Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Friends | List of all members
Nektar::CompressibleFlowSystem Class Referenceabstract

#include <CompressibleFlowSystem.h>

Inheritance diagram for Nektar::CompressibleFlowSystem:
[legend]

Public Member Functions

virtual ~CompressibleFlowSystem ()
 Destructor for CompressibleFlowSystem class. More...
 
NekDouble GetStabilityLimit (int n)
 Function to calculate the stability limit for DG/CG. More...
 
Array< OneD, NekDoubleGetStabilityLimitVector (const Array< OneD, int > &ExpOrder)
 Function to calculate the stability limit for DG/CG (a vector of them). More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
SOLVER_UTILS_EXPORT bool ParallelInTime ()
 Check if solver use Parallel-in-Time. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
SOLVER_UTILS_EXPORT void GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Protected Member Functions

 CompressibleFlowSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual void v_InitObject (bool DeclareFields=true) override
 Initialization object for CompressibleFlowSystem class. More...
 
virtual void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
virtual void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
virtual bool v_HasConstantDensity () override
 
virtual void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
void InitialiseParameters ()
 Load CFS parameters from the session file. More...
 
void InitAdvection ()
 Create advection and diffusion objects for CFS. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void DoAdvection (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Compute the advection terms for the right-hand side. More...
 
void DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Add the diffusions terms to the right-hand side. More...
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations. More...
 
void GetFluxVectorDeAlias (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations by using the de-aliasing technique. More...
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void SetBoundaryConditionsBwdWeight ()
 Set up a weight on physical boundaries for boundary condition applications. More...
 
void GetElmtTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
 Calculate the maximum timestep on each element subject to CFL restrictions. More...
 
virtual NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray) override
 Calculate the maximum timestep subject to CFL restrictions. More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0) override
 Set up logic for residual calculation. More...
 
virtual void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time=0.0) override
 
NekDouble GetGamma ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 
virtual MultiRegions::ExpListSharedPtr v_GetPressure () override
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables) override
 
virtual void v_DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)=0
 
virtual Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
virtual void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2) override
 
virtual bool v_SupportsShockCaptType (const std::string type) const =0
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Protected Attributes

SolverUtils::DiffusionSharedPtr m_diffusion
 
ArtificialDiffusionSharedPtr m_artificialDiffusion
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
NekDouble m_gamma
 
std::string m_shockCaptureType
 
NekDouble m_filterAlpha
 
NekDouble m_filterExponent
 
NekDouble m_filterCutoff
 
bool m_useFiltering
 
bool m_useLocalTimeStep
 
Array< OneD, NekDoublem_muav
 
Array< OneD, NekDoublem_muavTrace
 
VariableConverterSharedPtr m_varConv
 
std::vector< CFSBndCondSharedPtrm_bndConds
 
NekDouble m_bndEvaluateTime
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities. More...
 
Array< OneD, NekDoublem_movingFrameTheta
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Private Member Functions

void EvaluateIsentropicVortex (unsigned int field, Array< OneD, NekDouble > &outfield, NekDouble time, const int o=0)
 Isentropic Vortex Test Case. More...
 
void GetExactRinglebFlow (int field, Array< OneD, NekDouble > &outarray)
 Ringleb Flow Test Case. More...
 

Friends

class MemoryManager< CompressibleFlowSystem >
 

Additional Inherited Members

- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Definition at line 61 of file CompressibleFlowSystem.h.

Constructor & Destructor Documentation

◆ ~CompressibleFlowSystem()

Nektar::CompressibleFlowSystem::~CompressibleFlowSystem ( )
virtual

Destructor for CompressibleFlowSystem class.

Definition at line 129 of file CompressibleFlowSystem.cpp.

130{
131}

◆ CompressibleFlowSystem()

Nektar::CompressibleFlowSystem::CompressibleFlowSystem ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Definition at line 45 of file CompressibleFlowSystem.cpp.

48 : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
49{
50}
SOLVER_UTILS_EXPORT AdvectionSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

Member Function Documentation

◆ DoAdvection()

void Nektar::CompressibleFlowSystem::DoAdvection ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protected

Compute the advection terms for the right-hand side.

Definition at line 341 of file CompressibleFlowSystem.cpp.

346{
347 int nvariables = inarray.size();
348 Array<OneD, Array<OneD, NekDouble>> advVel(m_spacedim);
349
350 m_advObject->Advect(nvariables, m_fields, advVel, inarray, outarray, time,
351 pFwd, pBwd);
352}
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.

References Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, and Nektar::SolverUtils::EquationSystem::m_spacedim.

Referenced by DoOdeRhs().

◆ DoDiffusion()

void Nektar::CompressibleFlowSystem::DoDiffusion ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protected

Add the diffusions terms to the right-hand side.

Definition at line 357 of file CompressibleFlowSystem.cpp.

362{
363 v_DoDiffusion(inarray, outarray, pFwd, pBwd);
364}
virtual void v_DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)=0

References v_DoDiffusion().

Referenced by DoOdeRhs().

◆ DoOdeProjection()

void Nektar::CompressibleFlowSystem::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection.

Definition at line 299 of file CompressibleFlowSystem.cpp.

302{
303 size_t nvariables = inarray.size();
304
305 switch (m_projectionType)
306 {
308 {
309 // Just copy over array
310 int npoints = GetNpoints();
311
312 for (size_t i = 0; i < nvariables; ++i)
313 {
314 Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
315 if (m_useFiltering)
316 {
317 m_fields[i]->ExponentialFilter(outarray[i], m_filterAlpha,
320 }
321 }
322 SetBoundaryConditions(outarray, time);
323 break;
324 }
327 {
328 NEKERROR(ErrorUtil::efatal, "No Continuous Galerkin for full "
329 "compressible Navier-Stokes equations");
330 break;
331 }
332 default:
333 NEKERROR(ErrorUtil::efatal, "Unknown projection scheme");
334 break;
335 }
336}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
SOLVER_UTILS_EXPORT int GetNpoints()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191

References Nektar::MultiRegions::eDiscontinuous, Nektar::ErrorUtil::efatal, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, m_filterAlpha, m_filterCutoff, m_filterExponent, Nektar::SolverUtils::EquationSystem::m_projectionType, m_useFiltering, NEKERROR, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by Nektar::CFSImplicit::NonlinSysEvaluatorCoeff(), Nektar::CFSImplicit::PreconCoeff(), and v_InitObject().

◆ DoOdeRhs()

void Nektar::CompressibleFlowSystem::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the right-hand side.

Definition at line 216 of file CompressibleFlowSystem.cpp.

219{
220 size_t nvariables = inarray.size();
221 size_t npoints = GetNpoints();
222 size_t nTracePts = GetTraceTotPoints();
223
224 m_bndEvaluateTime = time;
225
226 // Store forwards/backwards space along trace space
227 Array<OneD, Array<OneD, NekDouble>> Fwd(nvariables);
228 Array<OneD, Array<OneD, NekDouble>> Bwd(nvariables);
229
231 {
234 }
235 else
236 {
237 for (size_t i = 0; i < nvariables; ++i)
238 {
239 Fwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
240 Bwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
241 m_fields[i]->GetFwdBwdTracePhys(inarray[i], Fwd[i], Bwd[i]);
242 }
243 }
244
245 // Calculate advection
246 LibUtilities::Timer timer;
247 timer.Start();
248 DoAdvection(inarray, outarray, time, Fwd, Bwd);
249 timer.Stop();
250 timer.AccumulateRegion("DoAdvection");
251
252 // Negate results
253 for (size_t i = 0; i < nvariables; ++i)
254 {
255 Vmath::Neg(npoints, outarray[i], 1);
256 }
257
258 // Add diffusion terms
259 timer.Start();
260 DoDiffusion(inarray, outarray, Fwd, Bwd);
261 timer.Stop();
262 timer.AccumulateRegion("DoDiffusion");
263
264 // Add forcing terms
265 for (auto &x : m_forcing)
266 {
267 x->Apply(m_fields, inarray, outarray, time);
268 }
269
271 {
272 size_t nElements = m_fields[0]->GetExpSize();
273 int nq, offset;
274 NekDouble fac;
275 Array<OneD, NekDouble> tmp;
276
277 Array<OneD, NekDouble> tstep(nElements, 0.0);
278 GetElmtTimeStep(inarray, tstep);
279
280 // Loop over elements
281 for (size_t n = 0; n < nElements; ++n)
282 {
283 nq = m_fields[0]->GetExp(n)->GetTotPoints();
284 offset = m_fields[0]->GetPhys_Offset(n);
285 fac = tstep[n] / m_timestep;
286 for (size_t i = 0; i < nvariables; ++i)
287 {
288 Vmath::Smul(nq, fac, outarray[i] + offset, 1,
289 tmp = outarray[i] + offset, 1);
290 }
291 }
292 }
293}
void GetElmtTimeStep(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
Calculate the maximum timestep on each element subject to CFL restrictions.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
void DoAdvection(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
Compute the advection terms for the right-hand side.
void DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
Add the diffusions terms to the right-hand side.
NekDouble m_timestep
Time step size.
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
enum HomogeneousType m_HomogeneousType
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray
double NekDouble
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:513
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245

References Nektar::LibUtilities::Timer::AccumulateRegion(), DoAdvection(), DoDiffusion(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, GetElmtTimeStep(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), m_bndEvaluateTime, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::SolverUtils::EquationSystem::m_timestep, m_useLocalTimeStep, Vmath::Neg(), Nektar::NullNekDoubleArrayOfArray, Vmath::Smul(), Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by v_InitObject(), and v_SteadyStateResidual().

◆ EvaluateIsentropicVortex()

void Nektar::CompressibleFlowSystem::EvaluateIsentropicVortex ( unsigned int  field,
Array< OneD, NekDouble > &  outfield,
NekDouble  time,
const int  o = 0 
)
private

Isentropic Vortex Test Case.

Definition at line 1053 of file CompressibleFlowSystem.cpp.

1056{
1057 NekDouble beta, u0, v0, x0, y0;
1058
1059 int nTotQuadPoints = GetTotPoints();
1060 Array<OneD, NekDouble> x(nTotQuadPoints);
1061 Array<OneD, NekDouble> y(nTotQuadPoints);
1062 Array<OneD, NekDouble> z(nTotQuadPoints);
1063 Array<OneD, Array<OneD, NekDouble>> u(m_spacedim + 2);
1064
1065 m_fields[0]->GetCoords(x, y, z);
1066
1067 for (int i = 0; i < m_spacedim + 2; ++i)
1068 {
1069 u[i] = Array<OneD, NekDouble>(nTotQuadPoints);
1070 }
1071 m_session->LoadParameter("IsentropicBeta", beta, 5.0);
1072 m_session->LoadParameter("IsentropicU0", u0, 1.0);
1073 m_session->LoadParameter("IsentropicV0", v0, 0.5);
1074 m_session->LoadParameter("IsentropicX0", x0, 5.0);
1075 m_session->LoadParameter("IsentropicY0", y0, 0.0);
1076 boost::ignore_unused(z);
1077
1078 int nq = x.size();
1079
1080 // Flow parameters
1081 NekDouble r, xbar, ybar, tmp;
1082 NekDouble fac = 1.0 / (16.0 * m_gamma * M_PI * M_PI);
1083
1084 // In 3D zero rhow field.
1085 if (m_spacedim == 3)
1086 {
1087 Vmath::Zero(nq, &u[3][o], 1);
1088 }
1089
1090 // Fill storage
1091 for (int i = 0; i < nq; ++i)
1092 {
1093 xbar = x[i] - u0 * time - x0;
1094 ybar = y[i] - v0 * time - y0;
1095 r = sqrt(xbar * xbar + ybar * ybar);
1096 tmp = beta * exp(1 - r * r);
1097 u[0][i + o] =
1098 pow(1.0 - (m_gamma - 1.0) * tmp * tmp * fac, 1.0 / (m_gamma - 1.0));
1099 u[1][i + o] = u[0][i + o] * (u0 - tmp * ybar / (2 * M_PI));
1100 u[2][i + o] = u[0][i + o] * (v0 + tmp * xbar / (2 * M_PI));
1101 u[m_spacedim + 1][i + o] =
1102 pow(u[0][i + o], m_gamma) / (m_gamma - 1.0) +
1103 0.5 * (u[1][i + o] * u[1][i + o] + u[2][i + o] * u[2][i + o]) /
1104 u[0][i + o];
1105 }
1106 Vmath::Vcopy(nTotQuadPoints, u[field].get(), 1, outfield.get(), 1);
1107}
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT int GetTotPoints()
@ beta
Gauss Radau pinned at x=-1,.
Definition: PointsType.h:61
std::vector< double > z(NPUPPER)
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::LibUtilities::beta, Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, tinysimd::sqrt(), Vmath::Vcopy(), Nektar::UnitTests::z(), and Vmath::Zero().

Referenced by v_EvaluateExactSolution(), and v_SetInitialConditions().

◆ GetElmtTimeStep()

void Nektar::CompressibleFlowSystem::GetElmtTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, NekDouble > &  tstep 
)
protected

Calculate the maximum timestep on each element subject to CFL restrictions.

Definition at line 560 of file CompressibleFlowSystem.cpp.

563{
564 boost::ignore_unused(inarray);
565
566 size_t nElements = m_fields[0]->GetExpSize();
567
568 // Change value of m_timestep (in case it is set to zero)
569 NekDouble tmp = m_timestep;
570 m_timestep = 1.0;
571
572 Array<OneD, NekDouble> cfl(nElements);
573 cfl = GetElmtCFLVals();
574
575 // Factors to compute the time-step limit
577
578 // Loop over elements to compute the time-step limit for each element
579 for (size_t n = 0; n < nElements; ++n)
580 {
581 tstep[n] = m_cflSafetyFactor * alpha / cfl[n];
582 }
583
584 // Restore value of m_timestep
585 m_timestep = tmp;
586}
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > GetElmtCFLVals(const bool FlagAcousticCFL=true)
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator()
Get the maximum timestep estimator for cfl control.

References Nektar::SolverUtils::AdvectionSystem::GetElmtCFLVals(), Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_timestep, and Nektar::SolverUtils::UnsteadySystem::MaxTimeStepEstimator().

Referenced by DoOdeRhs(), Nektar::CFSImplicit::DoOdeRhsCoeff(), and v_GetTimeStep().

◆ GetExactRinglebFlow()

void Nektar::CompressibleFlowSystem::GetExactRinglebFlow ( int  field,
Array< OneD, NekDouble > &  outarray 
)
private

Ringleb Flow Test Case.

Compute the exact solution for the Ringleb flow problem.

Definition at line 1112 of file CompressibleFlowSystem.cpp.

1114{
1115 int nTotQuadPoints = GetTotPoints();
1116
1117 Array<OneD, NekDouble> rho(nTotQuadPoints, 100.0);
1118 Array<OneD, NekDouble> rhou(nTotQuadPoints);
1119 Array<OneD, NekDouble> rhov(nTotQuadPoints);
1120 Array<OneD, NekDouble> E(nTotQuadPoints);
1121 Array<OneD, NekDouble> x(nTotQuadPoints);
1122 Array<OneD, NekDouble> y(nTotQuadPoints);
1123 Array<OneD, NekDouble> z(nTotQuadPoints);
1124
1125 m_fields[0]->GetCoords(x, y, z);
1126
1127 // Flow parameters
1128 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
1129 NekDouble J11, J12, J21, J22, det;
1130 NekDouble Fx, Fy;
1131 NekDouble xi, yi;
1132 NekDouble dV;
1133 NekDouble dtheta;
1134 NekDouble par1;
1135 NekDouble theta = M_PI / 4.0;
1136 NekDouble kExt = 0.7;
1137 NekDouble V = kExt * sin(theta);
1138 NekDouble toll = 1.0e-8;
1139 NekDouble errV = 1.0;
1140 NekDouble errTheta = 1.0;
1141 NekDouble gamma = m_gamma;
1142 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
1143
1144 for (int i = 0; i < nTotQuadPoints; ++i)
1145 {
1146 while ((abs(errV) > toll) || (abs(errTheta) > toll))
1147 {
1148 VV = V * V;
1149 sint = sin(theta);
1150 c = sqrt(1.0 - gamma_1_2 * VV);
1151 k = V / sint;
1152 phi = 1.0 / k;
1153 pp = phi * phi;
1154 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
1155 1.0 / (5.0 * c * c * c * c * c) -
1156 0.5 * log((1.0 + c) / (1.0 - c));
1157
1158 r = pow(c, 1.0 / gamma_1_2);
1159 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
1160 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
1161 par1 = 25.0 - 5.0 * VV;
1162 ss = sint * sint;
1163
1164 Fx = xi - x[i];
1165 Fy = yi - y[i];
1166
1167 J11 =
1168 39062.5 / pow(par1, 3.5) * (1.0 / VV - 2.0 / VV * ss) * V +
1169 1562.5 / pow(par1, 2.5) *
1170 (-2.0 / (VV * V) + 4.0 / (VV * V) * ss) +
1171 12.5 / pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
1172 7812.5 / pow(par1, 3.5) * V -
1173 0.25 *
1174 (-1.0 / pow(par1, 0.5) * V / (1.0 - 0.2 * pow(par1, 0.5)) -
1175 (1.0 + 0.2 * pow(par1, 0.5)) /
1176 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
1177 pow(par1, 0.5) * V) /
1178 (1.0 + 0.2 * pow(par1, 0.5)) * (1.0 - 0.2 * pow(par1, 0.5));
1179
1180 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
1181 J21 = -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
1182 pow((1.0 - ss), 0.5) +
1183 78125.0 / V * sint / pow(par1, 3.5) * pow((1.0 - ss), 0.5);
1184
1185 // the matrix is singular when theta = pi/2
1186 if (abs(y[i]) < toll && abs(cos(theta)) < toll)
1187 {
1188 J22 = -39062.5 / pow(par1, 3.5) / V +
1189 3125 / pow(par1, 2.5) / (VV * V) +
1190 12.5 / pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
1191 7812.5 / pow(par1, 3.5) * V -
1192 0.25 *
1193 (-1.0 / pow(par1, 0.5) * V /
1194 (1.0 - 0.2 * pow(par1, 0.5)) -
1195 (1.0 + 0.2 * pow(par1, 0.5)) /
1196 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
1197 pow(par1, 0.5) * V) /
1198 (1.0 + 0.2 * pow(par1, 0.5)) *
1199 (1.0 - 0.2 * pow(par1, 0.5));
1200
1201 // dV = -dV/dx * Fx
1202 dV = -1.0 / J22 * Fx;
1203 dtheta = 0.0;
1204 theta = M_PI / 2.0;
1205 }
1206 else
1207 {
1208 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
1209 pow((1.0 - ss), 0.5) -
1210 3125.0 / VV * ss / pow(par1, 2.5) / pow((1.0 - ss), 0.5) *
1211 cos(theta);
1212
1213 det = -1.0 / (J11 * J22 - J12 * J21);
1214
1215 // [dV dtheta]' = -[invJ]*[Fx Fy]'
1216 dV = det * (J22 * Fx - J12 * Fy);
1217 dtheta = det * (-J21 * Fx + J11 * Fy);
1218 }
1219
1220 V = V + dV;
1221 theta = theta + dtheta;
1222
1223 errV = abs(dV);
1224 errTheta = abs(dtheta);
1225 }
1226
1227 c = sqrt(1.0 - gamma_1_2 * VV);
1228 r = pow(c, 1.0 / gamma_1_2);
1229
1230 rho[i] = r;
1231 rhou[i] = rho[i] * V * cos(theta);
1232 rhov[i] = rho[i] * V * sin(theta);
1233 P = (c * c) * rho[i] / gamma;
1234 E[i] = P / (gamma - 1.0) +
1235 0.5 * (rhou[i] * rhou[i] / rho[i] + rhov[i] * rhov[i] / rho[i]);
1236
1237 // Resetting the guess value
1238 errV = 1.0;
1239 errTheta = 1.0;
1240 theta = M_PI / 4.0;
1241 V = kExt * sin(theta);
1242 }
1243
1244 switch (field)
1245 {
1246 case 0:
1247 outarray = rho;
1248 break;
1249 case 1:
1250 outarray = rhou;
1251 break;
1252 case 2:
1253 outarray = rhov;
1254 break;
1255 case 3:
1256 outarray = E;
1257 break;
1258 default:
1259 ASSERTL0(false, "Error in variable number!");
1260 break;
1261 }
1262}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
@ P
Monomial polynomials .
Definition: BasisType.h:64
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298
scalarT< T > log(scalarT< T > in)
Definition: scalar.hpp:303

References tinysimd::abs(), ASSERTL0, Nektar::SolverUtils::EquationSystem::GetTotPoints(), tinysimd::log(), Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::LibUtilities::P, tinysimd::sqrt(), and Nektar::UnitTests::z().

Referenced by v_EvaluateExactSolution().

◆ GetFluxVector()

void Nektar::CompressibleFlowSystem::GetFluxVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
TensorOfArray3D< NekDouble > &  flux 
)
protected

Return the flux vector for the compressible Euler equations.

Parameters
physfieldFields.
fluxResulting flux.

Definition at line 410 of file CompressibleFlowSystem.cpp.

413{
414 size_t nVariables = physfield.size();
415 size_t nPts = physfield[0].size();
416
417 constexpr unsigned short maxVel = 3;
418 constexpr unsigned short maxFld = 5;
419
420 // hardcoding done for performance reasons
421 ASSERTL1(nVariables <= maxFld, "GetFluxVector, hard coded max fields");
422
423 for (size_t p = 0; p < nPts; ++p)
424 {
425 // local storage
426 std::array<NekDouble, maxFld> fieldTmp;
427 std::array<NekDouble, maxVel> velocity;
428
429 // rearrenge and load data
430 for (size_t f = 0; f < nVariables; ++f)
431 {
432 fieldTmp[f] = physfield[f][p]; // load
433 }
434
435 // 1 / rho
436 NekDouble oneOrho = 1.0 / fieldTmp[0];
437
438 for (size_t d = 0; d < m_spacedim; ++d)
439 {
440 // Flux vector for the rho equation
441 flux[0][d][p] = fieldTmp[d + 1]; // store
442 // compute velocity
443 velocity[d] = fieldTmp[d + 1] * oneOrho;
444 }
445
446 NekDouble pressure = m_varConv->GetPressure(fieldTmp.data());
447 NekDouble ePlusP = fieldTmp[m_spacedim + 1] + pressure;
448 for (size_t f = 0; f < m_spacedim; ++f)
449 {
450 // Flux vector for the velocity fields
451 for (size_t d = 0; d < m_spacedim; ++d)
452 {
453 flux[f + 1][d][p] = velocity[d] * fieldTmp[f + 1]; // store
454 }
455
456 // Add pressure to appropriate field
457 flux[f + 1][f][p] += pressure;
458
459 // Flux vector for energy
460 flux[m_spacedim + 1][f][p] = ePlusP * velocity[f]; // store
461 }
462 }
463}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
VariableConverterSharedPtr m_varConv
std::vector< double > d(NPUPPER *NPUPPER)

References ASSERTL1, Nektar::UnitTests::d(), Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, CellMLToNektar.cellml_metadata::p, and CG_Iterations::pressure.

Referenced by InitAdvection().

◆ GetFluxVectorDeAlias()

void Nektar::CompressibleFlowSystem::GetFluxVectorDeAlias ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
TensorOfArray3D< NekDouble > &  flux 
)
protected

Return the flux vector for the compressible Euler equations by using the de-aliasing technique.

Parameters
physfieldFields.
fluxResulting flux.

Definition at line 472 of file CompressibleFlowSystem.cpp.

475{
476 int i, j;
477 size_t nq = physfield[0].size();
478 size_t nVariables = m_fields.size();
479
480 // Factor to rescale 1d points in dealiasing
481 NekDouble OneDptscale = 2;
482 nq = m_fields[0]->Get1DScaledTotPoints(OneDptscale);
483
484 Array<OneD, NekDouble> pressure(nq);
485 Array<OneD, Array<OneD, NekDouble>> velocity(m_spacedim);
486
487 Array<OneD, Array<OneD, NekDouble>> physfield_interp(nVariables);
488 TensorOfArray3D<NekDouble> flux_interp(nVariables);
489
490 for (size_t i = 0; i < nVariables; ++i)
491 {
492 physfield_interp[i] = Array<OneD, NekDouble>(nq);
493 flux_interp[i] = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
494 m_fields[0]->PhysInterp1DScaled(OneDptscale, physfield[i],
495 physfield_interp[i]);
496
497 for (j = 0; j < m_spacedim; ++j)
498 {
499 flux_interp[i][j] = Array<OneD, NekDouble>(nq);
500 }
501 }
502
503 // Flux vector for the rho equation
504 for (i = 0; i < m_spacedim; ++i)
505 {
506 velocity[i] = Array<OneD, NekDouble>(nq);
507
508 // Galerkin project solution back to original space
509 m_fields[0]->PhysGalerkinProjection1DScaled(
510 OneDptscale, physfield_interp[i + 1], flux[0][i]);
511 }
512
513 m_varConv->GetVelocityVector(physfield_interp, velocity);
514 m_varConv->GetPressure(physfield_interp, pressure);
515
516 // Evaluation of flux vector for the velocity fields
517 for (i = 0; i < m_spacedim; ++i)
518 {
519 for (j = 0; j < m_spacedim; ++j)
520 {
521 Vmath::Vmul(nq, velocity[j], 1, physfield_interp[i + 1], 1,
522 flux_interp[i + 1][j], 1);
523 }
524
525 // Add pressure to appropriate field
526 Vmath::Vadd(nq, flux_interp[i + 1][i], 1, pressure, 1,
527 flux_interp[i + 1][i], 1);
528 }
529
530 // Galerkin project solution back to original space
531 for (i = 0; i < m_spacedim; ++i)
532 {
533 for (j = 0; j < m_spacedim; ++j)
534 {
535 m_fields[0]->PhysGalerkinProjection1DScaled(
536 OneDptscale, flux_interp[i + 1][j], flux[i + 1][j]);
537 }
538 }
539
540 // Evaluation of flux vector for energy
541 Vmath::Vadd(nq, physfield_interp[m_spacedim + 1], 1, pressure, 1, pressure,
542 1);
543
544 for (j = 0; j < m_spacedim; ++j)
545 {
546 Vmath::Vmul(nq, velocity[j], 1, pressure, 1,
547 flux_interp[m_spacedim + 1][j], 1);
548
549 // Galerkin project solution back to original space
550 m_fields[0]->PhysGalerkinProjection1DScaled(
551 OneDptscale, flux_interp[m_spacedim + 1][j],
552 flux[m_spacedim + 1][j]);
553 }
554}
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, CG_Iterations::pressure, Vmath::Vadd(), and Vmath::Vmul().

Referenced by InitAdvection().

◆ GetGamma()

NekDouble Nektar::CompressibleFlowSystem::GetGamma ( )
inlineprotected

Definition at line 183 of file CompressibleFlowSystem.h.

184 {
185 return m_gamma;
186 }

References m_gamma.

Referenced by InitAdvection().

◆ GetNormals()

const Array< OneD, const Array< OneD, NekDouble > > & Nektar::CompressibleFlowSystem::GetNormals ( )
inlineprotected

Definition at line 193 of file CompressibleFlowSystem.h.

194 {
195 return m_traceNormals;
196 }
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.

References Nektar::SolverUtils::EquationSystem::m_traceNormals.

Referenced by InitAdvection().

◆ GetStabilityLimit()

NekDouble Nektar::CompressibleFlowSystem::GetStabilityLimit ( int  n)

Function to calculate the stability limit for DG/CG.

Set the denominator to compute the time step when a cfl control is employed. This function is no longer used but is still here for being utilised in the future.

Parameters
nOrder of expansion element by element.

Definition at line 850 of file CompressibleFlowSystem.cpp.

851{
852 ASSERTL0(n <= 20, "Illegal modes dimension for CFL calculation "
853 "(P has to be less then 20)");
854
855 NekDouble CFLDG[21] = {2.0000, 6.0000, 11.8424, 19.1569, 27.8419,
856 37.8247, 49.0518, 61.4815, 75.0797, 89.8181,
857 105.6700, 122.6200, 140.6400, 159.7300, 179.8500,
858 201.0100, 223.1800, 246.3600, 270.5300, 295.6900,
859 321.8300}; // CFLDG 1D [0-20]
860 NekDouble CFL = 0.0;
861
863 {
864 CFL = CFLDG[n];
865 }
866 else
867 {
868 NEKERROR(ErrorUtil::efatal, "Continuous Galerkin stability "
869 "coefficients not introduced yet.");
870 }
871
872 return CFL;
873}

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::ErrorUtil::efatal, Nektar::SolverUtils::EquationSystem::m_projectionType, and NEKERROR.

Referenced by GetStabilityLimitVector().

◆ GetStabilityLimitVector()

Array< OneD, NekDouble > Nektar::CompressibleFlowSystem::GetStabilityLimitVector ( const Array< OneD, int > &  ExpOrder)

Function to calculate the stability limit for DG/CG (a vector of them).

Compute the vector of denominators to compute the time step when a cfl control is employed. This function is no longer used but is still here for being utilised in the future.

Parameters
ExpOrderOrder of expansion element by element.

Definition at line 882 of file CompressibleFlowSystem.cpp.

884{
885 int i;
886 Array<OneD, NekDouble> returnval(m_fields[0]->GetExpSize(), 0.0);
887 for (i = 0; i < m_fields[0]->GetExpSize(); i++)
888 {
889 returnval[i] = GetStabilityLimit(ExpOrder[i]);
890 }
891 return returnval;
892}
NekDouble GetStabilityLimit(int n)
Function to calculate the stability limit for DG/CG.
SOLVER_UTILS_EXPORT int GetExpSize()

References Nektar::SolverUtils::EquationSystem::GetExpSize(), GetStabilityLimit(), and Nektar::SolverUtils::EquationSystem::m_fields.

◆ GetVecLocs()

const Array< OneD, const Array< OneD, NekDouble > > & Nektar::CompressibleFlowSystem::GetVecLocs ( )
inlineprotected

Definition at line 188 of file CompressibleFlowSystem.h.

189 {
190 return m_vecLocs;
191 }
Array< OneD, Array< OneD, NekDouble > > m_vecLocs

References m_vecLocs.

Referenced by InitAdvection().

◆ InitAdvection()

void Nektar::CompressibleFlowSystem::InitAdvection ( )
protected

Create advection and diffusion objects for CFS.

Definition at line 172 of file CompressibleFlowSystem.cpp.

173{
174 // Check if projection type is correct
176 "Unsupported projection type.");
177
178 string advName, riemName;
179 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
180
183
185 {
186 m_advObject->SetFluxVector(
188 }
189 else
190 {
192 this);
193 }
194
195 // Setting up Riemann solver for advection operator
196 m_session->LoadSolverInfo("UpwindType", riemName, "Average");
197
200 riemName, m_session);
201
202 // Setting up parameters for advection operator Riemann solver
203 riemannSolver->SetParam("gamma", &CompressibleFlowSystem::GetGamma, this);
204 riemannSolver->SetAuxVec("vecLocs", &CompressibleFlowSystem::GetVecLocs,
205 this);
206 riemannSolver->SetVector("N", &CompressibleFlowSystem::GetNormals, this);
207
208 // Concluding initialisation of advection / diffusion operators
209 m_advObject->SetRiemannSolver(riemannSolver);
210 m_advObject->InitObject(m_session, m_fields);
211}
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
Return the flux vector for the compressible Euler equations.
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
void GetFluxVectorDeAlias(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
Return the flux vector for the compressible Euler equations by using the de-aliasing technique.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
std::shared_ptr< RiemannSolver > RiemannSolverSharedPtr
A shared pointer to an EquationSystem object.
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
RiemannSolverFactory & GetRiemannSolverFactory()

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::MultiRegions::eDiscontinuous, Nektar::SolverUtils::GetAdvectionFactory(), GetFluxVector(), GetFluxVectorDeAlias(), GetGamma(), GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), GetVecLocs(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing.

Referenced by v_InitObject().

◆ InitialiseParameters()

void Nektar::CompressibleFlowSystem::InitialiseParameters ( )
protected

Load CFS parameters from the session file.

Definition at line 136 of file CompressibleFlowSystem.cpp.

137{
138 // Get gamma parameter from session file.
139 m_session->LoadParameter("Gamma", m_gamma, 1.4);
140
141 // Shock capture
142 m_session->LoadSolverInfo("ShockCaptureType", m_shockCaptureType, "Off");
143
144 // Check if the shock capture type is supported
145 std::string err_msg = "Warning, ShockCaptureType = " + m_shockCaptureType +
146 " is not supported by this solver";
148
149 // Load parameters for exponential filtering
150 m_session->MatchSolverInfo("ExponentialFiltering", "True", m_useFiltering,
151 false);
152 if (m_useFiltering)
153 {
154 m_session->LoadParameter("FilterAlpha", m_filterAlpha, 36);
155 m_session->LoadParameter("FilterExponent", m_filterExponent, 16);
156 m_session->LoadParameter("FilterCutoff", m_filterCutoff, 0);
157 }
158
159 // Load CFL for local time-stepping (for steady state)
160 m_session->MatchSolverInfo("LocalTimeStep", "True", m_useLocalTimeStep,
161 false);
163 {
165 "Local time stepping requires CFL parameter.");
166 }
167}
virtual bool v_SupportsShockCaptType(const std::string type) const =0

References ASSERTL0, Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor, m_filterAlpha, m_filterCutoff, m_filterExponent, m_gamma, Nektar::SolverUtils::EquationSystem::m_session, m_shockCaptureType, m_useFiltering, m_useLocalTimeStep, and v_SupportsShockCaptType().

Referenced by v_InitObject().

◆ SetBoundaryConditions()

void Nektar::CompressibleFlowSystem::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
protected

Definition at line 366 of file CompressibleFlowSystem.cpp.

368{
369 size_t nTracePts = GetTraceTotPoints();
370 size_t nvariables = physarray.size();
371
372 Array<OneD, Array<OneD, NekDouble>> Fwd(nvariables);
373 for (size_t i = 0; i < nvariables; ++i)
374 {
375 Fwd[i] = Array<OneD, NekDouble>(nTracePts);
376 m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
377 }
378
379 if (m_bndConds.size())
380 {
381 // Loop over user-defined boundary conditions
382 for (auto &x : m_bndConds)
383 {
384 x->Apply(Fwd, physarray, time);
385 }
386 }
387}
std::vector< CFSBndCondSharedPtr > m_bndConds

References Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), m_bndConds, and Nektar::SolverUtils::EquationSystem::m_fields.

Referenced by DoOdeProjection().

◆ SetBoundaryConditionsBwdWeight()

void Nektar::CompressibleFlowSystem::SetBoundaryConditionsBwdWeight ( )
protected

Set up a weight on physical boundaries for boundary condition applications.

Definition at line 392 of file CompressibleFlowSystem.cpp.

393{
394 if (m_bndConds.size())
395 {
396 // Loop over user-defined boundary conditions
397 for (auto &x : m_bndConds)
398 {
399 x->ApplyBwdWeight();
400 }
401 }
402}

References m_bndConds.

Referenced by Nektar::NavierStokesCFE::InitObject_Explicit(), and v_InitObject().

◆ v_DoDiffusion()

virtual void Nektar::CompressibleFlowSystem::v_DoDiffusion ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protectedpure virtual

◆ v_EvaluateExactSolution()

void Nektar::CompressibleFlowSystem::v_EvaluateExactSolution ( unsigned int  field,
Array< OneD, NekDouble > &  outfield,
const NekDouble  time = 0.0 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 697 of file CompressibleFlowSystem.cpp.

699{
700
701 if (m_session->DefinesSolverInfo("ICTYPE"))
702 {
703 if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
704 "IsentropicVortex"))
705 {
706 EvaluateIsentropicVortex(field, outfield, time);
707 }
708 else if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
709 "RinglebFlow"))
710 {
711 GetExactRinglebFlow(field, outfield);
712 }
713 }
714 else
715 {
716 EquationSystem::v_EvaluateExactSolution(field, outfield, time);
717 }
718}
void GetExactRinglebFlow(int field, Array< OneD, NekDouble > &outarray)
Ringleb Flow Test Case.
void EvaluateIsentropicVortex(unsigned int field, Array< OneD, NekDouble > &outfield, NekDouble time, const int o=0)
Isentropic Vortex Test Case.
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)

References EvaluateIsentropicVortex(), GetExactRinglebFlow(), Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::v_EvaluateExactSolution().

◆ v_ExtraFldOutput()

void Nektar::CompressibleFlowSystem::v_ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::NavierStokesCFE.

Definition at line 894 of file CompressibleFlowSystem.cpp.

897{
898 bool extraFields;
899 m_session->MatchSolverInfo("OutputExtraFields", "True", extraFields, true);
900 if (extraFields)
901 {
902 const int nPhys = m_fields[0]->GetNpoints();
903 const int nCoeffs = m_fields[0]->GetNcoeffs();
904 Array<OneD, Array<OneD, NekDouble>> tmp(m_fields.size());
905
906 for (int i = 0; i < m_fields.size(); ++i)
907 {
908 tmp[i] = m_fields[i]->GetPhys();
909 }
910
911 Array<OneD, Array<OneD, NekDouble>> velocity(m_spacedim);
912 Array<OneD, Array<OneD, NekDouble>> velFwd(m_spacedim);
913 for (int i = 0; i < m_spacedim; ++i)
914 {
915 velocity[i] = Array<OneD, NekDouble>(nPhys);
916 velFwd[i] = Array<OneD, NekDouble>(nCoeffs);
917 }
918
919 Array<OneD, NekDouble> pressure(nPhys), temperature(nPhys);
920 Array<OneD, NekDouble> entropy(nPhys);
921 Array<OneD, NekDouble> soundspeed(nPhys), mach(nPhys);
922 Array<OneD, NekDouble> sensor(nPhys), SensorKappa(nPhys);
923
924 m_varConv->GetVelocityVector(tmp, velocity);
925 m_varConv->GetPressure(tmp, pressure);
926 m_varConv->GetTemperature(tmp, temperature);
927 m_varConv->GetEntropy(tmp, entropy);
928 m_varConv->GetSoundSpeed(tmp, soundspeed);
929 m_varConv->GetMach(tmp, soundspeed, mach);
930
931 int sensorOffset;
932 m_session->LoadParameter("SensorOffset", sensorOffset, 1);
933 m_varConv->GetSensor(m_fields[0], tmp, sensor, SensorKappa,
934 sensorOffset);
935
936 Array<OneD, NekDouble> pFwd(nCoeffs), TFwd(nCoeffs);
937 Array<OneD, NekDouble> sFwd(nCoeffs);
938 Array<OneD, NekDouble> aFwd(nCoeffs), mFwd(nCoeffs);
939 Array<OneD, NekDouble> sensFwd(nCoeffs);
940
941 string velNames[3] = {"u", "v", "w"};
942 for (int i = 0; i < m_spacedim; ++i)
943 {
944 m_fields[0]->FwdTransLocalElmt(velocity[i], velFwd[i]);
945 variables.push_back(velNames[i]);
946 fieldcoeffs.push_back(velFwd[i]);
947 }
948
949 m_fields[0]->FwdTransLocalElmt(pressure, pFwd);
950 m_fields[0]->FwdTransLocalElmt(temperature, TFwd);
951 m_fields[0]->FwdTransLocalElmt(entropy, sFwd);
952 m_fields[0]->FwdTransLocalElmt(soundspeed, aFwd);
953 m_fields[0]->FwdTransLocalElmt(mach, mFwd);
954 m_fields[0]->FwdTransLocalElmt(sensor, sensFwd);
955
956 variables.push_back("p");
957 variables.push_back("T");
958 variables.push_back("s");
959 variables.push_back("a");
960 variables.push_back("Mach");
961 variables.push_back("Sensor");
962 fieldcoeffs.push_back(pFwd);
963 fieldcoeffs.push_back(TFwd);
964 fieldcoeffs.push_back(sFwd);
965 fieldcoeffs.push_back(aFwd);
966 fieldcoeffs.push_back(mFwd);
967 fieldcoeffs.push_back(sensFwd);
968
970 {
971 // reuse pressure
972 Array<OneD, NekDouble> sensorFwd(nCoeffs);
973 m_artificialDiffusion->GetArtificialViscosity(tmp, pressure);
974 m_fields[0]->FwdTransLocalElmt(pressure, sensorFwd);
975
976 variables.push_back("ArtificialVisc");
977 fieldcoeffs.push_back(sensorFwd);
978 }
979 }
980}
ArtificialDiffusionSharedPtr m_artificialDiffusion

References m_artificialDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, and CG_Iterations::pressure.

◆ v_GenerateSummary()

void Nektar::CompressibleFlowSystem::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 606 of file CompressibleFlowSystem.cpp.

607{
609 if (m_session->DefinesSolverInfo("ICTYPE"))
610 {
611 if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
612 "IsentropicVortex"))
613 {
614 SolverUtils::AddSummaryItem(s, "Problem Type", "IsentropicVortex");
615 }
616 else if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
617 "RinglebFlow"))
618 {
619 SolverUtils::AddSummaryItem(s, "Problem Type", "RinglebFlow");
620 }
621 else
622 {
623 NEKERROR(ErrorUtil::efatal, "unknow initial condition");
624 }
625 }
626}
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:49

References Nektar::SolverUtils::AddSummaryItem(), Nektar::ErrorUtil::efatal, Nektar::SolverUtils::EquationSystem::m_session, NEKERROR, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

◆ v_GetDensity()

void Nektar::CompressibleFlowSystem::v_GetDensity ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, NekDouble > &  density 
)
overrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 995 of file CompressibleFlowSystem.cpp.

998{
999 density = physfield[0];
1000}

◆ v_GetMaxStdVelocity()

Array< OneD, NekDouble > Nektar::CompressibleFlowSystem::v_GetMaxStdVelocity ( const NekDouble  SpeedSoundFactor)
overrideprotectedvirtual

Compute the advection velocity in the standard space for each element of the expansion.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 724 of file CompressibleFlowSystem.cpp.

726{
727 size_t nTotQuadPoints = GetTotPoints();
728 size_t n_element = m_fields[0]->GetExpSize();
729 size_t expdim = m_fields[0]->GetGraph()->GetMeshDimension();
730 size_t nfields = m_fields.size();
731 int offset;
732 Array<OneD, NekDouble> tmp;
733
734 Array<OneD, Array<OneD, NekDouble>> physfields(nfields);
735 for (size_t i = 0; i < nfields; ++i)
736 {
737 physfields[i] = m_fields[i]->GetPhys();
738 }
739
740 Array<OneD, NekDouble> stdV(n_element, 0.0);
741
742 // Getting the velocity vector on the 2D normal space
743 Array<OneD, Array<OneD, NekDouble>> velocity(m_spacedim);
744 Array<OneD, Array<OneD, NekDouble>> stdVelocity(m_spacedim);
745 Array<OneD, Array<OneD, NekDouble>> stdSoundSpeed(m_spacedim);
746 Array<OneD, NekDouble> soundspeed(nTotQuadPoints);
748
749 for (int i = 0; i < m_spacedim; ++i)
750 {
751 velocity[i] = Array<OneD, NekDouble>(nTotQuadPoints);
752 stdVelocity[i] = Array<OneD, NekDouble>(nTotQuadPoints, 0.0);
753 stdSoundSpeed[i] = Array<OneD, NekDouble>(nTotQuadPoints, 0.0);
754 }
755
756 m_varConv->GetVelocityVector(physfields, velocity);
757 m_varConv->GetSoundSpeed(physfields, soundspeed);
758
759 for (size_t el = 0; el < n_element; ++el)
760 {
761 ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
762 offset = m_fields[0]->GetPhys_Offset(el);
763 int nq = m_fields[0]->GetExp(el)->GetTotPoints();
764
765 const SpatialDomains::GeomFactorsSharedPtr metricInfo =
766 m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo();
767 const Array<TwoD, const NekDouble> &gmat =
768 m_fields[0]
769 ->GetExp(el)
770 ->GetGeom()
771 ->GetMetricInfo()
772 ->GetDerivFactors(ptsKeys);
773
774 // Convert to standard element
775 // consider soundspeed in all directions
776 // (this might overestimate the cfl)
777 if (metricInfo->GetGtype() == SpatialDomains::eDeformed)
778 {
779 // d xi/ dx = gmat = 1/J * d x/d xi
780 for (size_t i = 0; i < expdim; ++i)
781 {
782 Vmath::Vmul(nq, gmat[i], 1, velocity[0] + offset, 1,
783 tmp = stdVelocity[i] + offset, 1);
784 Vmath::Vmul(nq, gmat[i], 1, soundspeed + offset, 1,
785 tmp = stdSoundSpeed[i] + offset, 1);
786 for (size_t j = 1; j < expdim; ++j)
787 {
788 Vmath::Vvtvp(nq, gmat[expdim * j + i], 1,
789 velocity[j] + offset, 1,
790 stdVelocity[i] + offset, 1,
791 tmp = stdVelocity[i] + offset, 1);
792 Vmath::Vvtvp(nq, gmat[expdim * j + i], 1,
793 soundspeed + offset, 1,
794 stdSoundSpeed[i] + offset, 1,
795 tmp = stdSoundSpeed[i] + offset, 1);
796 }
797 }
798 }
799 else
800 {
801 for (size_t i = 0; i < expdim; ++i)
802 {
803 Vmath::Smul(nq, gmat[i][0], velocity[0] + offset, 1,
804 tmp = stdVelocity[i] + offset, 1);
805 Vmath::Smul(nq, gmat[i][0], soundspeed + offset, 1,
806 tmp = stdSoundSpeed[i] + offset, 1);
807 for (size_t j = 1; j < expdim; ++j)
808 {
809 Vmath::Svtvp(nq, gmat[expdim * j + i][0],
810 velocity[j] + offset, 1,
811 stdVelocity[i] + offset, 1,
812 tmp = stdVelocity[i] + offset, 1);
813 Vmath::Svtvp(nq, gmat[expdim * j + i][0],
814 soundspeed + offset, 1,
815 stdSoundSpeed[i] + offset, 1,
816 tmp = stdSoundSpeed[i] + offset, 1);
817 }
818 }
819 }
820
821 NekDouble vel;
822 for (size_t i = 0; i < nq; ++i)
823 {
824 NekDouble pntVelocity = 0.0;
825 for (size_t j = 0; j < expdim; ++j)
826 {
827 // Add sound speed
828 vel = std::abs(stdVelocity[j][offset + i]) +
829 SpeedSoundFactor * std::abs(stdSoundSpeed[j][offset + i]);
830 pntVelocity += vel * vel;
831 }
832 pntVelocity = sqrt(pntVelocity);
833 if (pntVelocity > stdV[el])
834 {
835 stdV[el] = pntVelocity;
836 }
837 }
838 }
839
840 return stdV;
841}
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:236
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
@ eDeformed
Geometry is curved or has non-constant factors.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:617
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569

References tinysimd::abs(), Nektar::SpatialDomains::eDeformed, Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, Vmath::Smul(), tinysimd::sqrt(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ v_GetPressure() [1/2]

virtual MultiRegions::ExpListSharedPtr Nektar::CompressibleFlowSystem::v_GetPressure ( void  )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 198 of file CompressibleFlowSystem.h.

199 {
200 ASSERTL0(false, "This function is not valid for this class");
202 return null;
203 }
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.

References ASSERTL0.

◆ v_GetPressure() [2/2]

void Nektar::CompressibleFlowSystem::v_GetPressure ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, NekDouble > &  pressure 
)
overrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 985 of file CompressibleFlowSystem.cpp.

988{
989 m_varConv->GetPressure(physfield, pressure);
990}

References m_varConv, and CG_Iterations::pressure.

◆ v_GetTimeStep()

NekDouble Nektar::CompressibleFlowSystem::v_GetTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray)
overrideprotectedvirtual

Calculate the maximum timestep subject to CFL restrictions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 591 of file CompressibleFlowSystem.cpp.

593{
594 int nElements = m_fields[0]->GetExpSize();
595 Array<OneD, NekDouble> tstep(nElements, 0.0);
596
597 GetElmtTimeStep(inarray, tstep);
598
599 // Get the minimum time-step limit and return the time-step
600 NekDouble TimeStep = Vmath::Vmin(nElements, tstep, 1);
601 m_comm->GetSpaceComm()->AllReduce(TimeStep, LibUtilities::ReduceMin);
602
603 return TimeStep;
604}
LibUtilities::CommSharedPtr m_comm
Communicator.
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:1045

References GetElmtTimeStep(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::LibUtilities::ReduceMin, and Vmath::Vmin().

◆ v_GetVelocity()

void Nektar::CompressibleFlowSystem::v_GetVelocity ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  velocity 
)
overrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 1005 of file CompressibleFlowSystem.cpp.

1008{
1009 m_varConv->GetVelocityVector(physfield, velocity);
1010}

References m_varConv.

◆ v_HasConstantDensity()

virtual bool Nektar::CompressibleFlowSystem::v_HasConstantDensity ( )
inlineoverrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 123 of file CompressibleFlowSystem.h.

124 {
125 return false;
126 }

◆ v_InitObject()

void Nektar::CompressibleFlowSystem::v_InitObject ( bool  DeclareFields = true)
overrideprotectedvirtual

Initialization object for CompressibleFlowSystem class.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Reimplemented in Nektar::NavierStokesCFE, Nektar::CFSImplicit, Nektar::EulerCFE, Nektar::EulerImplicitCFE, Nektar::NavierStokesCFEAxisym, and Nektar::NavierStokesImplicitCFE.

Definition at line 55 of file CompressibleFlowSystem.cpp.

56{
57 AdvectionSystem::v_InitObject(DeclareFields);
58
59 for (size_t i = 0; i < m_fields.size(); i++)
60 {
61 // Use BwdTrans to make sure initial condition is in solution space
62 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
63 m_fields[i]->UpdatePhys());
64 }
65
68
69 ASSERTL0(m_session->DefinesSolverInfo("UPWINDTYPE"),
70 "No UPWINDTYPE defined in session.");
71
72 // Do not forwards transform initial condition
73 m_homoInitialFwd = false;
74
75 // Set up locations of velocity vector.
76 m_vecLocs = Array<OneD, Array<OneD, NekDouble>>(1);
77 m_vecLocs[0] = Array<OneD, NekDouble>(m_spacedim);
78 for (int i = 0; i < m_spacedim; ++i)
79 {
80 m_vecLocs[0][i] = 1 + i;
81 }
82
83 // Loading parameters from session file
85
86 // Setting up advection and diffusion operators
88
89 // Create artificial diffusion with laplacian operator
90 if (m_shockCaptureType == "NonSmooth")
91 {
94 }
95
96 // Forcing terms for the sponge region
98 m_fields, m_fields.size());
99
100 // User-defined boundary conditions
101 size_t cnt = 0;
102 for (size_t n = 0; n < (size_t)m_fields[0]->GetBndConditions().size(); ++n)
103 {
104 std::string type = m_fields[0]->GetBndConditions()[n]->GetUserDefined();
105
106 if (m_fields[0]->GetBndConditions()[n]->GetBoundaryConditionType() ==
108 {
109 continue;
110 }
111
112 if (!type.empty())
113 {
115 type, m_session, m_fields, m_traceNormals, m_spacedim, n, cnt));
116 }
117 cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
118 }
119
122
124}
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
void InitAdvection()
Create advection and diffusion objects for CFS.
void SetBoundaryConditionsBwdWeight()
Set up a weight on physical boundaries for boundary condition applications.
void InitialiseParameters()
Load CFS parameters from the session file.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:120
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
ArtificialDiffusionFactory & GetArtificialDiffusionFactory()
Declaration of the artificial diffusion factory singleton.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::SpatialDomains::ePeriodic, Nektar::GetArtificialDiffusionFactory(), Nektar::GetCFSBndCondFactory(), InitAdvection(), InitialiseParameters(), Nektar::SolverUtils::Forcing::Load(), m_artificialDiffusion, m_bndConds, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, Nektar::SolverUtils::EquationSystem::m_graph, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_session, m_shockCaptureType, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, m_varConv, m_vecLocs, SetBoundaryConditionsBwdWeight(), and Nektar::SolverUtils::AdvectionSystem::v_InitObject().

Referenced by Nektar::NavierStokesCFE::v_InitObject(), Nektar::CFSImplicit::v_InitObject(), and Nektar::EulerCFE::v_InitObject().

◆ v_SetInitialConditions()

void Nektar::CompressibleFlowSystem::v_SetInitialConditions ( NekDouble  initialtime = 0.0,
bool  dumpInitialConditions = true,
const int  domain = 0 
)
overrideprotectedvirtual

Set up logic for residual calculation.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 631 of file CompressibleFlowSystem.cpp.

634{
635 boost::ignore_unused(domain);
636
637 if (m_session->DefinesSolverInfo("ICTYPE") &&
638 boost::iequals(m_session->GetSolverInfo("ICTYPE"), "IsentropicVortex"))
639 {
640 // Forward transform to fill the coefficient space
641 for (int i = 0; i < m_fields.size(); ++i)
642 {
643 EvaluateIsentropicVortex(i, m_fields[i]->UpdatePhys(), initialtime);
644 m_fields[i]->SetPhysState(true);
645 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
646 m_fields[i]->UpdateCoeffs());
647 }
648 }
649 else
650 {
651 EquationSystem::v_SetInitialConditions(initialtime, false);
652 m_nchk--; // Note: m_nchk has been incremented in EquationSystem.
653
654 // insert white noise in initial condition
655 NekDouble Noise;
656 int phystot = m_fields[0]->GetTotPoints();
657 Array<OneD, NekDouble> noise(phystot);
658
659 m_session->LoadParameter("Noise", Noise, 0.0);
660 int m_nConvectiveFields = m_fields.size();
661
662 if (Noise > 0.0)
663 {
664 int seed = -m_comm->GetSpaceComm()->GetRank() * m_nConvectiveFields;
665 for (int i = 0; i < m_nConvectiveFields; i++)
666 {
667 Vmath::FillWhiteNoise(phystot, Noise, noise, 1, seed);
668 --seed;
669 Vmath::Vadd(phystot, m_fields[i]->GetPhys(), 1, noise, 1,
670 m_fields[i]->UpdatePhys(), 1);
671 m_fields[i]->FwdTransLocalElmt(m_fields[i]->GetPhys(),
672 m_fields[i]->UpdateCoeffs());
673 }
674 }
675 }
676
677 if (dumpInitialConditions && m_nchk == 0 && m_checksteps &&
679 {
681 }
682 else if (dumpInitialConditions && m_nchk == 0 && ParallelInTime())
683 {
684 std::string newdir = m_sessionName + ".pit";
685 if (!fs::is_directory(newdir))
686 {
687 fs::create_directory(newdir);
688 }
689 if (m_comm->GetTimeComm()->GetRank() == 0)
690 {
691 WriteFld(newdir + "/" + m_sessionName + "_0.fld");
692 }
693 }
694 m_nchk++;
695}
SOLVER_UTILS_EXPORT bool ParallelInTime()
Check if solver use Parallel-in-Time.
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
std::string m_sessionName
Name of the session.
int m_nchk
Number of checkpoints written so far.
int m_checksteps
Number of steps between checkpoints.
void FillWhiteNoise(int n, const T eps, T *x, const int incx, int outseed)
Fills a vector with white noise.
Definition: Vmath.cpp:153

References Nektar::SolverUtils::EquationSystem::Checkpoint_Output(), EvaluateIsentropicVortex(), Vmath::FillWhiteNoise(), Nektar::SolverUtils::EquationSystem::m_checksteps, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_nchk, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_sessionName, Nektar::SolverUtils::EquationSystem::ParallelInTime(), Nektar::SolverUtils::EquationSystem::v_SetInitialConditions(), Vmath::Vadd(), and Nektar::SolverUtils::EquationSystem::WriteFld().

◆ v_SteadyStateResidual()

void Nektar::CompressibleFlowSystem::v_SteadyStateResidual ( int  step,
Array< OneD, NekDouble > &  L2 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 1012 of file CompressibleFlowSystem.cpp.

1014{
1015 boost::ignore_unused(step);
1016 const size_t nPoints = GetTotPoints();
1017 const size_t nFields = m_fields.size();
1018 Array<OneD, Array<OneD, NekDouble>> rhs(nFields);
1019 Array<OneD, Array<OneD, NekDouble>> inarray(nFields);
1020 for (size_t i = 0; i < nFields; ++i)
1021 {
1022 rhs[i] = Array<OneD, NekDouble>(nPoints, 0.0);
1023 inarray[i] = m_fields[i]->UpdatePhys();
1024 }
1025
1026 DoOdeRhs(inarray, rhs, m_time);
1027
1028 // Holds L2 errors.
1029 Array<OneD, NekDouble> tmp;
1030 Array<OneD, NekDouble> RHSL2(nFields);
1031 Array<OneD, NekDouble> residual(nFields);
1032
1033 for (size_t i = 0; i < nFields; ++i)
1034 {
1035 tmp = rhs[i];
1036
1037 Vmath::Vmul(nPoints, tmp, 1, tmp, 1, tmp, 1);
1038 residual[i] = Vmath::Vsum(nPoints, tmp, 1);
1039 }
1040
1041 m_comm->GetSpaceComm()->AllReduce(residual, LibUtilities::ReduceSum);
1042
1043 NekDouble onPoints = 1.0 / NekDouble(nPoints);
1044 for (size_t i = 0; i < nFields; ++i)
1045 {
1046 L2[i] = sqrt(residual[i] * onPoints);
1047 }
1048}
NekDouble m_time
Current time of simulation.
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:890

References DoOdeRhs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_time, Nektar::LibUtilities::ReduceSum, tinysimd::sqrt(), Vmath::Vmul(), and Vmath::Vsum().

◆ v_SupportsShockCaptType()

virtual bool Nektar::CompressibleFlowSystem::v_SupportsShockCaptType ( const std::string  type) const
protectedpure virtual

Friends And Related Function Documentation

◆ MemoryManager< CompressibleFlowSystem >

friend class MemoryManager< CompressibleFlowSystem >
friend

Definition at line 1 of file CompressibleFlowSystem.h.

Member Data Documentation

◆ m_artificialDiffusion

ArtificialDiffusionSharedPtr Nektar::CompressibleFlowSystem::m_artificialDiffusion
protected

◆ m_bndConds

std::vector<CFSBndCondSharedPtr> Nektar::CompressibleFlowSystem::m_bndConds
protected

◆ m_bndEvaluateTime

NekDouble Nektar::CompressibleFlowSystem::m_bndEvaluateTime
protected

◆ m_diffusion

SolverUtils::DiffusionSharedPtr Nektar::CompressibleFlowSystem::m_diffusion
protected

◆ m_filterAlpha

NekDouble Nektar::CompressibleFlowSystem::m_filterAlpha
protected

Definition at line 85 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_filterCutoff

NekDouble Nektar::CompressibleFlowSystem::m_filterCutoff
protected

Definition at line 87 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_filterExponent

NekDouble Nektar::CompressibleFlowSystem::m_filterExponent
protected

Definition at line 86 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_forcing

std::vector<SolverUtils::ForcingSharedPtr> Nektar::CompressibleFlowSystem::m_forcing
protected

◆ m_gamma

NekDouble Nektar::CompressibleFlowSystem::m_gamma
protected

◆ m_muav

Array<OneD, NekDouble> Nektar::CompressibleFlowSystem::m_muav
protected

Definition at line 94 of file CompressibleFlowSystem.h.

◆ m_muavTrace

Array<OneD, NekDouble> Nektar::CompressibleFlowSystem::m_muavTrace
protected

Definition at line 97 of file CompressibleFlowSystem.h.

◆ m_shockCaptureType

std::string Nektar::CompressibleFlowSystem::m_shockCaptureType
protected

◆ m_useFiltering

bool Nektar::CompressibleFlowSystem::m_useFiltering
protected

Definition at line 88 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_useLocalTimeStep

bool Nektar::CompressibleFlowSystem::m_useLocalTimeStep
protected

◆ m_varConv

VariableConverterSharedPtr Nektar::CompressibleFlowSystem::m_varConv
protected

◆ m_vecLocs

Array<OneD, Array<OneD, NekDouble> > Nektar::CompressibleFlowSystem::m_vecLocs
protected

Definition at line 80 of file CompressibleFlowSystem.h.

Referenced by GetVecLocs(), and v_InitObject().