Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Friends | List of all members
Nektar::NavierStokesCFE Class Reference

#include <NavierStokesCFE.h>

Inheritance diagram for Nektar::NavierStokesCFE:
[legend]

Public Member Functions

virtual ~NavierStokesCFE ()
 
- Public Member Functions inherited from Nektar::CompressibleFlowSystem
virtual ~CompressibleFlowSystem ()
 Destructor for CompressibleFlowSystem class. More...
 
NekDouble GetStabilityLimit (int n)
 Function to calculate the stability limit for DG/CG. More...
 
Array< OneD, NekDoubleGetStabilityLimitVector (const Array< OneD, int > &ExpOrder)
 Function to calculate the stability limit for DG/CG (a vector of them). More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual SOLVER_UTILS_EXPORT ~AdvectionSystem ()
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
SOLVER_UTILS_EXPORT bool ParallelInTime ()
 Check if solver use Parallel-in-Time. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
SOLVER_UTILS_EXPORT void SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
SOLVER_UTILS_EXPORT void SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
SOLVER_UTILS_EXPORT void GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 

Static Public Attributes

static std::string className
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

 NavierStokesCFE (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
void GetViscousFluxVectorConservVar (const size_t nDim, const Array< OneD, Array< OneD, NekDouble > > &inarray, const TensorOfArray3D< NekDouble > &qfields, TensorOfArray3D< NekDouble > &outarray, Array< OneD, int > &nonZeroIndex=NullInt1DArray, const Array< OneD, Array< OneD, NekDouble > > &normal=NullNekDoubleArrayOfArray)
 
void GetViscousSymmtrFluxConservVar (const size_t nSpaceDim, const Array< OneD, Array< OneD, NekDouble > > &inaverg, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &outarray, Array< OneD, int > &nonZeroIndex, const Array< OneD, Array< OneD, NekDouble > > &normals)
 Calculate and return the Symmetric flux in IP method. More...
 
void SpecialBndTreat (Array< OneD, Array< OneD, NekDouble > > &consvar)
 For very special treatment. For general boundaries it does nothing But for WallViscous and WallAdiabatic, special treatment is needed because they get the same Bwd value, special treatment is needed for boundary treatment of diffusion flux Note: This special treatment could be removed by seperating WallViscous and WallAdiabatic into two different classes. More...
 
void GetArtificialViscosity (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &muav)
 
void CalcViscosity (const Array< OneD, const Array< OneD, NekDouble > > &inaverg, Array< OneD, NekDouble > &mu)
 
void InitObject_Explicit ()
 
virtual void v_InitObject (bool DeclareField=true) override
 Initialization object for CompressibleFlowSystem class. More...
 
virtual void v_DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
 
virtual void v_GetViscousFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &derivatives, TensorOfArray3D< NekDouble > &viscousTensor)
 Return the flux vector for the LDG diffusion problem. More...
 
virtual void v_GetViscousFluxVectorDeAlias (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &derivatives, TensorOfArray3D< NekDouble > &viscousTensor)
 Return the flux vector for the LDG diffusion problem. More...
 
void GetPhysicalAV (const Array< OneD, const Array< OneD, NekDouble > > &physfield)
 
void Ducros (Array< OneD, NekDouble > &field)
 
void C0Smooth (Array< OneD, NekDouble > &field)
 
virtual void v_GetFluxPenalty (const Array< OneD, const Array< OneD, NekDouble > > &uFwd, const Array< OneD, const Array< OneD, NekDouble > > &uBwd, Array< OneD, Array< OneD, NekDouble > > &penaltyCoeff)
 Return the penalty vector for the LDGNS diffusion problem. More...
 
void GetViscosityAndThermalCondFromTemp (const Array< OneD, NekDouble > &temperature, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &thermalCond)
 Update viscosity todo: add artificial viscosity here. More...
 
void GetDivCurlSquared (const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &cnsVar, Array< OneD, NekDouble > &div, Array< OneD, NekDouble > &curlSquare, const Array< OneD, Array< OneD, NekDouble > > &cnsVarFwd, const Array< OneD, Array< OneD, NekDouble > > &cnsVarBwd)
 Get divergence and curl squared. More...
 
void GetDivCurlFromDvelT (const TensorOfArray3D< NekDouble > &pVarDer, Array< OneD, NekDouble > &div, Array< OneD, NekDouble > &curlSquare)
 Get divergence and curl from velocity derivative tensor. More...
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables) override
 
template<class T , typename = typename std::enable_if< std::is_floating_point<T>::value || tinysimd::is_vector_floating_point<T>::value>::type>
void GetViscosityAndThermalCondFromTempKernel (const T &temperature, T &mu, T &thermalCond)
 
template<class T , typename = typename std::enable_if< std::is_floating_point<T>::value || tinysimd::is_vector_floating_point<T>::value>::type>
void GetViscosityFromTempKernel (const T &temperature, T &mu)
 
template<class T , typename = typename std::enable_if< std::is_floating_point<T>::value || tinysimd::is_vector_floating_point<T>::value>::type>
void GetViscousFluxBilinearFormKernel (const unsigned short nDim, const unsigned short FluxDirection, const unsigned short DerivDirection, const T *inaverg, const T *injumpp, const T &mu, T *outarray)
 Calculate diffusion flux using the Jacobian form. More...
 
template<bool IS_TRACE>
void GetViscousFluxVectorConservVar (const size_t nDim, const Array< OneD, Array< OneD, NekDouble > > &inarray, const TensorOfArray3D< NekDouble > &qfields, TensorOfArray3D< NekDouble > &outarray, Array< OneD, int > &nonZeroIndex, const Array< OneD, Array< OneD, NekDouble > > &normal)
 Return the flux vector for the IP diffusion problem, based on conservative variables. More...
 
virtual bool v_SupportsShockCaptType (const std::string type) const override
 
- Protected Member Functions inherited from Nektar::CompressibleFlowSystem
 CompressibleFlowSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
virtual void v_InitObject (bool DeclareFields=true) override
 Initialization object for CompressibleFlowSystem class. More...
 
virtual void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
virtual void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
virtual bool v_HasConstantDensity () override
 
virtual void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
void InitialiseParameters ()
 Load CFS parameters from the session file. More...
 
void InitAdvection ()
 Create advection and diffusion objects for CFS. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void DoAdvection (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Compute the advection terms for the right-hand side. More...
 
void DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Add the diffusions terms to the right-hand side. More...
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations. More...
 
void GetFluxVectorDeAlias (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations by using the de-aliasing technique. More...
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void SetBoundaryConditionsBwdWeight ()
 Set up a weight on physical boundaries for boundary condition applications. More...
 
void GetElmtTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
 Calculate the maximum timestep on each element subject to CFL restrictions. More...
 
virtual NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray) override
 Calculate the maximum timestep subject to CFL restrictions. More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0) override
 Set up logic for residual calculation. More...
 
virtual void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time=0.0) override
 
NekDouble GetGamma ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 
virtual MultiRegions::ExpListSharedPtr v_GetPressure () override
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables) override
 
virtual void v_DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)=0
 
virtual Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
virtual void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2) override
 
virtual bool v_SupportsShockCaptType (const std::string type) const =0
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameProjectionMat (const boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameProjectionMat (boost::numeric::ublas::matrix< NekDouble > &vProjMat)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameAngles (const Array< OneD, NekDouble > &vFrameTheta)
 
virtual SOLVER_UTILS_EXPORT void v_GetMovingFrameAngles (Array< OneD, NekDouble > &vFrameTheta)
 

Protected Attributes

std::string m_ViscosityType
 
bool m_is_mu_variable {false}
 flag to switch between constant viscosity and Sutherland an enum could be added for more options More...
 
bool m_is_diffIP {false}
 flag to switch between IP and LDG an enum could be added for more options More...
 
bool m_is_shockCaptPhys {false}
 flag for shock capturing switch on/off an enum could be added for more options More...
 
NekDouble m_Cp
 
NekDouble m_Cv
 
NekDouble m_Prandtl
 
std::string m_physicalSensorType
 
std::string m_smoothing
 
MultiRegions::ContFieldSharedPtr m_C0ProjectExp
 
EquationOfStateSharedPtr m_eos
 Equation of system for computing temperature. More...
 
NekDouble m_Twall
 
NekDouble m_muRef
 
NekDouble m_thermalConductivityRef
 
- Protected Attributes inherited from Nektar::CompressibleFlowSystem
SolverUtils::DiffusionSharedPtr m_diffusion
 
ArtificialDiffusionSharedPtr m_artificialDiffusion
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
NekDouble m_gamma
 
std::string m_shockCaptureType
 
NekDouble m_filterAlpha
 
NekDouble m_filterExponent
 
NekDouble m_filterCutoff
 
bool m_useFiltering
 
bool m_useLocalTimeStep
 
Array< OneD, NekDoublem_muav
 
Array< OneD, NekDoublem_muavTrace
 
VariableConverterSharedPtr m_varConv
 
std::vector< CFSBndCondSharedPtrm_bndConds
 
NekDouble m_bndEvaluateTime
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameVelsxyz
 Moving frame of reference velocities. More...
 
Array< OneD, NekDoublem_movingFrameTheta
 Moving frame of reference angles with respect to the. More...
 
boost::numeric::ublas::matrix< NekDoublem_movingFrameProjMat
 Projection matrix for transformation between inertial and moving. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Friends

class MemoryManager< NavierStokesCFE >
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Definition at line 49 of file NavierStokesCFE.h.

Constructor & Destructor Documentation

◆ ~NavierStokesCFE()

Nektar::NavierStokesCFE::~NavierStokesCFE ( )
virtual

Definition at line 53 of file NavierStokesCFE.cpp.

54{
55}

◆ NavierStokesCFE()

Nektar::NavierStokesCFE::NavierStokesCFE ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Definition at line 46 of file NavierStokesCFE.cpp.

49 : UnsteadySystem(pSession, pGraph), CompressibleFlowSystem(pSession, pGraph)
50{
51}
CompressibleFlowSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

Member Function Documentation

◆ C0Smooth()

void Nektar::NavierStokesCFE::C0Smooth ( Array< OneD, NekDouble > &  field)
protected

◆ CalcViscosity()

void Nektar::NavierStokesCFE::CalcViscosity ( const Array< OneD, const Array< OneD, NekDouble > > &  inaverg,
Array< OneD, NekDouble > &  mu 
)
protected

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::NavierStokesCFE::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Definition at line 55 of file NavierStokesCFE.h.

58 {
61 p->InitObject();
62 return p;
63 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ Ducros()

void Nektar::NavierStokesCFE::Ducros ( Array< OneD, NekDouble > &  field)
protected

◆ GetArtificialViscosity()

void Nektar::NavierStokesCFE::GetArtificialViscosity ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, NekDouble > &  muav 
)
protected

◆ GetDivCurlFromDvelT()

void Nektar::NavierStokesCFE::GetDivCurlFromDvelT ( const TensorOfArray3D< NekDouble > &  pVarDer,
Array< OneD, NekDouble > &  div,
Array< OneD, NekDouble > &  curlSquare 
)
protected

Get divergence and curl from velocity derivative tensor.

Definition at line 772 of file NavierStokesCFE.cpp.

775{
776 size_t nDim = pVarDer.size();
777 size_t nPts = div.size();
778
779 // div velocity
780 for (size_t p = 0; p < nPts; ++p)
781 {
782 NekDouble divTmp = 0;
783 for (unsigned short j = 0; j < nDim; ++j)
784 {
785 divTmp += pVarDer[j][j][p];
786 }
787 div[p] = divTmp;
788 }
789
790 // |curl velocity| ** 2
791 if (nDim > 2)
792 {
793 for (size_t p = 0; p < nPts; ++p)
794 {
795 // curl[0] 3/2 - 2/3
796 NekDouble curl032 = pVarDer[2][1][p]; // load 1x
797 NekDouble curl023 = pVarDer[1][2][p]; // load 1x
798 NekDouble curl0 = curl032 - curl023;
799 // square curl[0]
800 NekDouble curl0sqr = curl0 * curl0;
801
802 // curl[1] 3/1 - 1/3
803 NekDouble curl131 = pVarDer[2][0][p]; // load 1x
804 NekDouble curl113 = pVarDer[0][2][p]; // load 1x
805 NekDouble curl1 = curl131 - curl113;
806 // square curl[1]
807 NekDouble curl1sqr = curl1 * curl1;
808
809 // curl[2] 1/2 - 2/1
810 NekDouble curl212 = pVarDer[0][1][p]; // load 1x
811 NekDouble curl221 = pVarDer[1][0][p]; // load 1x
812 NekDouble curl2 = curl212 - curl221;
813 // square curl[2]
814 NekDouble curl2sqr = curl2 * curl2;
815
816 // reduce
817 curl0sqr += curl1sqr + curl2sqr;
818 // store
819 curlSquare[p] = curl0sqr; // store 1x
820 }
821 }
822 else if (nDim > 1)
823 {
824 for (size_t p = 0; p < nPts; ++p)
825 {
826 // curl[2] 1/2
827 NekDouble c212 = pVarDer[0][1][p]; // load 1x
828 // curl[2] 2/1
829 NekDouble c221 = pVarDer[1][0][p]; // load 1x
830 // curl[2] 1/2 - 2/1
831 NekDouble curl = c212 - c221;
832 // square curl[2]
833 curlSquare[p] = curl * curl; // store 1x
834 }
835 }
836 else
837 {
838 Vmath::Fill(nPts, 0.0, curlSquare, 1);
839 }
840}
double NekDouble
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:43

References Vmath::Fill(), and CellMLToNektar.cellml_metadata::p.

Referenced by GetDivCurlSquared().

◆ GetDivCurlSquared()

void Nektar::NavierStokesCFE::GetDivCurlSquared ( const Array< OneD, MultiRegions::ExpListSharedPtr > &  fields,
const Array< OneD, Array< OneD, NekDouble > > &  cnsVar,
Array< OneD, NekDouble > &  div,
Array< OneD, NekDouble > &  curlSquare,
const Array< OneD, Array< OneD, NekDouble > > &  cnsVarFwd,
const Array< OneD, Array< OneD, NekDouble > > &  cnsVarBwd 
)
protected

Get divergence and curl squared.

Parameters
inputfields -> expansion list pointer cnsVar -> conservative variables cnsVarFwd -> forward trace of conservative variables cnsVarBwd -> backward trace of conservative variables @paran output divSquare -> divergence curlSquare -> curl squared

Definition at line 704 of file NavierStokesCFE.cpp.

710{
711 size_t nDim = fields[0]->GetCoordim(0);
712 size_t nVar = cnsVar.size();
713 size_t nPts = cnsVar[0].size();
714 size_t nPtsTrc = cnsVarFwd[0].size();
715
716 // These should be allocated once
717 Array<OneD, Array<OneD, NekDouble>> primVar(nVar - 1), primVarFwd(nVar - 1),
718 primVarBwd(nVar - 1);
719
720 for (unsigned short d = 0; d < nVar - 2; ++d)
721 {
722 primVar[d] = Array<OneD, NekDouble>(nPts, 0.0);
723 primVarFwd[d] = Array<OneD, NekDouble>(nPtsTrc, 0.0);
724 primVarBwd[d] = Array<OneD, NekDouble>(nPtsTrc, 0.0);
725 }
726 size_t ergLoc = nVar - 2;
727 primVar[ergLoc] = Array<OneD, NekDouble>(nPts, 0.0);
728 primVarFwd[ergLoc] = Array<OneD, NekDouble>(nPtsTrc, 0.0);
729 primVarBwd[ergLoc] = Array<OneD, NekDouble>(nPtsTrc, 0.0);
730
731 // Get primitive variables [u,v,w,T=0]
732 // Possibly should be changed to [rho,u,v,w,T] to make IP and LDGNS more
733 // consistent with each other
734 for (unsigned short d = 0; d < nVar - 2; ++d)
735 {
736 // Volume
737 for (size_t p = 0; p < nPts; ++p)
738 {
739 primVar[d][p] = cnsVar[d + 1][p] / cnsVar[0][p];
740 }
741 // Trace
742 for (size_t p = 0; p < nPtsTrc; ++p)
743 {
744 primVarFwd[d][p] = cnsVarFwd[d + 1][p] / cnsVarFwd[0][p];
745 primVarBwd[d][p] = cnsVarBwd[d + 1][p] / cnsVarBwd[0][p];
746 }
747 }
748
749 // this should be allocated once
751 for (unsigned short j = 0; j < nDim; ++j)
752 {
753 primVarDer[j] = Array<OneD, Array<OneD, NekDouble>>(nVar - 1);
754 for (unsigned short i = 0; i < nVar - 1; ++i)
755 {
756 primVarDer[j][i] = Array<OneD, NekDouble>(nPts, 0.0);
757 }
758 }
759
760 // Get derivative tensor
761 m_diffusion->DiffuseCalcDerivative(fields, primVar, primVarDer, primVarFwd,
762 primVarBwd);
763
764 // Get div curl squared
765 GetDivCurlFromDvelT(primVarDer, div, curlSquare);
766}
SolverUtils::DiffusionSharedPtr m_diffusion
void GetDivCurlFromDvelT(const TensorOfArray3D< NekDouble > &pVarDer, Array< OneD, NekDouble > &div, Array< OneD, NekDouble > &curlSquare)
Get divergence and curl from velocity derivative tensor.
std::vector< double > d(NPUPPER *NPUPPER)

References Nektar::UnitTests::d(), GetDivCurlFromDvelT(), Nektar::CompressibleFlowSystem::m_diffusion, and CellMLToNektar.cellml_metadata::p.

Referenced by v_DoDiffusion(), Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff(), and v_ExtraFldOutput().

◆ GetPhysicalAV()

void Nektar::NavierStokesCFE::GetPhysicalAV ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield)
protected

◆ GetViscosityAndThermalCondFromTemp()

void Nektar::NavierStokesCFE::GetViscosityAndThermalCondFromTemp ( const Array< OneD, NekDouble > &  temperature,
Array< OneD, NekDouble > &  mu,
Array< OneD, NekDouble > &  thermalCond 
)
protected

Update viscosity todo: add artificial viscosity here.

Definition at line 659 of file NavierStokesCFE.cpp.

662{
663 size_t nPts = temperature.size();
664
665 for (size_t p = 0; p < nPts; ++p)
666 {
668 thermalCond[p]);
669 }
670
671 // Add artificial viscosity if wanted
672 // move this above and add in kernel
674 {
675 size_t nTracePts = m_fields[0]->GetTrace()->GetTotPoints();
676 if (nPts != nTracePts)
677 {
678 Vmath::Vadd(nPts, mu, 1, m_varConv->GetAv(), 1, mu, 1);
679 }
680 else
681 {
682 Vmath::Vadd(nPts, mu, 1, m_varConv->GetAvTrace(), 1, mu, 1);
683 }
684
685 // Update thermal conductivity
686 NekDouble tRa = m_Cp / m_Prandtl;
687 Vmath::Smul(nPts, tRa, mu, 1, thermalCond, 1);
688 }
689}
VariableConverterSharedPtr m_varConv
bool m_is_shockCaptPhys
flag for shock capturing switch on/off an enum could be added for more options
void GetViscosityAndThermalCondFromTempKernel(const T &temperature, T &mu, T &thermalCond)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:354
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:245

References GetViscosityAndThermalCondFromTempKernel(), m_Cp, Nektar::SolverUtils::EquationSystem::m_fields, m_is_shockCaptPhys, m_Prandtl, Nektar::CompressibleFlowSystem::m_varConv, CellMLToNektar.cellml_metadata::p, Vmath::Smul(), and Vmath::Vadd().

Referenced by GetViscousFluxVectorConservVar(), GetViscousSymmtrFluxConservVar(), Nektar::NavierStokesImplicitCFE::v_CalcMuDmuDT(), Nektar::NavierStokesImplicitCFE::v_GetFluxDerivJacDirctn(), v_GetFluxPenalty(), v_GetViscousFluxVector(), Nektar::NavierStokesCFEAxisym::v_GetViscousFluxVector(), and v_GetViscousFluxVectorDeAlias().

◆ GetViscosityAndThermalCondFromTempKernel()

template<class T , typename = typename std::enable_if< std::is_floating_point<T>::value || tinysimd::is_vector_floating_point<T>::value>::type>
void Nektar::NavierStokesCFE::GetViscosityAndThermalCondFromTempKernel ( const T &  temperature,
T &  mu,
T &  thermalCond 
)
inlineprotected

Definition at line 176 of file NavierStokesCFE.h.

178 {
179 GetViscosityFromTempKernel(temperature, mu);
180 NekDouble tRa = m_Cp / m_Prandtl;
181 thermalCond = tRa * mu;
182 }
void GetViscosityFromTempKernel(const T &temperature, T &mu)

References GetViscosityFromTempKernel(), m_Cp, and m_Prandtl.

Referenced by GetViscosityAndThermalCondFromTemp().

◆ GetViscosityFromTempKernel()

template<class T , typename = typename std::enable_if< std::is_floating_point<T>::value || tinysimd::is_vector_floating_point<T>::value>::type>
void Nektar::NavierStokesCFE::GetViscosityFromTempKernel ( const T &  temperature,
T &  mu 
)
inlineprotected

Definition at line 187 of file NavierStokesCFE.h.

188 {
189 // Variable viscosity through the Sutherland's law
191 {
192 mu = m_varConv->GetDynamicViscosity(temperature);
193 }
194 else
195 {
196 mu = m_muRef;
197 }
198 }
bool m_is_mu_variable
flag to switch between constant viscosity and Sutherland an enum could be added for more options

References m_is_mu_variable, m_muRef, and Nektar::CompressibleFlowSystem::m_varConv.

Referenced by GetViscosityAndThermalCondFromTempKernel().

◆ GetViscousFluxBilinearFormKernel()

template<class T , typename = typename std::enable_if< std::is_floating_point<T>::value || tinysimd::is_vector_floating_point<T>::value>::type>
void Nektar::NavierStokesCFE::GetViscousFluxBilinearFormKernel ( const unsigned short  nDim,
const unsigned short  FluxDirection,
const unsigned short  DerivDirection,
const T *  inaverg,
const T *  injumpp,
const T &  mu,
T *  outarray 
)
inlineprotected

Calculate diffusion flux using the Jacobian form.

Parameters
in
outoutarray[nvars] flux

Definition at line 211 of file NavierStokesCFE.h.

216 {
217 // Constants
218 unsigned short nDim_plus_one = nDim + 1;
219 unsigned short FluxDirection_plus_one = FluxDirection + 1;
220 unsigned short DerivDirection_plus_one = DerivDirection + 1;
221
222 NekDouble gammaoPr = m_gamma / m_Prandtl;
223 NekDouble one_minus_gammaoPr = 1.0 - gammaoPr;
224
225 constexpr NekDouble OneThird = 1. / 3.;
226 constexpr NekDouble TwoThird = 2. * OneThird;
227 constexpr NekDouble FourThird = 4. * OneThird;
228
229 if (DerivDirection == FluxDirection)
230 {
231 // rho flux always zero
232 outarray[0] = 0.0; // store 1x
233
234 // load 1/rho
235 T oneOrho = 1.0 / inaverg[0]; // load 1x
236 // get vel, vel^2, sum of vel^2
237 std::array<T, 3> u = {{0.0, 0.0, 0.0}};
238 std::array<T, 3> u2 = {{0.0, 0.0, 0.0}};
239 T u2sum{};
240 for (unsigned short d = 0; d < nDim; ++d)
241 {
242 u[d] = inaverg[d + 1] * oneOrho; // load 1x
243 u2[d] = u[d] * u[d];
244 u2sum += u2[d];
245 }
246
247 // get E - sum v^2
248 T E_minus_u2sum = inaverg[nDim_plus_one]; // load 1x
249 E_minus_u2sum *= oneOrho;
250 E_minus_u2sum -= u2sum;
251
252 // get nu = mu/rho
253 T nu = mu * oneOrho; // load 1x
254
255 // ^^^^ above is almost the same for both loops
256
257 T tmp1 = OneThird * u2[FluxDirection] + u2sum;
258 tmp1 += gammaoPr * E_minus_u2sum;
259 tmp1 *= injumpp[0]; // load 1x
260
261 T tmp2 = gammaoPr * injumpp[nDim_plus_one] - tmp1; // load 1x
262
263 // local var for energy output
264 T outTmpE = 0.0;
265 for (unsigned short d = 0; d < nDim; ++d)
266 {
267 unsigned short d_plus_one = d + 1;
268 // flux[rhou, rhov, rhow]
269 T outTmpD = injumpp[d_plus_one] - u[d] * injumpp[0];
270 outTmpD *= nu;
271 // flux rhoE
272 T tmp3 = one_minus_gammaoPr * u[d];
273 outTmpE += tmp3 * injumpp[d_plus_one];
274
275 if (d == FluxDirection)
276 {
277 outTmpD *= FourThird;
278 T tmp4 = OneThird * u[FluxDirection];
279 outTmpE += tmp4 * injumpp[FluxDirection_plus_one];
280 }
281
282 outarray[d_plus_one] = outTmpD; // store 1x
283 }
284
285 outTmpE += tmp2;
286 outTmpE *= nu;
287 outarray[nDim_plus_one] = outTmpE; // store 1x
288 }
289 else
290 {
291 // rho flux always zero
292 outarray[0] = 0.0; // store 1x
293
294 // load 1/rho
295 T oneOrho = 1.0 / inaverg[0]; // load 1x
296 // get vel, vel^2, sum of vel^2
297 std::array<T, 3> u, u2;
298 T u2sum{};
299 for (unsigned short d = 0; d < nDim; ++d)
300 {
301 unsigned short d_plus_one = d + 1;
302 u[d] = inaverg[d_plus_one] * oneOrho; // load 1x
303 u2[d] = u[d] * u[d];
304 u2sum += u2[d];
305 // Not all directions are set
306 // one could work out the one that is not set
307 outarray[d_plus_one] = 0.0; // store 1x
308 }
309
310 // get E - sum v^2
311 T E_minus_u2sum = inaverg[nDim_plus_one]; // load 1x
312 E_minus_u2sum *= oneOrho;
313 E_minus_u2sum -= u2sum;
314
315 // get nu = mu/rho
316 T nu = mu * oneOrho; // load 1x
317
318 // ^^^^ above is almost the same for both loops
319
320 T tmp1 = u[DerivDirection] * injumpp[0] -
321 injumpp[DerivDirection_plus_one]; // load 2x
322 tmp1 *= TwoThird;
323 outarray[FluxDirection_plus_one] = nu * tmp1; // store 1x
324
325 tmp1 =
326 injumpp[FluxDirection_plus_one] - u[FluxDirection] * injumpp[0];
327 outarray[DerivDirection_plus_one] = nu * tmp1; // store 1x
328
329 tmp1 = OneThird * u[FluxDirection] * u[DerivDirection];
330 tmp1 *= injumpp[0];
331
332 T tmp2 =
333 TwoThird * u[FluxDirection] * injumpp[DerivDirection_plus_one];
334
335 tmp1 += tmp2;
336
337 tmp1 = u[DerivDirection] * injumpp[FluxDirection_plus_one] - tmp1;
338 outarray[nDim_plus_one] = nu * tmp1; // store 1x
339 }
340 }

References Nektar::UnitTests::d(), Nektar::CompressibleFlowSystem::m_gamma, and m_Prandtl.

Referenced by GetViscousFluxVectorConservVar(), and GetViscousSymmtrFluxConservVar().

◆ GetViscousFluxVectorConservVar() [1/2]

template<bool IS_TRACE>
void Nektar::NavierStokesCFE::GetViscousFluxVectorConservVar ( const size_t  nDim,
const Array< OneD, Array< OneD, NekDouble > > &  inarray,
const TensorOfArray3D< NekDouble > &  qfields,
TensorOfArray3D< NekDouble > &  outarray,
Array< OneD, int > &  nonZeroIndex,
const Array< OneD, Array< OneD, NekDouble > > &  normal 
)
inlineprotected

Return the flux vector for the IP diffusion problem, based on conservative variables.

Definition at line 347 of file NavierStokesCFE.h.

352 {
353 size_t nConvectiveFields = inarray.size();
354 size_t nPts = inarray[0].size();
355 size_t n_nonZero = nConvectiveFields - 1;
356
357 // max outfield dimensions
358 constexpr unsigned short nOutMax = 3 - 2 * IS_TRACE;
359 constexpr unsigned short nVarMax = 5;
360 constexpr unsigned short nDimMax = 3;
361
362 // Update viscosity and thermal conductivity
363 // unfortunately the artificial viscosity is difficult to vectorize
364 // with the current implementation
365 Array<OneD, NekDouble> temperature(nPts, 0.0);
366 Array<OneD, NekDouble> mu(nPts, 0.0);
367 Array<OneD, NekDouble> thermalConductivity(nPts, 0.0);
368 m_varConv->GetTemperature(inarray, temperature);
370 thermalConductivity);
371
372 // vector loop
373 using namespace tinysimd;
374 using vec_t = simd<NekDouble>;
375 size_t sizeVec = (nPts / vec_t::width) * vec_t::width;
376 size_t p = 0;
377
378 for (; p < sizeVec; p += vec_t::width)
379 {
380 // there is a significant penalty to use std::vector
381 alignas(vec_t::alignment) std::array<vec_t, nVarMax> inTmp,
382 qfieldsTmp, outTmp;
383 alignas(vec_t::alignment) std::array<vec_t, nDimMax> normalTmp;
384 alignas(vec_t::alignment) std::array<vec_t, nVarMax * nOutMax>
385 outArrTmp{{}};
386
387 // rearrenge and load data
388 for (size_t f = 0; f < nConvectiveFields; ++f)
389 {
390 inTmp[f].load(&(inarray[f][p]), is_not_aligned);
391 // zero output vector
392 if (IS_TRACE)
393 {
394 outArrTmp[f] = 0.0;
395 }
396 else
397 {
398 for (size_t d = 0; d < nDim; ++d)
399 {
400 outArrTmp[f + nConvectiveFields * d] = 0.0;
401 }
402 }
403 }
404 if (IS_TRACE)
405 {
406 for (size_t d = 0; d < nDim; ++d)
407 {
408 normalTmp[d].load(&(normal[d][p]), is_not_aligned);
409 }
410 }
411
412 // get viscosity
413 vec_t muV{};
414 muV.load(&(mu[p]), is_not_aligned);
415
416 for (size_t nderiv = 0; nderiv < nDim; ++nderiv)
417 {
418 // rearrenge and load data
419 for (size_t f = 0; f < nConvectiveFields; ++f)
420 {
421 qfieldsTmp[f].load(&(qfields[nderiv][f][p]),
423 }
424
425 for (size_t d = 0; d < nDim; ++d)
426 {
428 nDim, d, nderiv, inTmp.data(), qfieldsTmp.data(), muV,
429 outTmp.data());
430
431 if (IS_TRACE)
432 {
433 for (size_t f = 0; f < nConvectiveFields; ++f)
434 {
435 outArrTmp[f] += normalTmp[d] * outTmp[f];
436 }
437 }
438 else
439 {
440 for (size_t f = 0; f < nConvectiveFields; ++f)
441 {
442 outArrTmp[f + nConvectiveFields * d] += outTmp[f];
443 }
444 }
445 }
446 }
447
448 // store data
449 if (IS_TRACE)
450 {
451 for (size_t f = 0; f < nConvectiveFields; ++f)
452 {
453 outArrTmp[f].store(&(outarray[0][f][p]), is_not_aligned);
454 }
455 }
456 else
457 {
458 for (size_t d = 0; d < nDim; ++d)
459 {
460 for (size_t f = 0; f < nConvectiveFields; ++f)
461 {
462 outArrTmp[f + nConvectiveFields * d].store(
463 &(outarray[d][f][p]), is_not_aligned);
464 }
465 }
466 }
467 }
468
469 // scalar loop
470 for (; p < nPts; ++p)
471 {
472 std::array<NekDouble, nVarMax> inTmp, qfieldsTmp, outTmp;
473 std::array<NekDouble, nDimMax> normalTmp;
474 std::array<NekDouble, nVarMax * nOutMax> outArrTmp{{}};
475 // rearrenge and load data
476 for (size_t f = 0; f < nConvectiveFields; ++f)
477 {
478 inTmp[f] = inarray[f][p];
479 // zero output vector
480 if (IS_TRACE)
481 {
482 outArrTmp[f] = 0.0;
483 }
484 else
485 {
486 for (size_t d = 0; d < nDim; ++d)
487 {
488 outArrTmp[f + nConvectiveFields * d] = 0.0;
489 }
490 }
491 }
492
493 if (IS_TRACE)
494 {
495 for (size_t d = 0; d < nDim; ++d)
496 {
497 normalTmp[d] = normal[d][p];
498 }
499 }
500
501 // get viscosity
502 NekDouble muS = mu[p];
503
504 for (size_t nderiv = 0; nderiv < nDim; ++nderiv)
505 {
506 // rearrenge and load data
507 for (size_t f = 0; f < nConvectiveFields; ++f)
508 {
509 qfieldsTmp[f] = qfields[nderiv][f][p];
510 }
511
512 for (size_t d = 0; d < nDim; ++d)
513 {
515 nDim, d, nderiv, inTmp.data(), qfieldsTmp.data(), muS,
516 outTmp.data());
517
518 if (IS_TRACE)
519 {
520 for (size_t f = 0; f < nConvectiveFields; ++f)
521 {
522 outArrTmp[f] += normalTmp[d] * outTmp[f];
523 }
524 }
525 else
526 {
527 for (size_t f = 0; f < nConvectiveFields; ++f)
528 {
529 outArrTmp[f + nConvectiveFields * d] += outTmp[f];
530 }
531 }
532 }
533 }
534
535 // store data
536 if (IS_TRACE)
537 {
538 for (size_t f = 0; f < nConvectiveFields; ++f)
539 {
540 outarray[0][f][p] = outArrTmp[f];
541 }
542 }
543 else
544 {
545 for (size_t d = 0; d < nDim; ++d)
546 {
547 for (size_t f = 0; f < nConvectiveFields; ++f)
548 {
549 outarray[d][f][p] =
550 outArrTmp[f + nConvectiveFields * d];
551 }
552 }
553 }
554 }
555
556 // this is always the same, it should be initialized with the IP class
557 nonZeroIndex = Array<OneD, int>{n_nonZero, 0};
558 for (int i = 1; i < n_nonZero + 1; ++i)
559 {
560 nonZeroIndex[n_nonZero - i] = nConvectiveFields - i;
561 }
562 }
void GetViscosityAndThermalCondFromTemp(const Array< OneD, NekDouble > &temperature, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &thermalCond)
Update viscosity todo: add artificial viscosity here.
void GetViscousFluxBilinearFormKernel(const unsigned short nDim, const unsigned short FluxDirection, const unsigned short DerivDirection, const T *inaverg, const T *injumpp, const T &mu, T *outarray)
Calculate diffusion flux using the Jacobian form.
tinysimd::simd< NekDouble > vec_t
static constexpr struct tinysimd::is_not_aligned_t is_not_aligned
typename abi< ScalarType, width >::type simd
Definition: tinysimd.hpp:80

References Nektar::UnitTests::d(), GetViscosityAndThermalCondFromTemp(), GetViscousFluxBilinearFormKernel(), tinysimd::is_not_aligned, Nektar::CompressibleFlowSystem::m_varConv, and CellMLToNektar.cellml_metadata::p.

◆ GetViscousFluxVectorConservVar() [2/2]

void Nektar::NavierStokesCFE::GetViscousFluxVectorConservVar ( const size_t  nDim,
const Array< OneD, Array< OneD, NekDouble > > &  inarray,
const TensorOfArray3D< NekDouble > &  qfields,
TensorOfArray3D< NekDouble > &  outarray,
Array< OneD, int > &  nonZeroIndex = NullInt1DArray,
const Array< OneD, Array< OneD, NekDouble > > &  normal = NullNekDoubleArrayOfArray 
)
protected

◆ GetViscousSymmtrFluxConservVar()

void Nektar::NavierStokesCFE::GetViscousSymmtrFluxConservVar ( const size_t  nSpaceDim,
const Array< OneD, Array< OneD, NekDouble > > &  inaverg,
const Array< OneD, Array< OneD, NekDouble > > &  inarray,
TensorOfArray3D< NekDouble > &  outarray,
Array< OneD, int > &  nonZeroIndex,
const Array< OneD, Array< OneD, NekDouble > > &  normals 
)
protected

Calculate and return the Symmetric flux in IP method.

Definition at line 565 of file NavierStokesCFE.cpp.

570{
571 size_t nConvectiveFields = inarray.size();
572 size_t nPts = inaverg[nConvectiveFields - 1].size();
573 nonZeroIndex = Array<OneD, int>{nConvectiveFields - 1, 0};
574 for (size_t i = 0; i < nConvectiveFields - 1; ++i)
575 {
576 nonZeroIndex[i] = i + 1;
577 }
578
579 Array<OneD, NekDouble> mu(nPts, 0.0);
580 Array<OneD, NekDouble> thermalConductivity(nPts, 0.0);
581 Array<OneD, NekDouble> temperature(nPts, 0.0);
582 m_varConv->GetTemperature(inaverg, temperature);
583 GetViscosityAndThermalCondFromTemp(temperature, mu, thermalConductivity);
584
585 std::vector<NekDouble> inAvgTmp(nConvectiveFields);
586 std::vector<NekDouble> inTmp(nConvectiveFields);
587 std::vector<NekDouble> outTmp(nConvectiveFields);
588 for (size_t d = 0; d < nDim; ++d)
589 {
590 for (size_t nderiv = 0; nderiv < nDim; ++nderiv)
591 {
592 for (size_t p = 0; p < nPts; ++p)
593 {
594 // rearrenge data
595 for (size_t f = 0; f < nConvectiveFields; ++f)
596 {
597 inAvgTmp[f] = inaverg[f][p];
598 inTmp[f] = inarray[f][p];
599 }
600
602 inAvgTmp.data(), inTmp.data(),
603 mu[p], outTmp.data());
604
605 for (size_t f = 0; f < nConvectiveFields; ++f)
606 {
607 outarray[d][f][p] += normal[nderiv][p] * outTmp[f];
608 }
609 }
610 }
611 }
612}

References Nektar::UnitTests::d(), GetViscosityAndThermalCondFromTemp(), GetViscousFluxBilinearFormKernel(), Nektar::CompressibleFlowSystem::m_varConv, and CellMLToNektar.cellml_metadata::p.

Referenced by InitObject_Explicit().

◆ InitObject_Explicit()

void Nektar::NavierStokesCFE::InitObject_Explicit ( )
protected

Definition at line 69 of file NavierStokesCFE.cpp.

70{
71 // Get gas constant from session file and compute Cp
72 NekDouble gasConstant;
73 m_session->LoadParameter("GasConstant", gasConstant, 287.058);
74 m_Cp = m_gamma / (m_gamma - 1.0) * gasConstant;
75 m_Cv = m_Cp / m_gamma;
76
77 m_session->LoadParameter("Twall", m_Twall, 300.15);
78
79 // Viscosity
80 m_session->LoadSolverInfo("ViscosityType", m_ViscosityType, "Constant");
81 m_session->LoadParameter("mu", m_muRef, 1.78e-05);
82 if (m_ViscosityType == "Variable")
83 {
84 m_is_mu_variable = true;
85 }
86
87 // Thermal conductivity or Prandtl
88 if (m_session->DefinesParameter("thermalConductivity"))
89 {
90 ASSERTL0(!m_session->DefinesParameter("Pr"),
91 "Cannot define both Pr and thermalConductivity.");
92
93 m_session->LoadParameter("thermalConductivity",
96 }
97 else
98 {
99 m_session->LoadParameter("Pr", m_Prandtl, 0.72);
101 }
102
103 if (m_shockCaptureType == "Physical")
104 {
105 m_is_shockCaptPhys = true;
106 }
107
108 string diffName;
109 m_session->LoadSolverInfo("DiffusionType", diffName, "LDGNS");
110
113 if ("InteriorPenalty" == diffName)
114 {
115 m_is_diffIP = true;
117 }
118
119 if ("LDGNS" == diffName || "LDGNS3DHomogeneous1D" == diffName)
120 {
121 m_diffusion->SetFluxPenaltyNS(&NavierStokesCFE::v_GetFluxPenalty, this);
122 }
123
125 {
126 m_diffusion->SetFluxVectorNS(
128 }
129 else
130 {
132 this);
133 }
134
135 m_diffusion->SetDiffusionFluxCons(
136 &NavierStokesCFE::GetViscousFluxVectorConservVar<false>, this);
137
138 m_diffusion->SetDiffusionFluxConsTrace(
139 &NavierStokesCFE::GetViscousFluxVectorConservVar<true>, this);
140
141 m_diffusion->SetSpecialBndTreat(&NavierStokesCFE::SpecialBndTreat, this);
142
143 m_diffusion->SetDiffusionSymmFluxCons(
145
146 // Concluding initialisation of diffusion operator
147 m_diffusion->InitObject(m_session, m_fields);
148}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
void SetBoundaryConditionsBwdWeight()
Set up a weight on physical boundaries for boundary condition applications.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
void SpecialBndTreat(Array< OneD, Array< OneD, NekDouble > > &consvar)
For very special treatment. For general boundaries it does nothing But for WallViscous and WallAdiaba...
NekDouble m_thermalConductivityRef
void GetViscousSymmtrFluxConservVar(const size_t nSpaceDim, const Array< OneD, Array< OneD, NekDouble > > &inaverg, const Array< OneD, Array< OneD, NekDouble > > &inarray, TensorOfArray3D< NekDouble > &outarray, Array< OneD, int > &nonZeroIndex, const Array< OneD, Array< OneD, NekDouble > > &normals)
Calculate and return the Symmetric flux in IP method.
virtual void v_GetViscousFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &derivatives, TensorOfArray3D< NekDouble > &viscousTensor)
Return the flux vector for the LDG diffusion problem.
virtual void v_GetFluxPenalty(const Array< OneD, const Array< OneD, NekDouble > > &uFwd, const Array< OneD, const Array< OneD, NekDouble > > &uBwd, Array< OneD, Array< OneD, NekDouble > > &penaltyCoeff)
Return the penalty vector for the LDGNS diffusion problem.
bool m_is_diffIP
flag to switch between IP and LDG an enum could be added for more options
virtual void v_GetViscousFluxVectorDeAlias(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &derivatives, TensorOfArray3D< NekDouble > &viscousTensor)
Return the flux vector for the LDG diffusion problem.
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
DiffusionFactory & GetDiffusionFactory()
Definition: Diffusion.cpp:41

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::SolverUtils::GetDiffusionFactory(), GetViscousSymmtrFluxConservVar(), m_Cp, m_Cv, Nektar::CompressibleFlowSystem::m_diffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::CompressibleFlowSystem::m_gamma, m_is_diffIP, m_is_mu_variable, m_is_shockCaptPhys, m_muRef, m_Prandtl, Nektar::SolverUtils::EquationSystem::m_session, Nektar::CompressibleFlowSystem::m_shockCaptureType, Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing, m_thermalConductivityRef, m_Twall, m_ViscosityType, Nektar::CompressibleFlowSystem::SetBoundaryConditionsBwdWeight(), SpecialBndTreat(), v_GetFluxPenalty(), v_GetViscousFluxVector(), and v_GetViscousFluxVectorDeAlias().

Referenced by v_InitObject(), and Nektar::NavierStokesImplicitCFE::v_InitObject().

◆ SpecialBndTreat()

void Nektar::NavierStokesCFE::SpecialBndTreat ( Array< OneD, Array< OneD, NekDouble > > &  consvar)
protected

For very special treatment. For general boundaries it does nothing But for WallViscous and WallAdiabatic, special treatment is needed because they get the same Bwd value, special treatment is needed for boundary treatment of diffusion flux Note: This special treatment could be removed by seperating WallViscous and WallAdiabatic into two different classes.

Definition at line 476 of file NavierStokesCFE.cpp.

478{
479 size_t nConvectiveFields = consvar.size();
480 size_t ndens = 0;
481 size_t nengy = nConvectiveFields - 1;
482
483 Array<OneD, Array<OneD, NekDouble>> bndCons{nConvectiveFields};
484 Array<OneD, NekDouble> bndTotEngy;
485 Array<OneD, NekDouble> bndPressure;
487 Array<OneD, NekDouble> bndIntEndy;
488 size_t nLengthArray = 0;
489
490 size_t cnt = 0;
491 size_t nBndRegions = m_fields[nengy]->GetBndCondExpansions().size();
492 for (size_t j = 0; j < nBndRegions; ++j)
493 {
494 if (m_fields[nengy]
495 ->GetBndConditions()[j]
496 ->GetBoundaryConditionType() == SpatialDomains::ePeriodic)
497 {
498 continue;
499 }
500
501 size_t nBndEdges =
502 m_fields[nengy]->GetBndCondExpansions()[j]->GetExpSize();
503 for (size_t e = 0; e < nBndEdges; ++e)
504 {
505 size_t nBndEdgePts = m_fields[nengy]
506 ->GetBndCondExpansions()[j]
507 ->GetExp(e)
508 ->GetTotPoints();
509
510 int id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
511 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt++));
512
513 // Imposing Temperature Twall at the wall
514 if (boost::iequals(
515 m_fields[nengy]->GetBndConditions()[j]->GetUserDefined(),
516 "WallViscous"))
517 {
518 if (nBndEdgePts != nLengthArray)
519 {
520 for (size_t i = 0; i < nConvectiveFields; ++i)
521 {
522 bndCons[i] = Array<OneD, NekDouble>{nBndEdgePts, 0.0};
523 }
524 bndTotEngy = Array<OneD, NekDouble>{nBndEdgePts, 0.0};
525 bndPressure = Array<OneD, NekDouble>{nBndEdgePts, 0.0};
526 bndRho = Array<OneD, NekDouble>{nBndEdgePts, 0.0};
527 bndIntEndy = Array<OneD, NekDouble>{nBndEdgePts, 0.0};
528 nLengthArray = nBndEdgePts;
529 }
530 else
531 {
532 Vmath::Zero(nLengthArray, bndPressure, 1);
533 Vmath::Zero(nLengthArray, bndRho, 1);
534 Vmath::Zero(nLengthArray, bndIntEndy, 1);
535 }
536
538
539 for (size_t k = 0; k < nConvectiveFields; ++k)
540 {
541 Vmath::Vcopy(nBndEdgePts, tmp = consvar[k] + id2, 1,
542 bndCons[k], 1);
543 }
544
545 m_varConv->GetPressure(bndCons, bndPressure);
546 Vmath::Fill(nLengthArray, m_Twall, bndTotEngy, 1);
547 m_varConv->GetRhoFromPT(bndPressure, bndTotEngy, bndRho);
548 m_varConv->GetEFromRhoP(bndRho, bndPressure, bndIntEndy);
549 m_varConv->GetDynamicEnergy(bndCons, bndTotEngy);
550
551 Vmath::Vvtvp(nBndEdgePts, bndIntEndy, 1, bndCons[ndens], 1,
552 bndTotEngy, 1, bndTotEngy, 1);
553
554 Vmath::Vcopy(nBndEdgePts, bndTotEngy, 1,
555 tmp = consvar[nengy] + id2, 1);
556 }
557 }
558 }
559}
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:569
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:487
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1191

References Nektar::SpatialDomains::ePeriodic, Vmath::Fill(), Nektar::SolverUtils::EquationSystem::m_fields, m_Twall, Nektar::CompressibleFlowSystem::m_varConv, Vmath::Vcopy(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by InitObject_Explicit().

◆ v_DoDiffusion()

void Nektar::NavierStokesCFE::v_DoDiffusion ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
overrideprotectedvirtual

Implements Nektar::CompressibleFlowSystem.

Reimplemented in Nektar::NavierStokesCFEAxisym, and Nektar::NavierStokesImplicitCFE.

Definition at line 150 of file NavierStokesCFE.cpp.

155{
156 size_t nvariables = inarray.size();
157 size_t npoints = GetNpoints();
158 size_t nTracePts = GetTraceTotPoints();
159
160 // this should be preallocated
161 Array<OneD, Array<OneD, NekDouble>> outarrayDiff(nvariables);
162 for (size_t i = 0; i < nvariables; ++i)
163 {
164 outarrayDiff[i] = Array<OneD, NekDouble>(npoints, 0.0);
165 }
166
167 // Set artificial viscosity based on NS viscous tensor
169 {
170 if (m_varConv->GetFlagCalcDivCurl())
171 {
172 Array<OneD, NekDouble> div(npoints), curlSquare(npoints);
173 GetDivCurlSquared(m_fields, inarray, div, curlSquare, pFwd, pBwd);
174
175 // Set volume and trace artificial viscosity
176 m_varConv->SetAv(m_fields, inarray, div, curlSquare);
177 }
178 else
179 {
180 m_varConv->SetAv(m_fields, inarray);
181 }
182 }
183
184 if (m_is_diffIP)
185 {
186 if (m_bndEvaluateTime < 0.0)
187 {
188 NEKERROR(ErrorUtil::efatal, "m_bndEvaluateTime not setup");
189 }
190 m_diffusion->Diffuse(nvariables, m_fields, inarray, outarrayDiff,
191 m_bndEvaluateTime, pFwd, pBwd);
192 for (size_t i = 0; i < nvariables; ++i)
193 {
194 Vmath::Vadd(npoints, outarrayDiff[i], 1, outarray[i], 1,
195 outarray[i], 1);
196 }
197 }
198 else
199 {
200 // Get primitive variables [u,v,w,T]
201 Array<OneD, Array<OneD, NekDouble>> inarrayDiff(nvariables - 1);
202 Array<OneD, Array<OneD, NekDouble>> inFwd(nvariables - 1);
203 Array<OneD, Array<OneD, NekDouble>> inBwd(nvariables - 1);
204
205 for (size_t i = 0; i < nvariables - 1; ++i)
206 {
207 inarrayDiff[i] = Array<OneD, NekDouble>{npoints};
208 inFwd[i] = Array<OneD, NekDouble>{nTracePts};
209 inBwd[i] = Array<OneD, NekDouble>{nTracePts};
210 }
211
212 // Extract pressure
213 // (use inarrayDiff[0] as a temporary storage for the pressure)
214 m_varConv->GetPressure(inarray, inarrayDiff[0]);
215
216 // Extract temperature
217 m_varConv->GetTemperature(inarray, inarrayDiff[nvariables - 2]);
218
219 // Extract velocities
220 m_varConv->GetVelocityVector(inarray, inarrayDiff);
221
222 // Repeat calculation for trace space
223 if (pFwd == NullNekDoubleArrayOfArray ||
225 {
228 }
229 else
230 {
231 m_varConv->GetPressure(pFwd, inFwd[0]);
232 m_varConv->GetPressure(pBwd, inBwd[0]);
233
234 m_varConv->GetTemperature(pFwd, inFwd[nvariables - 2]);
235 m_varConv->GetTemperature(pBwd, inBwd[nvariables - 2]);
236
237 m_varConv->GetVelocityVector(pFwd, inFwd);
238 m_varConv->GetVelocityVector(pBwd, inBwd);
239 }
240
241 // Diffusion term in physical rhs form
242 m_diffusion->Diffuse(nvariables, m_fields, inarrayDiff, outarrayDiff,
243 inFwd, inBwd);
244
245 for (size_t i = 0; i < nvariables; ++i)
246 {
247 Vmath::Vadd(npoints, outarrayDiff[i], 1, outarray[i], 1,
248 outarray[i], 1);
249 }
250 }
251
252 // Add artificial diffusion through Laplacian operator
254 {
255 m_artificialDiffusion->DoArtificialDiffusion(inarray, outarray);
256 }
257}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
ArtificialDiffusionSharedPtr m_artificialDiffusion
void GetDivCurlSquared(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &cnsVar, Array< OneD, NekDouble > &div, Array< OneD, NekDouble > &curlSquare, const Array< OneD, Array< OneD, NekDouble > > &cnsVarFwd, const Array< OneD, Array< OneD, NekDouble > > &cnsVarBwd)
Get divergence and curl squared.
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
SOLVER_UTILS_EXPORT int GetNpoints()
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray

References Nektar::ErrorUtil::efatal, GetDivCurlSquared(), Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::CompressibleFlowSystem::m_artificialDiffusion, Nektar::CompressibleFlowSystem::m_bndEvaluateTime, Nektar::CompressibleFlowSystem::m_diffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_is_diffIP, m_is_shockCaptPhys, Nektar::CompressibleFlowSystem::m_varConv, NEKERROR, Nektar::NullNekDoubleArrayOfArray, and Vmath::Vadd().

Referenced by Nektar::NavierStokesCFEAxisym::v_DoDiffusion().

◆ v_ExtraFldOutput()

void Nektar::NavierStokesCFE::v_ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
overrideprotectedvirtual

Reimplemented from Nektar::CompressibleFlowSystem.

Definition at line 842 of file NavierStokesCFE.cpp.

845{
846 bool extraFields;
847 m_session->MatchSolverInfo("OutputExtraFields", "True", extraFields, true);
848 if (extraFields)
849 {
850 const int nPhys = m_fields[0]->GetNpoints();
851 const int nCoeffs = m_fields[0]->GetNcoeffs();
853
854 for (size_t i = 0; i < m_fields.size(); ++i)
855 {
856 cnsVar[i] = m_fields[i]->GetPhys();
857 }
858
861 for (int i = 0; i < m_spacedim; ++i)
862 {
863 velocity[i] = Array<OneD, NekDouble>(nPhys);
864 velFwd[i] = Array<OneD, NekDouble>(nCoeffs);
865 }
866
867 Array<OneD, NekDouble> pressure(nPhys), temperature(nPhys);
868 Array<OneD, NekDouble> entropy(nPhys);
869 Array<OneD, NekDouble> soundspeed(nPhys), mach(nPhys);
870 Array<OneD, NekDouble> sensor(nPhys), SensorKappa(nPhys);
871
872 m_varConv->GetVelocityVector(cnsVar, velocity);
873 m_varConv->GetPressure(cnsVar, pressure);
874 m_varConv->GetTemperature(cnsVar, temperature);
875 m_varConv->GetEntropy(cnsVar, entropy);
876 m_varConv->GetSoundSpeed(cnsVar, soundspeed);
877 m_varConv->GetMach(cnsVar, soundspeed, mach);
878
879 int sensorOffset;
880 m_session->LoadParameter("SensorOffset", sensorOffset, 1);
881 m_varConv->GetSensor(m_fields[0], cnsVar, sensor, SensorKappa,
882 sensorOffset);
883
884 Array<OneD, NekDouble> pFwd(nCoeffs), TFwd(nCoeffs);
885 Array<OneD, NekDouble> sFwd(nCoeffs);
886 Array<OneD, NekDouble> aFwd(nCoeffs), mFwd(nCoeffs);
887 Array<OneD, NekDouble> sensFwd(nCoeffs);
888
889 string velNames[3] = {"u", "v", "w"};
890 for (int i = 0; i < m_spacedim; ++i)
891 {
892 m_fields[0]->FwdTransLocalElmt(velocity[i], velFwd[i]);
893 variables.push_back(velNames[i]);
894 fieldcoeffs.push_back(velFwd[i]);
895 }
896
897 m_fields[0]->FwdTransLocalElmt(pressure, pFwd);
898 m_fields[0]->FwdTransLocalElmt(temperature, TFwd);
899 m_fields[0]->FwdTransLocalElmt(entropy, sFwd);
900 m_fields[0]->FwdTransLocalElmt(soundspeed, aFwd);
901 m_fields[0]->FwdTransLocalElmt(mach, mFwd);
902 m_fields[0]->FwdTransLocalElmt(sensor, sensFwd);
903
904 variables.push_back("p");
905 variables.push_back("T");
906 variables.push_back("s");
907 variables.push_back("a");
908 variables.push_back("Mach");
909 variables.push_back("Sensor");
910 fieldcoeffs.push_back(pFwd);
911 fieldcoeffs.push_back(TFwd);
912 fieldcoeffs.push_back(sFwd);
913 fieldcoeffs.push_back(aFwd);
914 fieldcoeffs.push_back(mFwd);
915 fieldcoeffs.push_back(sensFwd);
916
918 {
919 // reuse pressure
920 Array<OneD, NekDouble> sensorFwd(nCoeffs);
921 m_artificialDiffusion->GetArtificialViscosity(cnsVar, pressure);
922 m_fields[0]->FwdTransLocalElmt(pressure, sensorFwd);
923
924 variables.push_back("ArtificialVisc");
925 fieldcoeffs.push_back(sensorFwd);
926 }
927
929 {
930
932 cnsVarBwd(m_fields.size());
933
934 for (size_t i = 0; i < m_fields.size(); ++i)
935 {
938 m_fields[i]->GetFwdBwdTracePhys(cnsVar[i], cnsVarFwd[i],
939 cnsVarBwd[i]);
940 }
941
942 Array<OneD, NekDouble> div(nPhys), curlSquare(nPhys);
943 GetDivCurlSquared(m_fields, cnsVar, div, curlSquare, cnsVarFwd,
944 cnsVarBwd);
945
946 Array<OneD, NekDouble> divFwd(nCoeffs, 0.0);
947 m_fields[0]->FwdTransLocalElmt(div, divFwd);
948 variables.push_back("div");
949 fieldcoeffs.push_back(divFwd);
950
951 Array<OneD, NekDouble> curlFwd(nCoeffs, 0.0);
952 m_fields[0]->FwdTransLocalElmt(curlSquare, curlFwd);
953 variables.push_back("curl^2");
954 fieldcoeffs.push_back(curlFwd);
955
956 m_varConv->SetAv(m_fields, cnsVar, div, curlSquare);
957
958 Array<OneD, NekDouble> muavFwd(nCoeffs);
959 m_fields[0]->FwdTransLocalElmt(m_varConv->GetAv(), muavFwd);
960 variables.push_back("ArtificialVisc");
961 fieldcoeffs.push_back(muavFwd);
962 }
963 }
964}
int m_spacedim
Spatial dimension (>= expansion dim).

References GetDivCurlSquared(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::CompressibleFlowSystem::m_artificialDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_is_shockCaptPhys, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::CompressibleFlowSystem::m_varConv, and CG_Iterations::pressure.

◆ v_GetFluxPenalty()

void Nektar::NavierStokesCFE::v_GetFluxPenalty ( const Array< OneD, const Array< OneD, NekDouble > > &  uFwd,
const Array< OneD, const Array< OneD, NekDouble > > &  uBwd,
Array< OneD, Array< OneD, NekDouble > > &  penaltyCoeff 
)
protectedvirtual

Return the penalty vector for the LDGNS diffusion problem.

Definition at line 617 of file NavierStokesCFE.cpp.

621{
622 size_t nTracePts = uFwd[0].size();
623
624 // Compute average temperature
625 size_t nVariables = uFwd.size();
626 Array<OneD, NekDouble> tAve{nTracePts, 0.0};
627 Vmath::Svtsvtp(nTracePts, 0.5, uFwd[nVariables - 1], 1, 0.5,
628 uBwd[nVariables - 1], 1, tAve, 1);
629
630 // Get average viscosity and thermal conductivity
631 Array<OneD, NekDouble> muAve{nTracePts, 0.0};
632 Array<OneD, NekDouble> tcAve{nTracePts, 0.0};
633
634 GetViscosityAndThermalCondFromTemp(tAve, muAve, tcAve);
635
636 // Compute penalty term
637 for (size_t i = 0; i < nVariables; ++i)
638 {
639 // Get jump of u variables
640 Vmath::Vsub(nTracePts, uFwd[i], 1, uBwd[i], 1, penaltyCoeff[i], 1);
641 // Multiply by variable coefficient = {coeff} ( u^+ - u^- )
642 if (i < nVariables - 1)
643 {
644 Vmath::Vmul(nTracePts, muAve, 1, penaltyCoeff[i], 1,
645 penaltyCoeff[i], 1);
646 }
647 else
648 {
649 Vmath::Vmul(nTracePts, tcAve, 1, penaltyCoeff[i], 1,
650 penaltyCoeff[i], 1);
651 }
652 }
653}
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
svtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:746
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:207
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:414

References GetViscosityAndThermalCondFromTemp(), Vmath::Svtsvtp(), Vmath::Vmul(), and Vmath::Vsub().

Referenced by InitObject_Explicit().

◆ v_GetViscousFluxVector()

void Nektar::NavierStokesCFE::v_GetViscousFluxVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
TensorOfArray3D< NekDouble > &  derivativesO1,
TensorOfArray3D< NekDouble > &  viscousTensor 
)
protectedvirtual

Return the flux vector for the LDG diffusion problem.

Todo:
Complete the viscous flux vector

Reimplemented in Nektar::NavierStokesCFEAxisym.

Definition at line 263 of file NavierStokesCFE.cpp.

267{
268 // Auxiliary variables
269 size_t nScalar = physfield.size();
270 size_t nPts = physfield[0].size();
271 Array<OneD, NekDouble> divVel(nPts, 0.0);
272
273 // Stokes hypothesis
274 const NekDouble lambda = -2.0 / 3.0;
275
276 // Update viscosity and thermal conductivity
277 Array<OneD, NekDouble> mu(nPts, 0.0);
278 Array<OneD, NekDouble> thermalConductivity(nPts, 0.0);
279 GetViscosityAndThermalCondFromTemp(physfield[nScalar - 1], mu,
280 thermalConductivity);
281
282 // Velocity divergence
283 for (int j = 0; j < m_spacedim; ++j)
284 {
285 Vmath::Vadd(nPts, divVel, 1, derivativesO1[j][j], 1, divVel, 1);
286 }
287
288 // Velocity divergence scaled by lambda * mu
289 Vmath::Smul(nPts, lambda, divVel, 1, divVel, 1);
290 Vmath::Vmul(nPts, mu, 1, divVel, 1, divVel, 1);
291
292 // Viscous flux vector for the rho equation = 0
293 for (int i = 0; i < m_spacedim; ++i)
294 {
295 Vmath::Zero(nPts, viscousTensor[i][0], 1);
296 }
297
298 // Viscous stress tensor (for the momentum equations)
299 for (int i = 0; i < m_spacedim; ++i)
300 {
301 for (int j = i; j < m_spacedim; ++j)
302 {
303 Vmath::Vadd(nPts, derivativesO1[i][j], 1, derivativesO1[j][i], 1,
304 viscousTensor[i][j + 1], 1);
305
306 Vmath::Vmul(nPts, mu, 1, viscousTensor[i][j + 1], 1,
307 viscousTensor[i][j + 1], 1);
308
309 if (i == j)
310 {
311 // Add divergence term to diagonal
312 Vmath::Vadd(nPts, viscousTensor[i][j + 1], 1, divVel, 1,
313 viscousTensor[i][j + 1], 1);
314 }
315 else
316 {
317 // Copy to make symmetric
318 Vmath::Vcopy(nPts, viscousTensor[i][j + 1], 1,
319 viscousTensor[j][i + 1], 1);
320 }
321 }
322 }
323
324 // Terms for the energy equation
325 for (int i = 0; i < m_spacedim; ++i)
326 {
327 Vmath::Zero(nPts, viscousTensor[i][m_spacedim + 1], 1);
328 // u_j * tau_ij
329 for (int j = 0; j < m_spacedim; ++j)
330 {
331 Vmath::Vvtvp(nPts, physfield[j], 1, viscousTensor[i][j + 1], 1,
332 viscousTensor[i][m_spacedim + 1], 1,
333 viscousTensor[i][m_spacedim + 1], 1);
334 }
335 // Add k*T_i
336 Vmath::Vvtvp(nPts, thermalConductivity, 1, derivativesO1[i][m_spacedim],
337 1, viscousTensor[i][m_spacedim + 1], 1,
338 viscousTensor[i][m_spacedim + 1], 1);
339 }
340}

References GetViscosityAndThermalCondFromTemp(), Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vadd(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by InitObject_Explicit().

◆ v_GetViscousFluxVectorDeAlias()

void Nektar::NavierStokesCFE::v_GetViscousFluxVectorDeAlias ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
TensorOfArray3D< NekDouble > &  derivativesO1,
TensorOfArray3D< NekDouble > &  viscousTensor 
)
protectedvirtual

Return the flux vector for the LDG diffusion problem.

Todo:
Complete the viscous flux vector

Reimplemented in Nektar::NavierStokesCFEAxisym.

Definition at line 346 of file NavierStokesCFE.cpp.

350{
351 // Factor to rescale 1d points in dealiasing.
352 NekDouble OneDptscale = 2;
353 // Get number of points to dealias a cubic non-linearity
354 size_t nScalar = physfield.size();
355 size_t nPts = m_fields[0]->Get1DScaledTotPoints(OneDptscale);
356 size_t nPts_orig = physfield[0].size();
357
358 // Auxiliary variables
359 Array<OneD, NekDouble> divVel(nPts, 0.0);
360
361 // Stokes hypothesis
362 const NekDouble lambda = -2.0 / 3.0;
363
364 // Update viscosity and thermal conductivity
365 Array<OneD, NekDouble> mu(nPts, 0.0);
366 Array<OneD, NekDouble> thermalConductivity(nPts, 0.0);
367 GetViscosityAndThermalCondFromTemp(physfield[nScalar - 1], mu,
368 thermalConductivity);
369
370 // Interpolate inputs and initialise interpolated output
374 for (int i = 0; i < m_spacedim; ++i)
375 {
376 // Interpolate velocity
377 vel_interp[i] = Array<OneD, NekDouble>(nPts);
378 m_fields[0]->PhysInterp1DScaled(OneDptscale, physfield[i],
379 vel_interp[i]);
380
381 // Interpolate derivatives
382 deriv_interp[i] = Array<OneD, Array<OneD, NekDouble>>(m_spacedim + 1);
383 for (int j = 0; j < m_spacedim + 1; ++j)
384 {
385 deriv_interp[i][j] = Array<OneD, NekDouble>(nPts);
386 m_fields[0]->PhysInterp1DScaled(OneDptscale, derivativesO1[i][j],
387 deriv_interp[i][j]);
388 }
389
390 // Output (start from j=1 since flux is zero for rho)
392 for (int j = 1; j < m_spacedim + 2; ++j)
393 {
394 out_interp[i][j] = Array<OneD, NekDouble>(nPts);
395 }
396 }
397
398 // Velocity divergence
399 for (int j = 0; j < m_spacedim; ++j)
400 {
401 Vmath::Vadd(nPts, divVel, 1, deriv_interp[j][j], 1, divVel, 1);
402 }
403
404 // Velocity divergence scaled by lambda * mu
405 Vmath::Smul(nPts, lambda, divVel, 1, divVel, 1);
406 Vmath::Vmul(nPts, mu, 1, divVel, 1, divVel, 1);
407
408 // Viscous flux vector for the rho equation = 0 (no need to dealias)
409 for (int i = 0; i < m_spacedim; ++i)
410 {
411 Vmath::Zero(nPts_orig, viscousTensor[i][0], 1);
412 }
413
414 // Viscous stress tensor (for the momentum equations)
415 for (int i = 0; i < m_spacedim; ++i)
416 {
417 for (int j = i; j < m_spacedim; ++j)
418 {
419 Vmath::Vadd(nPts, deriv_interp[i][j], 1, deriv_interp[j][i], 1,
420 out_interp[i][j + 1], 1);
421
422 Vmath::Vmul(nPts, mu, 1, out_interp[i][j + 1], 1,
423 out_interp[i][j + 1], 1);
424
425 if (i == j)
426 {
427 // Add divergence term to diagonal
428 Vmath::Vadd(nPts, out_interp[i][j + 1], 1, divVel, 1,
429 out_interp[i][j + 1], 1);
430 }
431 else
432 {
433 // Make symmetric
434 out_interp[j][i + 1] = out_interp[i][j + 1];
435 }
436 }
437 }
438
439 // Terms for the energy equation
440 for (int i = 0; i < m_spacedim; ++i)
441 {
442 Vmath::Zero(nPts, out_interp[i][m_spacedim + 1], 1);
443 // u_j * tau_ij
444 for (int j = 0; j < m_spacedim; ++j)
445 {
446 Vmath::Vvtvp(nPts, vel_interp[j], 1, out_interp[i][j + 1], 1,
447 out_interp[i][m_spacedim + 1], 1,
448 out_interp[i][m_spacedim + 1], 1);
449 }
450 // Add k*T_i
451 Vmath::Vvtvp(nPts, thermalConductivity, 1, deriv_interp[i][m_spacedim],
452 1, out_interp[i][m_spacedim + 1], 1,
453 out_interp[i][m_spacedim + 1], 1);
454 }
455
456 // Project to original space
457 for (int i = 0; i < m_spacedim; ++i)
458 {
459 for (int j = 1; j < m_spacedim + 2; ++j)
460 {
461 m_fields[0]->PhysGalerkinProjection1DScaled(
462 OneDptscale, out_interp[i][j], viscousTensor[i][j]);
463 }
464 }
465}

References GetViscosityAndThermalCondFromTemp(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vadd(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by InitObject_Explicit().

◆ v_InitObject()

void Nektar::NavierStokesCFE::v_InitObject ( bool  DeclareField = true)
overrideprotectedvirtual

Initialization object for CompressibleFlowSystem class.

Reimplemented from Nektar::CompressibleFlowSystem.

Reimplemented in Nektar::NavierStokesCFEAxisym, and Nektar::NavierStokesImplicitCFE.

Definition at line 60 of file NavierStokesCFE.cpp.

61{
63
64 // rest of initialisation is in this routine so it can also be called
65 // in NavierStokesImplicitCFE initialisation
67}
virtual void v_InitObject(bool DeclareFields=true) override
Initialization object for CompressibleFlowSystem class.

References InitObject_Explicit(), and Nektar::CompressibleFlowSystem::v_InitObject().

Referenced by Nektar::NavierStokesCFEAxisym::v_InitObject().

◆ v_SupportsShockCaptType()

bool Nektar::NavierStokesCFE::v_SupportsShockCaptType ( const std::string  type) const
overrideprotectedvirtual

Implements Nektar::CompressibleFlowSystem.

Reimplemented in Nektar::NavierStokesImplicitCFE.

Definition at line 966 of file NavierStokesCFE.cpp.

967{
968 if (type == "NonSmooth" || type == "Physical" || type == "Off")
969 {
970 return true;
971 }
972 else
973 {
974 return false;
975 }
976}

Friends And Related Function Documentation

◆ MemoryManager< NavierStokesCFE >

friend class MemoryManager< NavierStokesCFE >
friend

Definition at line 1 of file NavierStokesCFE.h.

Member Data Documentation

◆ className

string Nektar::NavierStokesCFE::className
static
Initial value:
=
"NavierStokesCFE", NavierStokesCFE::create,
"NavierStokes equations in conservative variables.")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
EquationSystemFactory & GetEquationSystemFactory()

Definition at line 65 of file NavierStokesCFE.h.

◆ m_C0ProjectExp

MultiRegions::ContFieldSharedPtr Nektar::NavierStokesCFE::m_C0ProjectExp
protected

Definition at line 87 of file NavierStokesCFE.h.

◆ m_Cp

NekDouble Nektar::NavierStokesCFE::m_Cp
protected

◆ m_Cv

NekDouble Nektar::NavierStokesCFE::m_Cv
protected

◆ m_eos

EquationOfStateSharedPtr Nektar::NavierStokesCFE::m_eos
protected

Equation of system for computing temperature.

Definition at line 90 of file NavierStokesCFE.h.

◆ m_is_diffIP

bool Nektar::NavierStokesCFE::m_is_diffIP {false}
protected

flag to switch between IP and LDG an enum could be added for more options

Definition at line 76 of file NavierStokesCFE.h.

Referenced by InitObject_Explicit(), Nektar::NavierStokesImplicitCFE::v_CalcPhysDeriv(), v_DoDiffusion(), and Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff().

◆ m_is_mu_variable

bool Nektar::NavierStokesCFE::m_is_mu_variable {false}
protected

flag to switch between constant viscosity and Sutherland an enum could be added for more options

Definition at line 73 of file NavierStokesCFE.h.

Referenced by GetViscosityFromTempKernel(), and InitObject_Explicit().

◆ m_is_shockCaptPhys

bool Nektar::NavierStokesCFE::m_is_shockCaptPhys {false}
protected

flag for shock capturing switch on/off an enum could be added for more options

Definition at line 79 of file NavierStokesCFE.h.

Referenced by GetViscosityAndThermalCondFromTemp(), InitObject_Explicit(), v_DoDiffusion(), Nektar::NavierStokesImplicitCFE::v_DoDiffusionCoeff(), and v_ExtraFldOutput().

◆ m_muRef

NekDouble Nektar::NavierStokesCFE::m_muRef
protected

Definition at line 93 of file NavierStokesCFE.h.

Referenced by GetViscosityFromTempKernel(), and InitObject_Explicit().

◆ m_physicalSensorType

std::string Nektar::NavierStokesCFE::m_physicalSensorType
protected

Definition at line 85 of file NavierStokesCFE.h.

◆ m_Prandtl

NekDouble Nektar::NavierStokesCFE::m_Prandtl
protected

◆ m_smoothing

std::string Nektar::NavierStokesCFE::m_smoothing
protected

Definition at line 86 of file NavierStokesCFE.h.

◆ m_thermalConductivityRef

NekDouble Nektar::NavierStokesCFE::m_thermalConductivityRef
protected

Definition at line 94 of file NavierStokesCFE.h.

Referenced by InitObject_Explicit().

◆ m_Twall

NekDouble Nektar::NavierStokesCFE::m_Twall
protected

Definition at line 92 of file NavierStokesCFE.h.

Referenced by InitObject_Explicit(), and SpecialBndTreat().

◆ m_ViscosityType

std::string Nektar::NavierStokesCFE::m_ViscosityType
protected