Nektar++
Loading...
Searching...
No Matches
ImageWarpingSystem.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: ImageWarpingSystem.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Image warping solve routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38namespace Nektar
39{
40
43 "ImageWarpingSystem", ImageWarpingSystem::create,
44 "Image warping system.");
45
46/**
47 *
48 */
52 : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
53{
54}
55
56/**
57 *
58 */
59void ImageWarpingSystem::v_InitObject(bool DeclareField)
60{
62
63 // Define Velocity fields
65 int nq = m_fields[0]->GetNpoints();
66
67 for (int i = 0; i < m_spacedim; ++i)
68 {
70 }
71
72 // Bit of a hack: redefine u/v fields so they are continuous for
73 // Helmholtz solve.
76 m_session, m_graph, m_session->GetVariable(2));
77 m_fields[2] = fld;
79 *fld, m_graph, m_session->GetVariable(3));
80
81 // Tell UnsteadySystem to only integrate first two fields (i.e. I and
82 // phi).
83 m_intVariables.push_back(0);
84 m_intVariables.push_back(1);
85
86 // Define the normal velocity fields
87 if (m_fields[0]->GetTrace())
88 {
90 }
91
92 std::string advName;
93 std::string riemName;
94 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
98 m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
100 riemName, m_session);
102 this);
103
104 m_advObject->SetRiemannSolver(m_riemannSolver);
105 m_advObject->InitObject(m_session, m_fields);
106
108 {
111 }
112 else
113 {
114 ASSERTL0(false, "Implicit unsteady Advection not set up.");
115 }
116}
117
118/**
119 *
120 */
122 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
124 [[maybe_unused]] const NekDouble time)
125{
126 int npoints = GetNpoints();
127 int ncoeffs = inarray[0].size();
129
130 // Load parameter alpha.
131 m_session->LoadParameter("Alpha", m_alpha);
132
134 "CG not implemented yet.");
135
136 // Set up storage arrays.
137 Array<OneD, NekDouble> tmp(npoints);
138 Array<OneD, NekDouble> alloc(3 * npoints);
139 Array<OneD, NekDouble> dIdx1(alloc);
140 Array<OneD, NekDouble> dIdx2(alloc + npoints);
141 Array<OneD, NekDouble> dIdx3(alloc + 2 * npoints);
142
143 // Calculate grad I.
144 m_fields[0]->PhysDeriv(inarray[0], dIdx1, dIdx2);
145
146 // Set factors.
147 // TODO: Check - should be -1?
148 factors[StdRegions::eFactorLambda] = 1.0 / m_alpha / m_alpha;
149
150 // Multiply by phi, and perform Helmholtz solve to calculate the
151 // advection velocity field.
152 for (int i = 0; i < 2; ++i)
153 {
154 Vmath::Vmul(npoints, &alloc[i * npoints], 1, inarray[1].data(), 1,
155 m_fields[i + 2]->UpdatePhys().data(), 1);
156 Vmath::Smul(npoints, 1 / m_alpha / m_alpha,
157 m_fields[i + 2]->GetPhys().data(), 1,
158 m_fields[i + 2]->UpdatePhys().data(), 1);
159 m_fields[i + 2]->HelmSolve(m_fields[i + 2]->GetPhys(),
160 m_fields[i + 2]->UpdateCoeffs(), factors);
161 m_fields[i + 2]->BwdTrans(m_fields[i + 2]->GetCoeffs(), m_velocity[i]);
162 }
163
164 // Calculate the weak advection operator for I and phi - result is put
165 // in WeakAdv and is in physical space.
166 m_advObject->Advect(2, m_fields, m_velocity, inarray, outarray, 0.0);
167 for (int i = 0; i < 2; ++i)
168 {
169 Vmath::Neg(npoints, outarray[i], 1);
170 }
171
172 // Calculate du/dx -> dIdx1, dv/dy -> dIdx2.
173 m_fields[2]->PhysDeriv(m_velocity[0], dIdx1, dIdx3);
174 m_fields[3]->PhysDeriv(m_velocity[1], dIdx3, dIdx2);
175
176 // Calculate RHS = I*div(u) = I*du/dx + I*dv/dy -> dIdx1.
177 Vmath::Vvtvvtp(npoints, dIdx1.data(), 1, inarray[0].data(), 1, dIdx2.data(),
178 1, inarray[0].data(), 1, dIdx1.data(), 1);
179
180 // Take inner product to get to coefficient space.
181 Array<OneD, NekDouble> tmp2(ncoeffs);
182 m_fields[0]->IProductWRTBase(dIdx1, tmp2);
183
184 // Multiply by elemental inverse mass matrix, backwards transform
185 m_fields[0]->MultiplyByElmtInvMass(tmp2, tmp2);
186 m_fields[0]->BwdTrans(tmp2, tmp);
187 Vmath::Vadd(npoints, outarray[0], 1, tmp, 1, outarray[0], 1);
188}
189
190/**
191 *
192 */
194 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
195 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
196{
197 int nvariables = inarray.size();
199
200 switch (m_projectionType)
201 {
203 {
204 // Just copy over array
205 if (inarray != outarray)
206 {
207 int npoints = GetNpoints();
208
209 for (int i = 0; i < nvariables; ++i)
210 {
211 Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
212 }
213 }
214 }
215 break;
216 default:
217 ASSERTL0(false, "Unknown projection scheme");
218 break;
219 }
220}
221
222/**
223 * @brief Get the normal velocity
224 */
226{
227 // Number of trace (interface) points
228 int nTracePts = GetTraceNpoints();
229
230 // Auxiliary variable to compute the normal velocity
231 Array<OneD, NekDouble> tmp(nTracePts);
232
233 // Reset the normal velocity
234 Vmath::Zero(nTracePts, m_traceVn, 1);
235
236 for (int i = 0; i < m_velocity.size(); ++i)
237 {
238 m_fields[0]->ExtractTracePhys(m_velocity[i], tmp);
239
240 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, tmp, 1, m_traceVn, 1,
241 m_traceVn, 1);
242 }
243
244 return m_traceVn;
245}
246
247/**
248 *
249 */
251 const Array<OneD, Array<OneD, NekDouble>> &physfield,
253{
254 ASSERTL1(flux[0].size() == m_velocity.size(),
255 "Dimension of flux array and velocity array do not match");
256
257 int nq = physfield[0].size();
258
259 for (int i = 0; i < flux.size(); ++i)
260 {
261 for (int j = 0; j < flux[0].size(); ++j)
262 {
263 Vmath::Vmul(nq, physfield[i], 1, m_velocity[j], 1, flux[i][j], 1);
264 }
265 }
266}
267
268/**
269 *
270 */
272{
273 AdvectionSystem::v_GenerateSummary(s);
274}
275} // namespace Nektar
#define ASSERTL0(condition, msg)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
ImageWarpingSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
static EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
Array< OneD, Array< OneD, NekDouble > > m_velocity
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
void v_GenerateSummary(SolverUtils::SummaryList &s) override
Virtual function for generating summary information.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
static std::string className
Name of class.
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity.
void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
Array< OneD, NekDouble > m_traceVn
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
A base class for PDEs which include an advection component.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
int m_spacedim
Spatial dimension (>= expansion dim).
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
SOLVER_UTILS_EXPORT int GetTraceNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< ContField > ContFieldSharedPtr
Definition ContField.h:278
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition Advection.cpp:43
std::vector< std::pair< std::string, std::string > > SummaryList
Definition Misc.h:46
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition MeshGraph.h:217
std::map< ConstFactorType, NekDouble > ConstFactorMap
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition Vmath.hpp:273
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition Vmath.hpp:439
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition Vmath.hpp:825