nq0 * nq2;
859 }
860 else
861 {
862 nqtot = nq1 * nq2;
863 }
864
865 LibUtilities::PointsKey points0;
866 LibUtilities::PointsKey points1;
867
868 Array<OneD, NekDouble> faceJac(nqtot);
869 Array<OneD, NekDouble> normals(vCoordDim * nqtot, 0.0);
870
871 // Extract Jacobian along face and recover local derivatives
872 // (dx/dr) for polynomial interpolation by multiplying m_gmat by
873 // jacobian
874 switch (face)
875 {
876 case 0:
877 {
878 for (j = 0; j < nq01; ++j)
879 {
880 normals[j] = -df[2][j] * jac[j];
881 normals[nqtot + j] = -df[5][j] * jac[j];
882 normals[2 * nqtot + j] = -df[8][j] * jac[j];
883 faceJac[j] = jac[j];
884 }
885
886 points0 = ptsKeys[0];
887 points1 = ptsKeys[1];
888 break;
889 }
890
891 case 1:
892 {
893 for (j = 0; j < nq0; ++j)
894 {
895 for (k = 0; k < nq2; ++k)
896 {
897 int tmp = j + nq01 * k;
898 normals[j + k * nq0] = -df[1][tmp] * jac[tmp];
899 normals[nqtot + j + k * nq0] = -df[4][tmp] * jac[tmp];
900 normals[2 * nqtot + j + k * nq0] =
901 -df[7][tmp] * jac[tmp];
902 faceJac[j + k * nq0] = jac[tmp];
903 }
904 }
905
906 points0 = ptsKeys[0];
907 points1 = ptsKeys[2];
908 break;
909 }
910
911 case 2:
912 {
913 for (j = 0; j < nq1; ++j)
914 {
915 for (k = 0; k < nq2; ++k)
916 {
917 int tmp = nq0 - 1 + nq0 * j + nq01 * k;
918 normals[j + k * nq1] =
919 (df[0][tmp] + df[2][tmp]) * jac[tmp];
920 normals[nqtot + j + k * nq1] =
921 (df[3][tmp] + df[5][tmp]) * jac[tmp];
922 normals[2 * nqtot + j + k * nq1] =
923 (df[6][tmp] + df[8][tmp]) * jac[tmp];
924 faceJac[j + k * nq1] = jac[tmp];
925 }
926 }
927
928 points0 = ptsKeys[1];
929 points1 = ptsKeys[2];
930 break;
931 }
932
933 case 3:
934 {
935 for (j = 0; j < nq0; ++j)
936 {
937 for (k = 0; k < nq2; ++k)
938 {
939 int tmp = nq0 * (nq1 - 1) + j + nq01 * k;
940 normals[j + k * nq0] =
941 (df[1][tmp] + df[2][tmp]) * jac[tmp];
942 normals[nqtot + j + k * nq0] =
943 (df[4][tmp] + df[5][tmp]) * jac[tmp];
944 normals[2 * nqtot + j + k * nq0] =
945 (df[7][tmp] + df[8][tmp]) * jac[tmp];
946 faceJac[j + k * nq0] = jac[tmp];
947 }
948 }
949
950 points0 = ptsKeys[0];
951 points1 = ptsKeys[2];
952 break;
953 }
954
955 case 4:
956 {
957 for (j = 0; j < nq1; ++j)
958 {
959 for (k = 0; k < nq2; ++k)
960 {
961 int tmp = j * nq0 + nq01 * k;
962 normals[j + k * nq1] = -df[0][tmp] * jac[tmp];
963 normals[nqtot + j + k * nq1] = -df[3][tmp] * jac[tmp];
964 normals[2 * nqtot + j + k * nq1] =
965 -df[6][tmp] * jac[tmp];
966 faceJac[j + k * nq1] = jac[tmp];
967 }
968 }
969
970 points0 = ptsKeys[1];
971 points1 = ptsKeys[2];
972 break;
973 }
974
975 default:
976 ASSERTL0(false, "face is out of range (face < 4)");
977 }
978
979 Array<OneD, NekDouble> work(nq_face, 0.0);
980 // Interpolate Jacobian and invert
981 LibUtilities::Interp2D(points0, points1, faceJac,
982 tobasis0.GetPointsKey(), tobasis1.GetPointsKey(),
983 work);
984 Vmath::Sdiv(nq_face, 1.0, &work[0], 1, &work[0], 1);
985
986 // Interpolate normal and multiply by inverse Jacobian.
987 for (i = 0; i < vCoordDim; ++i)
988 {
989 LibUtilities::Interp2D(points0, points1, &normals[i * nqtot],
990 tobasis0.GetPointsKey(),
991 tobasis1.GetPointsKey(), &normal[i][0]);
992 Vmath::Vmul(nq_face, work, 1, normal[i], 1, normal[i], 1);
993 }
994
995 // Normalise to obtain unit normals.
996 Vmath::Zero(nq_face, work, 1);
997 for (i = 0; i < GetCoordim(); ++i)
998 {
999 Vmath::Vvtvp(nq_face, normal[i], 1, normal[i], 1, work, 1, work, 1);
1000 }
1001
1002 Vmath::Vsqrt(nq_face, work, 1, work, 1);
1003 Vmath::Sdiv(nq_face, 1.0, work, 1, work, 1);
1004
1005 Vmath::Vcopy(nqb, work, 1, length, 1);
1006
1007 for (i = 0; i < GetCoordim(); ++i)
1008 {
1009 Vmath::Vmul(nq_face, normal[i], 1, work, 1, normal[i], 1);
1010 }
1011 }
1012}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
std::map< int, NormalVector > m_traceNormals
Definition: Expansion.h:278
std::map< int, Array< OneD, NekDouble > > m_elmtBndNormDirElmtLen
the element length in each element boundary(Vertex, edge or face) normal direction calculated based o...
Definition: Expansion.h:288
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:171
const LibUtilities::BasisKey GetTraceBasisKey(const int i, int k=-1) const
This function returns the basis key belonging to the i-th trace.
Definition: StdExpansion.h:305
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:211
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:224
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:103
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
double NekDouble
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:529
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/x.
Definition: Vmath.cpp:319
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References ASSERTL0, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::BasisKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetNumPoints(), Nektar::LibUtilities::BasisKey::GetPointsKey(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::StdRegions::StdExpansion::GetTraceBasisKey(), Nektar::LibUtilities::Interp2D(), Nektar::LocalRegions::Expansion::m_elmtBndNormDirElmtLen, Nektar::LocalRegions::Expansion::m_traceNormals, Vmath::Sdiv(), tinysimd::sqrt(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

◆ v_CreateStdMatrix()

DNekMatSharedPtr Nektar::LocalRegions::PyrExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 1066 of file PyrExp.cpp.

1067{
1068 LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1069 LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1070 LibUtilities::BasisKey bkey2 = m_base[2]->GetBasisKey();
1073
1074 return tmp->GetStdMatrix(mkey);
1075}
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< StdPyrExp > StdPyrExpSharedPtr
Definition: StdPyrExp.h:258

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_DropLocMatrix()

void Nektar::LocalRegions::PyrExp::v_DropLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1082 of file PyrExp.cpp.

1083{
1084 m_matrixManager.DeleteObject(mkey);
1085}

References m_matrixManager.

◆ v_DropLocStaticCondMatrix()

void Nektar::LocalRegions::PyrExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1092 of file PyrExp.cpp.

1093{
1094 m_staticCondMatrixManager.DeleteObject(mkey);
1095}

References m_staticCondMatrixManager.

◆ v_ExtractDataToCoeffs()

void Nektar::LocalRegions::PyrExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  mode_offset,
NekDouble coeffs,
std::vector< LibUtilities::BasisType > &  fromType 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 543 of file PyrExp.cpp.

547{
548 int data_order0 = nummodes[mode_offset];
549 int fillorder0 = min(m_base[0]->GetNumModes(), data_order0);
550 int data_order1 = nummodes[mode_offset + 1];
551 int order1 = m_base[1]->GetNumModes();
552 int fillorder1 = min(order1, data_order1);
553 int data_order2 = nummodes[mode_offset + 2];
554 int order2 = m_base[2]->GetNumModes();
555 int fillorder2 = min(order2, data_order2);
556
557 // Check if not same order or basis and if not make temp
558 // element to read in data
559 if (fromType[0] != m_base[0]->GetBasisType() ||
560 fromType[1] != m_base[1]->GetBasisType() ||
561 fromType[2] != m_base[2]->GetBasisType() || data_order0 != fillorder0 ||
562 data_order1 != fillorder1 || data_order2 != fillorder2)
563 {
564 // Construct a pyr with the appropriate basis type at our
565 // quadrature points, and one more to do a forwards
566 // transform. We can then copy the output to coeffs.
567 StdRegions::StdPyrExp tmpPyr(
568 LibUtilities::BasisKey(fromType[0], data_order0,
569 m_base[0]->GetPointsKey()),
570 LibUtilities::BasisKey(fromType[1], data_order1,
571 m_base[1]->GetPointsKey()),
572 LibUtilities::BasisKey(fromType[2], data_order2,
573 m_base[2]->GetPointsKey()));
574
575 StdRegions::StdPyrExp tmpPyr2(m_base[0]->GetBasisKey(),
576 m_base[1]->GetBasisKey(),
577 m_base[2]->GetBasisKey());
578
579 Array<OneD, const NekDouble> tmpData(tmpPyr.GetNcoeffs(), data);
580 Array<OneD, NekDouble> tmpBwd(tmpPyr2.GetTotPoints());
581 Array<OneD, NekDouble> tmpOut(tmpPyr2.GetNcoeffs());
582
583 tmpPyr.BwdTrans(tmpData, tmpBwd);
584 tmpPyr2.FwdTrans(tmpBwd, tmpOut);
585 Vmath::Vcopy(tmpOut.size(), &tmpOut[0], 1, coeffs, 1);
586 }
587 else
588 {
589 Vmath::Vcopy(m_ncoeffs, &data[0], 1, coeffs, 1);
590 }
591}
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:162

References Nektar::StdRegions::StdExpansion::BwdTrans(), Nektar::StdRegions::StdExpansion::FwdTrans(), Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

◆ v_FwdTrans()

void Nektar::LocalRegions::PyrExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Forward transform from physical quadrature space stored in inarray and evaluate the expansion coefficients and store in (this)->m_coeffs.

Inputs:

  • inarray: array of physical quadrature points to be transformed

Outputs:

  • (this)->_coeffs: updated array of expansion coefficients.

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 223 of file PyrExp.cpp.

225{
226 if (m_base[0]->Collocation() && m_base[1]->Collocation() &&
227 m_base[2]->Collocation())
228 {
229 Vmath::Vcopy(GetNcoeffs(), &inarray[0], 1, &outarray[0], 1);
230 }
231 else
232 {
233 v_IProductWRTBase(inarray, outarray);
234
235 // get Mass matrix inverse
236 MatrixKey masskey(StdRegions::eInvMass, DetShapeType(), *this);
237 DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
238
239 // copy inarray in case inarray == outarray
240 DNekVec in(m_ncoeffs, outarray);
241 DNekVec out(m_ncoeffs, outarray, eWrapper);
242
243 out = (*matsys) * in;
244 }
245}
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into out...
Definition: PyrExp.cpp:278
int GetNcoeffs(void) const
This function returns the total number of coefficients used in the expansion.
Definition: StdExpansion.h:130
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:373
std::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
NekVector< NekDouble > DNekVec
Definition: NekTypeDefs.hpp:48

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::GetNcoeffs(), Nektar::StdRegions::StdExpansion::m_base, m_matrixManager, Nektar::StdRegions::StdExpansion::m_ncoeffs, v_IProductWRTBase(), and Vmath::Vcopy().

◆ v_GenMatrix()

DNekMatSharedPtr Nektar::LocalRegions::PyrExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 1045 of file PyrExp.cpp.

1046{
1047 DNekMatSharedPtr returnval;
1048
1049 switch (mkey.GetMatrixType())
1050 {
1057 returnval = Expansion3D::v_GenMatrix(mkey);
1058 break;
1059 default:
1060 returnval = StdPyrExp::v_GenMatrix(mkey);
1061 }
1062
1063 return returnval;
1064}
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey) override
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion3D::v_GenMatrix().

◆ v_GetCoord()

void Nektar::LocalRegions::PyrExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 519 of file PyrExp.cpp.

521{
522 int i;
523
524 ASSERTL1(Lcoords[0] <= -1.0 && Lcoords[0] >= 1.0 && Lcoords[1] <= -1.0 &&
525 Lcoords[1] >= 1.0 && Lcoords[2] <= -1.0 && Lcoords[2] >= 1.0,
526 "Local coordinates are not in region [-1,1]");
527
528 // m_geom->FillGeom(); // TODO: implement FillGeom()
529
530 for (i = 0; i < m_geom->GetCoordim(); ++i)
531 {
532 coords[i] = m_geom->GetCoord(i, Lcoords);
533 }
534}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:275

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_GetCoords()

void Nektar::LocalRegions::PyrExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 536 of file PyrExp.cpp.

539{
540 Expansion::v_GetCoords(coords_1, coords_2, coords_3);
541}
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3) override
Definition: Expansion.cpp:535

References Nektar::LocalRegions::Expansion::v_GetCoords().

◆ v_GetLinStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PyrExp::v_GetLinStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 502 of file PyrExp.cpp.

503{
504 LibUtilities::BasisKey bkey0(m_base[0]->GetBasisType(), 2,
505 m_base[0]->GetPointsKey());
506 LibUtilities::BasisKey bkey1(m_base[1]->GetBasisType(), 2,
507 m_base[1]->GetPointsKey());
508 LibUtilities::BasisKey bkey2(m_base[2]->GetBasisType(), 2,
509 m_base[2]->GetPointsKey());
510
512 bkey2);
513}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetLocMatrix()

DNekScalMatSharedPtr Nektar::LocalRegions::PyrExp::v_GetLocMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1077 of file PyrExp.cpp.

1078{
1079 return m_matrixManager[mkey];
1080}

References m_matrixManager.

◆ v_GetLocStaticCondMatrix()

DNekScalBlkMatSharedPtr Nektar::LocalRegions::PyrExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1087 of file PyrExp.cpp.

1088{
1089 return m_staticCondMatrixManager[mkey];
1090}

References m_staticCondMatrixManager.

◆ v_GetStdExp()

StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::PyrExp::v_GetStdExp ( void  ) const
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 495 of file PyrExp.cpp.

496{
498 m_base[0]->GetBasisKey(), m_base[1]->GetBasisKey(),
499 m_base[2]->GetBasisKey());
500}

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

◆ v_GetTracePhysMap()

void Nektar::LocalRegions::PyrExp::v_GetTracePhysMap ( const int  face,
Array< OneD, int > &  outarray 
)
overrideprotectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 633 of file PyrExp.cpp.

634{
635 int nquad0 = m_base[0]->GetNumPoints();
636 int nquad1 = m_base[1]->GetNumPoints();
637 int nquad2 = m_base[2]->GetNumPoints();
638
639 int nq0 = 0;
640 int nq1 = 0;
641
642 switch (face)
643 {
644 case 0:
645 nq0 = nquad0;
646 nq1 = nquad1;
647 if (outarray.size() != nq0 * nq1)
648 {
649 outarray = Array<OneD, int>(nq0 * nq1);
650 }
651
652 // Directions A and B positive
653 for (int i = 0; i < nquad0 * nquad1; ++i)
654 {
655 outarray[i] = i;
656 }
657
658 break;
659 case 1:
660 nq0 = nquad0;
661 nq1 = nquad2;
662 if (outarray.size() != nq0 * nq1)
663 {
664 outarray = Array<OneD, int>(nq0 * nq1);
665 }
666
667 // Direction A and B positive
668 for (int k = 0; k < nquad2; k++)
669 {
670 for (int i = 0; i < nquad0; ++i)
671 {
672 outarray[k * nquad0 + i] = (nquad0 * nquad1 * k) + i;
673 }
674 }
675
676 break;
677 case 2:
678 nq0 = nquad1;
679 nq1 = nquad2;
680 if (outarray.size() != nq0 * nq1)
681 {
682 outarray = Array<OneD, int>(nq0 * nq1);
683 }
684
685 // Directions A and B positive
686 for (int j = 0; j < nquad1 * nquad2; ++j)
687 {
688 outarray[j] = nquad0 - 1 + j * nquad0;
689 }
690 break;
691 case 3:
692
693 nq0 = nquad0;
694 nq1 = nquad2;
695 if (outarray.size() != nq0 * nq1)
696 {
697 outarray = Array<OneD, int>(nq0 * nq1);
698 }
699
700 // Direction A and B positive
701 for (int k = 0; k < nquad2; k++)
702 {
703 for (int i = 0; i < nquad0; ++i)
704 {
705 outarray[k * nquad0 + i] =
706 nquad0 * (nquad1 - 1) + (nquad0 * nquad1 * k) + i;
707 }
708 }
709 break;
710 case 4:
711 nq0 = nquad1;
712 nq1 = nquad2;
713
714 if (outarray.size() != nq0 * nq1)
715 {
716 outarray = Array<OneD, int>(nq0 * nq1);
717 }
718
719 // Directions A and B positive
720 for (int j = 0; j < nquad1 * nquad2; ++j)
721 {
722 outarray[j] = j * nquad0;
723 }
724 break;
725 default:
726 ASSERTL0(false, "face value (> 4) is out of range");
727 break;
728 }
729}

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

◆ v_Integral()

NekDouble Nektar::LocalRegions::PyrExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
overrideprotectedvirtual

Integrate the physical point list inarray over pyramidic region and return the value.

Inputs:

  • inarray: definition of function to be returned at quadrature point of expansion.

Outputs:

  • returns \(\int^1_{-1}\int^1_{-1}\int^1_{-1} u(\bar \eta_1, \eta_2, \eta_3) J[i,j,k] d \bar \eta_1 d \eta_2 d \eta_3\)
    \(= \sum_{i=0}^{Q_1 - 1} \sum_{j=0}^{Q_2 - 1} \sum_{k=0}^{Q_3 - 1} u(\bar \eta_{1i}^{0,0}, \eta_{2j}^{0,0},\eta_{3k}^{2,0})w_{i}^{0,0} w_{j}^{0,0} \hat w_{k}^{2,0} \)
    where \(inarray[i,j, k] = u(\bar \eta_{1i},\eta_{2j}, \eta_{3k}) \),
    \(\hat w_{k}^{2,0} = \frac {w^{2,0}} {2} \)
    and \( J[i,j,k] \) is the Jacobian evaluated at the quadrature point.

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 96 of file PyrExp.cpp.

97{
98 int nquad0 = m_base[0]->GetNumPoints();
99 int nquad1 = m_base[1]->GetNumPoints();
100 int nquad2 = m_base[2]->GetNumPoints();
101 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
102 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
103
104 // multiply inarray with Jacobian
105 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
106 {
107 Vmath::Vmul(nquad0 * nquad1 * nquad2, &jac[0], 1,
108 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
109 }
110 else
111 {
112 Vmath::Smul(nquad0 * nquad1 * nquad2, (NekDouble)jac[0],
113 (NekDouble *)&inarray[0], 1, &tmp[0], 1);
114 }
115
116 // call StdPyrExp version;
117 return StdPyrExp::v_Integral(tmp);
118}

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

◆ v_IProductWRTBase()

void Nektar::LocalRegions::PyrExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0*base1*base2 and put into outarray:

\( \begin{array}{rcl} I_{pqr} = (\phi_{pqr}, u)_{\delta} & = & \sum_{i=0}^{nq_0} \sum_{j=0}^{nq_1} \sum_{k=0}^{nq_2} \psi_{p}^{a} (\bar \eta_{1i}) \psi_{q}^{a} (\eta_{2j}) \psi_{pqr}^{c} (\eta_{3k}) w_i w_j w_k u(\bar \eta_{1,i} \eta_{2,j} \eta_{3,k}) J_{i,j,k}\\ & = & \sum_{i=0}^{nq_0} \psi_p^a(\bar \eta_{1,i}) \sum_{j=0}^{nq_1} \psi_{q}^a(\eta_{2,j}) \sum_{k=0}^{nq_2} \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} \end{array} \)
where

\(\phi_{pqr} (\xi_1 , \xi_2 , \xi_3) = \psi_p^a (\bar \eta_1) \psi_{q}^a (\eta_2) \psi_{pqr}^c (\eta_3) \)
which can be implemented as
\(f_{pqr} (\xi_{3k}) = \sum_{k=0}^{nq_3} \psi_{pqr}^c u(\bar \eta_{1i},\eta_{2j},\eta_{3k}) J_{i,j,k} = {\bf B_3 U} \)
\( g_{pq} (\xi_{3k}) = \sum_{j=0}^{nq_1} \psi_{q}^a (\xi_{2j}) f_{pqr} (\xi_{3k}) = {\bf B_2 F} \)
\( (\phi_{pqr}, u)_{\delta} = \sum_{k=0}^{nq_0} \psi_{p}^a (\xi_{3k}) g_{pq} (\xi_{3k}) = {\bf B_1 G} \)

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 278 of file PyrExp.cpp.

280{
281 v_IProductWRTBase_SumFac(inarray, outarray);
282}
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true) override
Definition: PyrExp.cpp:284

References v_IProductWRTBase_SumFac().

Referenced by v_FwdTrans().

◆ v_IProductWRTBase_SumFac()

void Nektar::LocalRegions::PyrExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 284 of file PyrExp.cpp.

287{
288 const int nquad0 = m_base[0]->GetNumPoints();
289 const int nquad1 = m_base[1]->GetNumPoints();
290 const int nquad2 = m_base[2]->GetNumPoints();
291 const int order0 = m_base[0]->GetNumModes();
292 const int order1 = m_base[1]->GetNumModes();
293
294 Array<OneD, NekDouble> wsp(order0 * nquad2 * (nquad1 + order1));
295
296 if (multiplybyweights)
297 {
298 Array<OneD, NekDouble> tmp(nquad0 * nquad1 * nquad2);
299
300 MultiplyByQuadratureMetric(inarray, tmp);
301
303 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
304 tmp, outarray, wsp, true, true, true);
305 }
306 else
307 {
309 m_base[0]->GetBdata(), m_base[1]->GetBdata(), m_base[2]->GetBdata(),
310 inarray, outarray, wsp, true, true, true);
311 }
312}
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &base2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1, bool doCheckCollDir2)

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

Referenced by v_IProductWRTBase().

◆ v_IProductWRTDerivBase()

void Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual

Calculates the inner product \( I_{pqr} = (u, \partial_{x_i} \phi_{pqr}) \).

The derivative of the basis functions is performed using the chain rule in order to incorporate the geometric factors. Assuming that the basis functions are a tensor product \(\phi_{pqr}(\eta_1,\eta_2,\eta_3) = \phi_1(\eta_1)\phi_2(\eta_2)\phi_3(\eta_3)\), this yields the result

\[ I_{pqr} = \sum_{j=1}^3 \left(u, \frac{\partial u}{\partial \eta_j} \frac{\partial \eta_j}{\partial x_i}\right) \]

In the pyramid element, we must also incorporate a second set of geometric factors which incorporate the collapsed co-ordinate system, so that

\[ \frac{\partial\eta_j}{\partial x_i} = \sum_{k=1}^3 \frac{\partial\eta_j}{\partial\xi_k}\frac{\partial\xi_k}{\partial x_i} \]

These derivatives can be found on p152 of Sherwin & Karniadakis.

Parameters
dirDirection in which to take the derivative.
inarrayThe function \( u \).
outarrayValue of the inner product.

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 344 of file PyrExp.cpp.

347{
348 v_IProductWRTDerivBase_SumFac(dir, inarray, outarray);
349}
void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) override
Definition: PyrExp.cpp:351

References v_IProductWRTDerivBase_SumFac().

◆ v_IProductWRTDerivBase_SumFac()

void Nektar::LocalRegions::PyrExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
overrideprotectedvirtual
Parameters
inarrayFunction evaluated at physical collocation points.
outarrayInner product with respect to each basis function over the element.

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 351 of file PyrExp.cpp.

354{
355 const int nquad0 = m_base[0]->GetNumPoints();
356 const int nquad1 = m_base[1]->GetNumPoints();
357 const int nquad2 = m_base[2]->GetNumPoints();
358 const int order0 = m_base[0]->GetNumModes();
359 const int order1 = m_base[1]->GetNumModes();
360 const int nqtot = nquad0 * nquad1 * nquad2;
361
362 Array<OneD, NekDouble> tmp1(nqtot);
363 Array<OneD, NekDouble> tmp2(nqtot);
364 Array<OneD, NekDouble> tmp3(nqtot);
365 Array<OneD, NekDouble> tmp4(nqtot);
366 Array<OneD, NekDouble> tmp6(m_ncoeffs);
367 Array<OneD, NekDouble> wsp(
368 std::max(nqtot, order0 * nquad2 * (nquad1 + order1)));
369
370 MultiplyByQuadratureMetric(inarray, tmp1);
371
372 Array<OneD, Array<OneD, NekDouble>> tmp2D{3};
373 tmp2D[0] = tmp2;
374 tmp2D[1] = tmp3;
375 tmp2D[2] = tmp4;
376
377 PyrExp::v_AlignVectorToCollapsedDir(dir, tmp1, tmp2D);
378
379 IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
380 m_base[2]->GetBdata(), tmp2, outarray, wsp,
381 false, true, true);
382
383 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetDbdata(),
384 m_base[2]->GetBdata(), tmp3, tmp6, wsp, true,
385 false, true);
386
387 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
388
389 IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(), m_base[1]->GetBdata(),
390 m_base[2]->GetDbdata(), tmp4, tmp6, wsp, true,
391 true, false);
392
393 Vmath::Vadd(m_ncoeffs, tmp6, 1, outarray, 1, outarray, 1);
394}
virtual void v_AlignVectorToCollapsedDir(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray) override
Definition: PyrExp.cpp:396

References Nektar::StdRegions::StdExpansion3D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), v_AlignVectorToCollapsedDir(), and Vmath::Vadd().

Referenced by v_IProductWRTDerivBase().

◆ v_LaplacianMatrixOp_MatFree_Kernel()

void Nektar::LocalRegions::PyrExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
overrideprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1277 of file PyrExp.cpp.

1280{
1281 // This implementation is only valid when there are no coefficients
1282 // associated to the Laplacian operator
1283 if (m_metrics.count(eMetricLaplacian00) == 0)
1284 {
1286 }
1287
1288 int nquad0 = m_base[0]->GetNumPoints();
1289 int nquad1 = m_base[1]->GetNumPoints();
1290 int nq2 = m_base[2]->GetNumPoints();
1291 int nqtot = nquad0 * nquad1 * nq2;
1292
1293 ASSERTL1(wsp.size() >= 6 * nqtot, "Insufficient workspace size.");
1294 ASSERTL1(m_ncoeffs <= nqtot, "Workspace not set up for ncoeffs > nqtot");
1295
1296 const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
1297 const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
1298 const Array<OneD, const NekDouble> &base2 = m_base[2]->GetBdata();
1299 const Array<OneD, const NekDouble> &dbase0 = m_base[0]->GetDbdata();
1300 const Array<OneD, const NekDouble> &dbase1 = m_base[1]->GetDbdata();
1301 const Array<OneD, const NekDouble> &dbase2 = m_base[2]->GetDbdata();
1302 const Array<OneD, const NekDouble> &metric00 =
1303 m_metrics[eMetricLaplacian00];
1304 const Array<OneD, const NekDouble> &metric01 =
1305 m_metrics[eMetricLaplacian01];
1306 const Array<OneD, const NekDouble> &metric02 =
1307 m_metrics[eMetricLaplacian02];
1308 const Array<OneD, const NekDouble> &metric11 =
1309 m_metrics[eMetricLaplacian11];
1310 const Array<OneD, const NekDouble> &metric12 =
1311 m_metrics[eMetricLaplacian12];
1312 const Array<OneD, const NekDouble> &metric22 =
1313 m_metrics[eMetricLaplacian22];
1314
1315 // Allocate temporary storage
1316 Array<OneD, NekDouble> wsp0(2 * nqtot, wsp);
1317 Array<OneD, NekDouble> wsp1(nqtot, wsp + 1 * nqtot);
1318 Array<OneD, NekDouble> wsp2(nqtot, wsp + 2 * nqtot);
1319 Array<OneD, NekDouble> wsp3(nqtot, wsp + 3 * nqtot);
1320 Array<OneD, NekDouble> wsp4(nqtot, wsp + 4 * nqtot);
1321 Array<OneD, NekDouble> wsp5(nqtot, wsp + 5 * nqtot);
1322
1323 // LAPLACIAN MATRIX OPERATION
1324 // wsp1 = du_dxi1 = D_xi1 * inarray = D_xi1 * u
1325 // wsp2 = du_dxi2 = D_xi2 * inarray = D_xi2 * u
1326 // wsp2 = du_dxi3 = D_xi3 * inarray = D_xi3 * u
1327 StdExpansion3D::PhysTensorDeriv(inarray, wsp0, wsp1, wsp2);
1328
1329 // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1330 // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1331 // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1332 // especially for this purpose
1333 Vmath::Vvtvvtp(nqtot, &metric00[0], 1, &wsp0[0], 1, &metric01[0], 1,
1334 &wsp1[0], 1, &wsp3[0], 1);
1335 Vmath::Vvtvp(nqtot, &metric02[0], 1, &wsp2[0], 1, &wsp3[0], 1, &wsp3[0], 1);
1336 Vmath::Vvtvvtp(nqtot, &metric01[0], 1, &wsp0[0], 1, &metric11[0], 1,
1337 &wsp1[0], 1, &wsp4[0], 1);
1338 Vmath::Vvtvp(nqtot, &metric12[0], 1, &wsp2[0], 1, &wsp4[0], 1, &wsp4[0], 1);
1339 Vmath::Vvtvvtp(nqtot, &metric02[0], 1, &wsp0[0], 1, &metric12[0], 1,
1340 &wsp1[0], 1, &wsp5[0], 1);
1341 Vmath::Vvtvp(nqtot, &metric22[0], 1, &wsp2[0], 1, &wsp5[0], 1, &wsp5[0], 1);
1342
1343 // outarray = m = (D_xi1 * B)^T * k
1344 // wsp1 = n = (D_xi2 * B)^T * l
1345 IProductWRTBase_SumFacKernel(dbase0, base1, base2, wsp3, outarray, wsp0,
1346 false, true, true);
1347 IProductWRTBase_SumFacKernel(base0, dbase1, base2, wsp4, wsp2, wsp0, true,
1348 false, true);
1349 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1350 IProductWRTBase_SumFacKernel(base0, base1, dbase2, wsp5, wsp2, wsp0, true,
1351 true, false);
1352 Vmath::Vadd(m_ncoeffs, wsp2.get(), 1, outarray.get(), 1, outarray.get(), 1);
1353}

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::StdRegions::StdExpansion::m_base, and Nektar::LocalRegions::Expansion::m_metrics.

◆ v_NormalTraceDerivFactors()

void Nektar::LocalRegions::PyrExp::v_NormalTraceDerivFactors ( Array< OneD, Array< OneD, NekDouble > > &  d0factors,
Array< OneD, Array< OneD, NekDouble > > &  d1factors,
Array< OneD, Array< OneD, NekDouble > > &  d2factors 
)
overrideprotectedvirtual

: This method gets all of the factors which are required as part of the Gradient Jump Penalty stabilisation and involves the product of the normal and geometric factors along the element trace.

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1360 of file PyrExp.cpp.

1364{
1365 int nquad0 = GetNumPoints(0);
1366 int nquad1 = GetNumPoints(1);
1367 int nquad2 = GetNumPoints(2);
1368
1369 const Array<TwoD, const NekDouble> &df =
1370 m_metricinfo->GetDerivFactors(GetPointsKeys());
1371
1372 if (d0factors.size() != 5)
1373 {
1374 d0factors = Array<OneD, Array<OneD, NekDouble>>(5);
1375 d1factors = Array<OneD, Array<OneD, NekDouble>>(5);
1376 d2factors = Array<OneD, Array<OneD, NekDouble>>(5);
1377 }
1378
1379 if (d0factors[0].size() != nquad0 * nquad1)
1380 {
1381 d0factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1382 d1factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1383 d2factors[0] = Array<OneD, NekDouble>(nquad0 * nquad1);
1384 }
1385
1386 if (d0factors[1].size() != nquad0 * nquad2)
1387 {
1388 d0factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1389 d0factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1390 d1factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1391 d1factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1392 d2factors[1] = Array<OneD, NekDouble>(nquad0 * nquad2);
1393 d2factors[3] = Array<OneD, NekDouble>(nquad0 * nquad2);
1394 }
1395
1396 if (d0factors[2].size() != nquad1 * nquad2)
1397 {
1398 d0factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1399 d0factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1400 d1factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1401 d1factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1402 d2factors[2] = Array<OneD, NekDouble>(nquad1 * nquad2);
1403 d2factors[4] = Array<OneD, NekDouble>(nquad1 * nquad2);
1404 }
1405
1406 // Outwards normals
1407 const Array<OneD, const Array<OneD, NekDouble>> &normal_0 =
1408 GetTraceNormal(0);
1409 const Array<OneD, const Array<OneD, NekDouble>> &normal_1 =
1410 GetTraceNormal(1);
1411 const Array<OneD, const Array<OneD, NekDouble>> &normal_2 =
1412 GetTraceNormal(2);
1413 const Array<OneD, const Array<OneD, NekDouble>> &normal_3 =
1414 GetTraceNormal(3);
1415 const Array<OneD, const Array<OneD, NekDouble>> &normal_4 =
1416 GetTraceNormal(4);
1417
1418 int ncoords = normal_0.size();
1419
1420 // first gather together standard cartesian inner products
1421 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1422 {
1423 // face 0
1424 for (int i = 0; i < nquad0 * nquad1; ++i)
1425 {
1426 d0factors[0][i] = df[0][i] * normal_0[0][i];
1427 d1factors[0][i] = df[1][i] * normal_0[0][i];
1428 d2factors[0][i] = df[2][i] * normal_0[0][i];
1429 }
1430
1431 for (int n = 1; n < ncoords; ++n)
1432 {
1433 for (int i = 0; i < nquad0 * nquad1; ++i)
1434 {
1435 d0factors[0][i] += df[3 * n][i] * normal_0[n][i];
1436 d1factors[0][i] += df[3 * n + 1][i] * normal_0[n][i];
1437 d2factors[0][i] += df[3 * n + 2][i] * normal_0[n][i];
1438 }
1439 }
1440
1441 // faces 1 and 3
1442 for (int j = 0; j < nquad2; ++j)
1443 {
1444 for (int i = 0; i < nquad0; ++i)
1445 {
1446 d0factors[1][j * nquad0 + i] = df[0][j * nquad0 * nquad1 + i] *
1447 normal_1[0][j * nquad0 + i];
1448 d1factors[1][j * nquad0 + i] = df[1][j * nquad0 * nquad1 + i] *
1449 normal_1[0][j * nquad0 + i];
1450 d2factors[1][j * nquad0 + i] = df[2][j * nquad0 * nquad1 + i] *
1451 normal_1[0][j * nquad0 + i];
1452
1453 d0factors[3][j * nquad0 + i] =
1454 df[0][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1455 normal_3[0][j * nquad0 + i];
1456 d1factors[3][j * nquad0 + i] =
1457 df[1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1458 normal_3[0][j * nquad0 + i];
1459 d2factors[3][j * nquad0 + i] =
1460 df[2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1461 normal_3[0][j * nquad0 + i];
1462 }
1463 }
1464
1465 for (int n = 1; n < ncoords; ++n)
1466 {
1467 for (int j = 0; j < nquad2; ++j)
1468 {
1469 for (int i = 0; i < nquad0; ++i)
1470 {
1471 d0factors[1][j * nquad0 + i] +=
1472 df[3 * n][j * nquad0 * nquad1 + i] *
1473 normal_1[0][j * nquad0 + i];
1474 d1factors[1][j * nquad0 + i] +=
1475 df[3 * n + 1][j * nquad0 * nquad1 + i] *
1476 normal_1[0][j * nquad0 + i];
1477 d2factors[1][j * nquad0 + i] +=
1478 df[3 * n + 2][j * nquad0 * nquad1 + i] *
1479 normal_1[0][j * nquad0 + i];
1480
1481 d0factors[3][j * nquad0 + i] +=
1482 df[3 * n][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1483 normal_3[0][j * nquad0 + i];
1484 d1factors[3][j * nquad0 + i] +=
1485 df[3 * n + 1][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1486 normal_3[0][j * nquad0 + i];
1487 d2factors[3][j * nquad0 + i] +=
1488 df[3 * n + 2][(j + 1) * nquad0 * nquad1 - nquad0 + i] *
1489 normal_3[0][j * nquad0 + i];
1490 }
1491 }
1492 }
1493
1494 // faces 2 and 4
1495 for (int j = 0; j < nquad2; ++j)
1496 {
1497 for (int i = 0; i < nquad1; ++i)
1498 {
1499 d0factors[2][j * nquad1 + i] =
1500 df[0][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1501 normal_2[0][j * nquad1 + i];
1502 d1factors[2][j * nquad1 + i] =
1503 df[1][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1504 normal_2[0][j * nquad1 + i];
1505 d2factors[2][j * nquad1 + i] =
1506 df[2][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1507 normal_2[0][j * nquad1 + i];
1508
1509 d0factors[4][j * nquad1 + i] =
1510 df[0][j * nquad0 * nquad1 + i * nquad0] *
1511 normal_4[0][j * nquad1 + i];
1512 d1factors[4][j * nquad1 + i] =
1513 df[1][j * nquad0 * nquad1 + i * nquad0] *
1514 normal_4[0][j * nquad1 + i];
1515 d2factors[4][j * nquad1 + i] =
1516 df[2][j * nquad0 * nquad1 + i * nquad0] *
1517 normal_4[0][j * nquad1 + i];
1518 }
1519 }
1520
1521 for (int n = 1; n < ncoords; ++n)
1522 {
1523 for (int j = 0; j < nquad2; ++j)
1524 {
1525 for (int i = 0; i < nquad1; ++i)
1526 {
1527 d0factors[2][j * nquad1 + i] +=
1528 df[3 * n][j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1529 normal_2[n][j * nquad1 + i];
1530 d1factors[2][j * nquad1 + i] +=
1531 df[3 * n + 1]
1532 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1533 normal_2[n][j * nquad1 + i];
1534 d2factors[2][j * nquad1 + i] +=
1535 df[3 * n + 2]
1536 [j * nquad0 * nquad1 + (i + 1) * nquad0 - 1] *
1537 normal_2[n][j * nquad1 + i];
1538
1539 d0factors[4][j * nquad1 + i] +=
1540 df[3 * n][i * nquad0 + j * nquad0 * nquad1] *
1541 normal_4[n][j * nquad1 + i];
1542 d1factors[4][j * nquad1 + i] +=
1543 df[3 * n + 1][i * nquad0 + j * nquad0 * nquad1] *
1544 normal_4[n][j * nquad1 + i];
1545 d2factors[4][j * nquad1 + i] +=
1546 df[3 * n + 2][i * nquad0 + j * nquad0 * nquad1] *
1547 normal_4[n][j * nquad1 + i];
1548 }
1549 }
1550 }
1551 }
1552 else
1553 {
1554 // Face 0
1555 for (int i = 0; i < nquad0 * nquad1; ++i)
1556 {
1557 d0factors[0][i] = df[0][0] * normal_0[0][i];
1558 d1factors[0][i] = df[1][0] * normal_0[0][i];
1559 d2factors[0][i] = df[2][0] * normal_0[0][i];
1560 }
1561
1562 for (int n = 1; n < ncoords; ++n)
1563 {
1564 for (int i = 0; i < nquad0 * nquad1; ++i)
1565 {
1566 d0factors[0][i] += df[3 * n][0] * normal_0[n][i];
1567 d1factors[0][i] += df[3 * n + 1][0] * normal_0[n][i];
1568 d2factors[0][i] += df[3 * n + 2][0] * normal_0[n][i];
1569 }
1570 }
1571
1572 // faces 1 and 3
1573 for (int i = 0; i < nquad0 * nquad2; ++i)
1574 {
1575 d0factors[1][i] = df[0][0] * normal_1[0][i];
1576 d0factors[3][i] = df[0][0] * normal_3[0][i];
1577
1578 d1factors[1][i] = df[1][0] * normal_1[0][i];
1579 d1factors[3][i] = df[1][0] * normal_3[0][i];
1580
1581 d2factors[1][i] = df[2][0] * normal_1[0][i];
1582 d2factors[3][i] = df[2][0] * normal_3[0][i];
1583 }
1584
1585 for (int n = 1; n < ncoords; ++n)
1586 {
1587 for (int i = 0; i < nquad0 * nquad2; ++i)
1588 {
1589 d0factors[1][i] += df[3 * n][0] * normal_1[n][i];
1590 d0factors[3][i] += df[3 * n][0] * normal_3[n][i];
1591
1592 d1factors[1][i] += df[3 * n + 1][0] * normal_1[n][i];
1593 d1factors[3][i] += df[3 * n + 1][0] * normal_3[n][i];
1594
1595 d2factors[1][i] += df[3 * n + 2][0] * normal_1[n][i];
1596 d2factors[3][i] += df[3 * n + 2][0] * normal_3[n][i];
1597 }
1598 }
1599
1600 // faces 2 and 4
1601 for (int i = 0; i < nquad1 * nquad2; ++i)
1602 {
1603 d0factors[2][i] = df[0][0] * normal_2[0][i];
1604 d0factors[4][i] = df[0][0] * normal_4[0][i];
1605
1606 d1factors[2][i] = df[1][0] * normal_2[0][i];
1607 d1factors[4][i] = df[1][0] * normal_4[0][i];
1608
1609 d2factors[2][i] = df[2][0] * normal_2[0][i];
1610 d2factors[4][i] = df[2][0] * normal_4[0][i];
1611 }
1612
1613 for (int n = 1; n < ncoords; ++n)
1614 {
1615 for (int i = 0; i < nquad1 * nquad2; ++i)
1616 {
1617 d0factors[2][i] += df[3 * n][0] * normal_2[n][i];
1618 d0factors[4][i] += df[3 * n][0] * normal_4[n][i];
1619
1620 d1factors[2][i] += df[3 * n + 1][0] * normal_2[n][i];
1621 d1factors[4][i] += df[3 * n + 1][0] * normal_4[n][i];
1622
1623 d2factors[2][i] += df[3 * n + 2][0] * normal_2[n][i];
1624 d2factors[4][i] += df[3 * n + 2][0] * normal_4[n][i];
1625 }
1626 }
1627 }
1628}
const NormalVector & GetTraceNormal(const int id)
Definition: Expansion.cpp:255

◆ v_PhysDeriv()

void Nektar::LocalRegions::PyrExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  u_physical,
Array< OneD, NekDouble > &  out_dxi1,
Array< OneD, NekDouble > &  out_dxi2,
Array< OneD, NekDouble > &  out_dxi3 
)
overrideprotectedvirtual

Calculate the derivative of the physical points.

The derivative is evaluated at the nodal physical points. Derivatives with respect to the local Cartesian coordinates.

\(\begin{Bmatrix} \frac {\partial} {\partial \xi_1} \\ \frac {\partial} {\partial \xi_2} \\ \frac {\partial} {\partial \xi_3} \end{Bmatrix} = \begin{Bmatrix} \frac 2 {(1-\eta_3)} \frac \partial {\partial \bar \eta_1} \\ \frac {\partial} {\partial \xi_2} \ \ \frac {(1 + \bar \eta_1)} {(1 - \eta_3)} \frac \partial {\partial \bar \eta_1} + \frac {\partial} {\partial \eta_3} \end{Bmatrix}\)

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 124 of file PyrExp.cpp.

128{
129 int nquad0 = m_base[0]->GetNumPoints();
130 int nquad1 = m_base[1]->GetNumPoints();
131 int nquad2 = m_base[2]->GetNumPoints();
132 Array<TwoD, const NekDouble> gmat =
133 m_metricinfo->GetDerivFactors(GetPointsKeys());
134 Array<OneD, NekDouble> diff0(nquad0 * nquad1 * nquad2);
135 Array<OneD, NekDouble> diff1(nquad0 * nquad1 * nquad2);
136 Array<OneD, NekDouble> diff2(nquad0 * nquad1 * nquad2);
137
138 StdPyrExp::v_PhysDeriv(inarray, diff0, diff1, diff2);
139
140 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
141 {
142 if (out_d0.size())
143 {
144 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[0][0], 1, &diff0[0], 1,
145 &out_d0[0], 1);
146 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[1][0], 1, &diff1[0], 1,
147 &out_d0[0], 1, &out_d0[0], 1);
148 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[2][0], 1, &diff2[0], 1,
149 &out_d0[0], 1, &out_d0[0], 1);
150 }
151
152 if (out_d1.size())
153 {
154 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[3][0], 1, &diff0[0], 1,
155 &out_d1[0], 1);
156 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[4][0], 1, &diff1[0], 1,
157 &out_d1[0], 1, &out_d1[0], 1);
158 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[5][0], 1, &diff2[0], 1,
159 &out_d1[0], 1, &out_d1[0], 1);
160 }
161
162 if (out_d2.size())
163 {
164 Vmath::Vmul(nquad0 * nquad1 * nquad2, &gmat[6][0], 1, &diff0[0], 1,
165 &out_d2[0], 1);
166 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[7][0], 1, &diff1[0], 1,
167 &out_d2[0], 1, &out_d2[0], 1);
168 Vmath::Vvtvp(nquad0 * nquad1 * nquad2, &gmat[8][0], 1, &diff2[0], 1,
169 &out_d2[0], 1, &out_d2[0], 1);
170 }
171 }
172 else // regular geometry
173 {
174 if (out_d0.size())
175 {
176 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[0][0], &diff0[0], 1,
177 &out_d0[0], 1);
178 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[1][0], &diff1[0], 1,
179 &out_d0[0], 1);
180 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[2][0], &diff2[0], 1,
181 &out_d0[0], 1);
182 }
183
184 if (out_d1.size())
185 {
186 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[3][0], &diff0[0], 1,
187 &out_d1[0], 1);
188 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[4][0], &diff1[0], 1,
189 &out_d1[0], 1);
190 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[5][0], &diff2[0], 1,
191 &out_d1[0], 1);
192 }
193
194 if (out_d2.size())
195 {
196 Vmath::Smul(nquad0 * nquad1 * nquad2, gmat[6][0], &diff0[0], 1,
197 &out_d2[0], 1);
198 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[7][0], &diff1[0], 1,
199 &out_d2[0], 1);
200 Blas::Daxpy(nquad0 * nquad1 * nquad2, gmat[8][0], &diff2[0], 1,
201 &out_d2[0], 1);
202 }
203 }
204}
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:137

References Blas::Daxpy(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::LocalRegions::PyrExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion3D.

Definition at line 606 of file PyrExp.cpp.

608{
609 Array<OneD, NekDouble> Lcoord(3);
610
611 ASSERTL0(m_geom, "m_geom not defined");
612
613 // TODO: check GetLocCoords()
614 m_geom->GetLocCoords(coord, Lcoord);
615
616 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
617}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::LocalRegions::PyrExp::v_PhysEvaluate ( const Array< OneD, NekDouble > &  coord,
const Array< OneD, const NekDouble > &  inarray,
std::array< NekDouble, 3 > &  firstOrderDerivs 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 619 of file PyrExp.cpp.

622{
623 Array<OneD, NekDouble> Lcoord(3);
624 ASSERTL0(m_geom, "m_geom not defined");
625 m_geom->GetLocCoords(coord, Lcoord);
626 return StdPyrExp::v_PhysEvaluate(Lcoord, inarray, firstOrderDerivs);
627}

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

◆ v_StdPhysEvaluate()

NekDouble Nektar::LocalRegions::PyrExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
overrideprotectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 598 of file PyrExp.cpp.

601{
602 // Evaluate point in local coordinates.
603 return StdExpansion3D::v_PhysEvaluate(Lcoord, physvals);
604}

◆ v_SVVLaplacianFilter()

void Nektar::LocalRegions::PyrExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
overrideprotectedvirtual

Reimplemented from Nektar::StdRegions::StdPyrExp.

Definition at line 1014 of file PyrExp.cpp.

1016{
1017 int nq = GetTotPoints();
1018
1019 // Calculate sqrt of the Jacobian
1020 Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
1021 Array<OneD, NekDouble> sqrt_jac(nq);
1022 if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1023 {
1024 Vmath::Vsqrt(nq, jac, 1, sqrt_jac, 1);
1025 }
1026 else
1027 {
1028 Vmath::Fill(nq, sqrt(jac[0]), sqrt_jac, 1);
1029 }
1030
1031 // Multiply array by sqrt(Jac)
1032 Vmath::Vmul(nq, sqrt_jac, 1, array, 1, array, 1);
1033
1034 // Apply std region filter
1035 StdPyrExp::v_SVVLaplacianFilter(array, mkey);
1036
1037 // Divide by sqrt(Jac)
1038 Vmath::Vdiv(nq, array, 1, sqrt_jac, 1, array, 1);
1039}
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:280

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, tinysimd::sqrt(), Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

Member Data Documentation

◆ m_matrixManager

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::PyrExp::m_matrixManager
private

Definition at line 176 of file PyrExp.h.

Referenced by v_DropLocMatrix(), v_FwdTrans(), and v_GetLocMatrix().

◆ m_staticCondMatrixManager

LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::PyrExp::m_staticCondMatrixManager
private

Definition at line 178 of file PyrExp.h.

Referenced by v_DropLocStaticCondMatrix(), and v_GetLocStaticCondMatrix().