Nektar++
Loading...
Searching...
No Matches
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::SolverUtils::UnsteadySystem Class Reference

Base class for unsteady solvers. More...

#include <UnsteadySystem.h>

Inheritance diagram for Nektar::SolverUtils::UnsteadySystem:
[legend]

Public Member Functions

SOLVER_UTILS_EXPORT ~UnsteadySystem () override=default
 Destructor.
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable.
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme.
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators.
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor.
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object.
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem.
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem.
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space.
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space.
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve.
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name.
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name.
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name.
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available.
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics.
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda.
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name.
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields.
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution.
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution.
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields.
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation.
 
SOLVER_UTILS_EXPORT NekDouble H1Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the H1 error between fields and a given exact solution.
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields.
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields.
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields.
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename.
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename.
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file.
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains.
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file.
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file.
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary.
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated.
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time.
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time.
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve.
 
- Public Member Functions inherited from Nektar::SolverUtils::ALEHelper
virtual ~ALEHelper ()=default
 
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
SOLVER_UTILS_EXPORT void InitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity (const NekDouble &time)
 
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass (Array< OneD, Array< OneD, NekDouble > > &fields)
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass (Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
 Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e.g. checkpoint output and L^2 error calculation.
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void MoveMesh (const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
SOLVER_UTILS_EXPORT void ResetMatricesNormal (Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
SOLVER_UTILS_EXPORT void UpdateNormalsFlag ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocity ()
 
bool & GetUpdateNormalsFlag ()
 
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace ()
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGrid (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Static Public Attributes

static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members.
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class.
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem.
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information.
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics.
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions.
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop.
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control.
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity.
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection.
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_H1Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the H_1 error computation between fields and a given exact solution.
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space.
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space.
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve.
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme.
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use.
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check.
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1).
 
NekDouble m_CFLGrowth
 CFL growth rate.
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth.
 
int m_abortSteps
 Number of steps between checks for abort conditions.
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used.
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used.
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used.
 
int m_steadyStateSteps
 Check for steady state at step interval.
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at.
 
int m_filtersInfosteps
 Number of time steps between outputting filters information.
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state.
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient.
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator.
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader.
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions.
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output.
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables.
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object.
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh.
 
std::string m_sessionName
 Name of the session.
 
NekDouble m_time
 Current time of simulation.
 
int m_initialStep
 Number of the step where the simulation should begin.
 
NekDouble m_fintime
 Finish time of the simulation.
 
NekDouble m_timestep
 Time step size.
 
NekDouble m_lambda
 Lambda constant in real system if one required.
 
NekDouble m_checktime
 Time between checkpoints.
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far.
 
int m_steps
 Number of steps to take.
 
int m_checksteps
 Number of steps between checkpoints.
 
int m_infosteps
 Number of time steps between outputting status information.
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration.
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration.
 
int m_spacedim
 Spatial dimension (>= expansion dim).
 
int m_expdim
 Expansion dimension.
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used.
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used.
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used.
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform.
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations.
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous.
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction.
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity.
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields.
 
Array< OneD, NekDoublem_movingFrameData
 Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z, U, V, W, Omega_x, Omega_y, Omega_z, A_x, A_y, A_z, DOmega_x, DOmega_y, DOmega_z, pivot_x, pivot_y, pivot_z.
 
std::vector< std::string > m_strFrameData
 variable name in m_movingFrameData
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error.
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous)
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous)
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous)
 
int m_npointsX
 number of points in X direction (if homogeneous)
 
int m_npointsY
 number of points in Y direction (if homogeneous)
 
int m_npointsZ
 number of points in Z direction (if homogeneous)
 
int m_HomoDirec
 number of homogenous directions
 
- Protected Attributes inherited from Nektar::SolverUtils::ALEHelper
Array< OneD, MultiRegions::ExpListSharedPtrm_fieldsALE
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
 
std::vector< ALEBaseShPtrm_ALEs
 
bool m_ALESolver = false
 
bool m_meshDistorted = false
 
bool m_implicitALESolver = false
 
bool m_updateNormals = false
 
NekDouble m_prevStageTime = 0.0
 
int m_spaceDim
 

Private Member Functions

SOLVER_UTILS_EXPORT void AppendOutput1D (void)
 Print the solution at each solution point in a txt file.
 
void InitializeSteadyState ()
 
bool CheckSteadyState (int step, const NekDouble &totCPUTime=0.0)
 Calculate whether the system has reached a steady state by observing residuals to a user-defined tolerance.
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Base class for unsteady solvers.

Provides the underlying timestepping framework for unsteady solvers including the general timestepping routines. This class is not intended to be directly instantiated, but rather is a base class on which to define unsteady solvers.

For details on implementing unsteady solvers see sectionADRSolverModuleImplementation here

Definition at line 46 of file UnsteadySystem.h.

Constructor & Destructor Documentation

◆ ~UnsteadySystem()

SOLVER_UTILS_EXPORT Nektar::SolverUtils::UnsteadySystem::~UnsteadySystem ( )
overridedefault

Destructor.

◆ UnsteadySystem()

Nektar::SolverUtils::UnsteadySystem::UnsteadySystem ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Initialises UnsteadySystem class members.

Processes SolverInfo parameters from the session file and sets up timestepping-specific code.

Parameters
pSessionSession object to read parameters from.

Definition at line 74 of file UnsteadySystem.cpp.

77 : EquationSystem(pSession, pGraph), SolverUtils::ALEHelper()
78
79{
80}
SOLVER_UTILS_EXPORT EquationSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises EquationSystem class members.

Member Function Documentation

◆ AppendOutput1D()

void Nektar::SolverUtils::UnsteadySystem::AppendOutput1D ( void  )
private

Print the solution at each solution point in a txt file.

Stores the solution in a file for 1D problems only. This method has been implemented to facilitate the post-processing for 1D problems.

Definition at line 669 of file UnsteadySystem.cpp.

670{
671 // Coordinates of the quadrature points in the real physical space.
672 Array<OneD, NekDouble> x(GetNpoints());
673 Array<OneD, NekDouble> y(GetNpoints());
674 Array<OneD, NekDouble> z(GetNpoints());
675 m_fields[0]->GetCoords(x, y, z);
676
677 // Print out the solution in a txt file.
678 ofstream outfile;
679 outfile.open("solution1D.txt");
680 for (int i = 0; i < GetNpoints(); i++)
681 {
682 outfile << scientific << setw(17) << setprecision(16) << x[i] << " "
683 << m_fields[m_intVariables[0]]->GetPhys()[i] << endl;
684 }
685 outfile << endl << endl;
686 outfile.close();
687}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
std::vector< double > z(NPUPPER)

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, and m_intVariables.

Referenced by v_DoSolve().

◆ CheckForRestartTime()

void Nektar::SolverUtils::UnsteadySystem::CheckForRestartTime ( NekDouble time,
int &  nchk 
)
protected

Definition at line 692 of file UnsteadySystem.cpp.

693{
694 if (m_session->DefinesFunction("InitialConditions"))
695 {
696 for (int i = 0; i < m_fields.size(); ++i)
697 {
699
700 vType = m_session->GetFunctionType("InitialConditions",
701 m_session->GetVariable(i));
702
704 {
705 std::string filename = m_session->GetFunctionFilename(
706 "InitialConditions", m_session->GetVariable(i));
707
708 fs::path pfilename(filename);
709
710 // Redefine path for parallel file which is in directory.
711 if (fs::is_directory(pfilename))
712 {
713 fs::path metafile("Info.xml");
714 fs::path fullpath = pfilename / metafile;
715 filename = LibUtilities::PortablePath(fullpath);
716 }
719 fld->ImportFieldMetaData(filename, m_fieldMetaDataMap);
720
721 // Check to see if time defined.
723 {
724 auto iter = m_fieldMetaDataMap.find("Time");
725 if (iter != m_fieldMetaDataMap.end())
726 {
727 time = std::stod(iter->second);
728 }
729
730 iter = m_fieldMetaDataMap.find("ChkFileNum");
731 if (iter != m_fieldMetaDataMap.end())
732 {
733 nchk = std::stod(iter->second);
734 }
735 }
736
737 break;
738 }
739 }
740 }
741 if (m_session->DefinesCmdLineArgument("set-start-time"))
742 {
743 time = std::stod(
744 m_session->GetCmdLineArgument<std::string>("set-start-time")
745 .c_str());
746 }
747 if (m_session->DefinesCmdLineArgument("set-start-chknumber"))
748 {
749 nchk = std::stoi(
750 m_session->GetCmdLineArgument<std::string>("set-start-chknumber"));
751 }
752 ASSERTL0(time >= 0 && nchk >= 0,
753 "Starting time and checkpoint number should be >= 0");
754}
#define ASSERTL0(condition, msg)
static std::shared_ptr< FieldIO > CreateForFile(const LibUtilities::SessionReaderSharedPtr session, const std::string &filename)
Construct a FieldIO object for a given input filename.
Definition FieldIO.cpp:223
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
std::shared_ptr< FieldIO > FieldIOSharedPtr
Definition FieldIO.h:322
static std::string PortablePath(const fs::path &path)
create portable path on different platforms for std::filesystem path.
static FieldMetaDataMap NullFieldMetaDataMap
Definition FieldIO.h:51

References ASSERTL0, Nektar::LibUtilities::FieldIO::CreateForFile(), Nektar::LibUtilities::eFunctionTypeFile, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::LibUtilities::NullFieldMetaDataMap, and Nektar::LibUtilities::PortablePath().

Referenced by v_DoInitialise().

◆ CheckSteadyState()

bool Nektar::SolverUtils::UnsteadySystem::CheckSteadyState ( int  step,
const NekDouble totCPUTime = 0.0 
)
private

Calculate whether the system has reached a steady state by observing residuals to a user-defined tolerance.

Definition at line 887 of file UnsteadySystem.cpp.

888{
889 const int nPoints = GetTotPoints();
890 const int nFields = m_fields.size();
891
892 // Holds L2 errors.
893 Array<OneD, NekDouble> L2(nFields);
894
895 SteadyStateResidual(step, L2);
896
897 if (m_infosteps && m_comm->GetRank() == 0 &&
898 (((step + 1) % m_infosteps == 0) || ((step == m_initialStep))))
899 {
900 // Output time.
901 m_errFile << boost::format("%25.19e") % m_time;
902
903 m_errFile << " " << boost::format("%25.19e") % totCPUTime;
904
905 int stepp = step + 1;
906
907 m_errFile << " " << boost::format("%25.19e") % stepp;
908
909 // Output residuals.
910 for (int i = 0; i < nFields; ++i)
911 {
912 m_errFile << " " << boost::format("%25.19e") % L2[i];
913 }
914
915 m_errFile << endl;
916 }
917
918 // Calculate maximum L2 error.
919 NekDouble maxL2 = Vmath::Vmax(nFields, L2, 1);
920
921 if (m_infosteps && m_session->DefinesCmdLineArgument("verbose") &&
922 m_comm->GetRank() == 0 && ((step + 1) % m_infosteps == 0))
923 {
924 cout << "-- Maximum L^2 residual: " << maxL2 << endl;
925 }
926
927 if (maxL2 <= m_steadyStateTol)
928 {
929 return true;
930 }
931
932 for (int i = 0; i < m_fields.size(); ++i)
933 {
934 Vmath::Vcopy(nPoints, m_fields[i]->GetPhys(), 1, m_previousSolution[i],
935 1);
936 }
937
938 return false;
939}
LibUtilities::CommSharedPtr m_comm
Communicator.
int m_infosteps
Number of time steps between outputting status information.
NekDouble m_time
Current time of simulation.
int m_initialStep
Number of the step where the simulation should begin.
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
Storage for previous solution for steady-state check.
NekDouble m_steadyStateTol
Tolerance to which steady state should be evaluated at.
SOLVER_UTILS_EXPORT void SteadyStateResidual(int step, Array< OneD, NekDouble > &L2)
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition Vmath.hpp:644
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition Vmath.hpp:825

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_comm, m_errFile, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_initialStep, m_previousSolution, Nektar::SolverUtils::EquationSystem::m_session, m_steadyStateTol, Nektar::SolverUtils::EquationSystem::m_time, SteadyStateResidual(), Vmath::Vcopy(), and Vmath::Vmax().

Referenced by v_DoSolve().

◆ DoDummyProjection()

void Nektar::SolverUtils::UnsteadySystem::DoDummyProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Perform dummy projection.

Definition at line 983 of file UnsteadySystem.cpp.

987{
988
989 if (&inarray != &outarray)
990 {
991 for (int i = 0; i < inarray.size(); ++i)
992 {
993 Vmath::Vcopy(GetNpoints(), inarray[i], 1, outarray[i], 1);
994 }
995 }
996}

References Nektar::SolverUtils::EquationSystem::GetNpoints(), and Vmath::Vcopy().

Referenced by Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), and Nektar::Monodomain::v_InitObject().

◆ GetTimeIntegrationScheme()

LibUtilities::TimeIntegrationSchemeSharedPtr & Nektar::SolverUtils::UnsteadySystem::GetTimeIntegrationScheme ( )

Returns the time integration scheme.

Definition at line 186 of file UnsteadySystem.cpp.

188{
189 return m_intScheme;
190}
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.

References m_intScheme.

Referenced by export_UnsteadySystem().

◆ GetTimeIntegrationSchemeOperators()

LibUtilities::TimeIntegrationSchemeOperators & Nektar::SolverUtils::UnsteadySystem::GetTimeIntegrationSchemeOperators ( )

Returns the time integration scheme operators.

Definition at line 195 of file UnsteadySystem.cpp.

197{
198 return m_ode;
199}
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.

References m_ode.

◆ GetTimeStep() [1/2]

SOLVER_UTILS_EXPORT NekDouble Nektar::SolverUtils::UnsteadySystem::GetTimeStep ( )
inline

Definition at line 59 of file UnsteadySystem.h.

60 {
62 }
SOLVER_UTILS_EXPORT NekDouble GetTimeStep()

References Nektar::SolverUtils::EquationSystem::GetTimeStep().

Referenced by v_DoSolve().

◆ GetTimeStep() [2/2]

SOLVER_UTILS_EXPORT NekDouble Nektar::SolverUtils::UnsteadySystem::GetTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray)
inline

Calculate the larger time-step mantaining the problem stable.

Definition at line 54 of file UnsteadySystem.h.

55 {
56 return v_GetTimeStep(inarray);
57 }
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep(const Array< OneD, const Array< OneD, NekDouble > > &inarray)
Return the timestep to be used for the next step in the time-marching loop.

References v_GetTimeStep().

◆ InitializeSteadyState()

void Nektar::SolverUtils::UnsteadySystem::InitializeSteadyState ( )
private

Definition at line 847 of file UnsteadySystem.cpp.

848{
849 if (m_steadyStateTol > 0.0)
850 {
851 const int nPoints = m_fields[0]->GetTotPoints();
853 Array<OneD, Array<OneD, NekDouble>>(m_fields.size());
854
855 for (int i = 0; i < m_fields.size(); ++i)
856 {
857 m_previousSolution[i] = Array<OneD, NekDouble>(nPoints);
858 Vmath::Vcopy(nPoints, m_fields[i]->GetPhys(), 1,
859 m_previousSolution[i], 1);
860 }
861
862 if (m_comm->GetRank() == 0)
863 {
864 std::string fName =
865 m_session->GetSessionName() + std::string(".resd");
866 m_errFile.open(fName.c_str());
867 m_errFile << setw(26) << left << "# Time";
868
869 m_errFile << setw(26) << left << "CPU_Time";
870
871 m_errFile << setw(26) << left << "Step";
872
873 for (int i = 0; i < m_fields.size(); ++i)
874 {
875 m_errFile << setw(26) << m_session->GetVariables()[i];
876 }
877
878 m_errFile << endl;
879 }
880 }
881}

References Nektar::SolverUtils::EquationSystem::m_comm, m_errFile, Nektar::SolverUtils::EquationSystem::m_fields, m_previousSolution, Nektar::SolverUtils::EquationSystem::m_session, m_steadyStateTol, and Vmath::Vcopy().

Referenced by v_DoInitialise().

◆ MaxTimeStepEstimator()

NekDouble Nektar::SolverUtils::UnsteadySystem::MaxTimeStepEstimator ( )
protected

Get the maximum timestep estimator for cfl control.

Returns the maximum time estimator for CFL control.

Definition at line 178 of file UnsteadySystem.cpp.

179{
180 return m_intScheme->GetTimeStability();
181}

References m_intScheme.

Referenced by Nektar::CompressibleFlowSystem::GetElmtTimeStep().

◆ SetTimeStep()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::UnsteadySystem::SetTimeStep ( const NekDouble  timestep)
inline

Definition at line 64 of file UnsteadySystem.h.

65 {
67 }
SOLVER_UTILS_EXPORT void SetTimeStep(const NekDouble timestep)

References Nektar::SolverUtils::EquationSystem::SetTimeStep().

◆ SteadyStateResidual()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::UnsteadySystem::SteadyStateResidual ( int  step,
Array< OneD, NekDouble > &  L2 
)
inline

Definition at line 69 of file UnsteadySystem.h.

71 {
72 v_SteadyStateResidual(step, L2);
73 }
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual(int step, Array< OneD, NekDouble > &L2)

References v_SteadyStateResidual().

Referenced by CheckSteadyState().

◆ SVVVarDiffCoeff()

void Nektar::SolverUtils::UnsteadySystem::SVVVarDiffCoeff ( const Array< OneD, Array< OneD, NekDouble > >  vel,
StdRegions::VarCoeffMap varCoeffMap 
)
protected

Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity.

Definition at line 804 of file UnsteadySystem.cpp.

807{
808 int phystot = m_fields[0]->GetTotPoints();
809 int nvel = vel.size();
810
811 Array<OneD, NekDouble> varcoeff(phystot), tmp;
812
813 // Calculate magnitude of v.
814 Vmath::Vmul(phystot, vel[0], 1, vel[0], 1, varcoeff, 1);
815 for (int n = 1; n < nvel; ++n)
816 {
817 Vmath::Vvtvp(phystot, vel[n], 1, vel[n], 1, varcoeff, 1, varcoeff, 1);
818 }
819 Vmath::Vsqrt(phystot, varcoeff, 1, varcoeff, 1);
820
821 for (int i = 0; i < m_fields[0]->GetNumElmts(); ++i)
822 {
823 int offset = m_fields[0]->GetPhys_Offset(i);
824 int nq = m_fields[0]->GetExp(i)->GetTotPoints();
825 Array<OneD, NekDouble> unit(nq, 1.0);
826
827 int nmodes = 0;
828
829 for (int n = 0; n < m_fields[0]->GetExp(i)->GetNumBases(); ++n)
830 {
831 nmodes = max(nmodes, m_fields[0]->GetExp(i)->GetBasisNumModes(n));
832 }
833
834 NekDouble h = m_fields[0]->GetExp(i)->Integral(unit);
835 h = pow(h, (NekDouble)(1.0 / nvel)) / ((NekDouble)nmodes);
836
837 Vmath::Smul(nq, h, varcoeff + offset, 1, tmp = varcoeff + offset, 1);
838 }
839
840 // Set up map with eVarCoffLaplacian key.
841 varCoeffMap[StdRegions::eVarCoeffLaplacian] = varcoeff;
842}
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition Vmath.hpp:340
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition Vmath.hpp:366
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition Vmath.hpp:100
scalarT< T > max(scalarT< T > lhs, scalarT< T > rhs)
Definition scalar.hpp:305

References Nektar::StdRegions::eVarCoeffLaplacian, Nektar::SolverUtils::EquationSystem::m_fields, tinysimd::max(), Vmath::Smul(), Vmath::Vmul(), Vmath::Vsqrt(), and Vmath::Vvtvp().

Referenced by Nektar::UnsteadyViscousBurgers::DoImplicitSolve().

◆ v_DoInitialise()

void Nektar::SolverUtils::UnsteadySystem::v_DoInitialise ( bool  dumpInitialConditions = true)
overrideprotectedvirtual

Sets up initial conditions.

Sets the initial conditions.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::VCSImplicit, Nektar::VCSMapping, and Nektar::VelocityCorrectionScheme.

Definition at line 625 of file UnsteadySystem.cpp.

626{
629 SetInitialConditions(m_time, dumpInitialConditions);
630
632
634}
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity(const NekDouble &time)
Definition ALEHelper.cpp:97
SOLVER_UTILS_EXPORT void SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Initialise the data in the dependent fields.
int m_nchk
Number of checkpoints written so far.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
SOLVER_UTILS_EXPORT void CheckForRestartTime(NekDouble &time, int &nchk)

References CheckForRestartTime(), InitializeSteadyState(), Nektar::SolverUtils::EquationSystem::m_nchk, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), Nektar::SolverUtils::EquationSystem::SetInitialConditions(), and Nektar::SolverUtils::ALEHelper::v_UpdateGridVelocity().

Referenced by Nektar::VCSMapping::v_DoInitialise().

◆ v_DoSolve()

void Nektar::SolverUtils::UnsteadySystem::v_DoSolve ( void  )
overrideprotectedvirtual

Solves an unsteady problem.

Initialises the time integration scheme (as specified in the session file), and perform the time integration.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 205 of file UnsteadySystem.cpp.

206{
207 ASSERTL0(m_intScheme != nullptr, "No time integration scheme.");
208
209 int i = 1;
210 int nvariables = 0;
211 int nfields = m_fields.size();
212 if (m_intVariables.empty())
213 {
214 for (i = 0; i < nfields; ++i)
215 {
216 m_intVariables.push_back(i);
217 }
218 nvariables = nfields;
219 }
220 else
221 {
222 nvariables = m_intVariables.size();
223 }
224
225 // Integrate in wave-space if using homogeneous1D.
227 {
228 for (i = 0; i < nfields; ++i)
229 {
230 m_fields[i]->HomogeneousFwdTrans(m_fields[i]->GetTotPoints(),
231 m_fields[i]->GetPhys(),
232 m_fields[i]->UpdatePhys());
233 m_fields[i]->SetWaveSpace(true);
234 m_fields[i]->SetPhysState(false);
235 }
236 }
237
238 // Set up wrapper to fields data storage.
239 Array<OneD, Array<OneD, NekDouble>> fields(nvariables);
240
241 // Order storage to list time-integrated fields first.
242 // @TODO: Refactor to take coeffs (FwdTrans) if boolean flag (in constructor
243 // function) says to.
244 for (i = 0; i < nvariables; ++i)
245 {
246 fields[i] = m_fields[m_intVariables[i]]->UpdatePhys();
247 m_fields[m_intVariables[i]]->SetPhysState(false);
248 }
249
250 // @TODO: Virtual function that allows to transform the field space, embed
251 // the MultiplyMassMatrix in here.
252 // @TODO: Specify what the fields variables are physical or coefficient,
253 // boolean in UnsteadySystem class...
254
255 if (m_meshDistorted)
256 {
257 v_ALEPreMultiplyMass(fields);
258 }
259
260 // Initialise time integration scheme.
261 m_intScheme->InitializeScheme(m_timestep, fields, m_time, m_ode);
262
263 // Initialise filters.
264 for (auto &x : m_filters)
265 {
266 x.second->Initialise(m_fields, m_time);
267 }
268
269 LibUtilities::Timer timer;
270 bool doCheckTime = false;
271 int step = m_initialStep;
272 int stepCounter = 0;
273 NekDouble intTime = 0.0;
274 NekDouble cpuTime = 0.0;
275 NekDouble cpuPrevious = 0.0;
276 NekDouble elapsed = 0.0;
277 NekDouble totFilterTime = 0.0;
278
279 m_lastCheckTime = 0.0;
280
281 Array<OneD, int> abortFlags(2, 0);
282 string abortFile = "abort";
283 if (m_session->DefinesSolverInfo("CheckAbortFile"))
284 {
285 abortFile = m_session->GetSolverInfo("CheckAbortFile");
286 }
287
288 NekDouble tmp_cflSafetyFactor = m_cflSafetyFactor;
289 while ((step < m_steps || m_time < m_fintime - NekConstants::kNekZeroTol) &&
290 abortFlags[1] == 0)
291 {
293 {
294 tmp_cflSafetyFactor =
295 min(m_CFLEnd, m_CFLGrowth * tmp_cflSafetyFactor);
296 }
297
298 // Frozen preconditioner checks.
299 if (!m_comm->IsParallelInTime())
300 {
302 {
303 m_cflSafetyFactor = tmp_cflSafetyFactor;
304
306 {
307 m_timestep = GetTimeStep(fields);
308 }
309
310 // Ensure that the final timestep finishes at the final
311 // time, or at a prescribed IO_CheckTime.
312 if (m_time + m_timestep > m_fintime && m_fintime > 0.0)
313 {
315 }
316 else if (m_checktime &&
318 {
321 doCheckTime = true;
322 }
323 }
324 }
325
326 if (m_TimeIncrementFactor > 1.0)
327 {
328 NekDouble timeincrementFactor = m_TimeIncrementFactor;
329 m_timestep *= timeincrementFactor;
330
331 if (m_time + m_timestep > m_fintime && m_fintime > 0.0)
332 {
334 }
335 }
336
337 // Perform any solver-specific pre-integration steps.
338 timer.Start();
339 if (v_PreIntegrate(
340 step)) // Could be possible to put a preintegrate step in the
341 // ALEHelper class, put in the Unsteady Advection class
342 {
343 break;
344 }
345
346 ASSERTL0(m_timestep > 0, "m_timestep < 0");
347
348 fields = m_intScheme->TimeIntegrate(stepCounter, m_timestep);
349 timer.Stop();
350
352 elapsed = timer.TimePerTest(1);
353 intTime += elapsed;
354 cpuTime += elapsed;
355
356 // Write out status information.
357 v_PrintStatusInformation(step, cpuTime);
358 if (m_infosteps &&
359 m_session->GetComm()->GetSpaceComm()->GetRank() == 0 &&
360 !((step + 1) % m_infosteps))
361 {
362 cpuPrevious = cpuTime;
363 cpuTime = 0.0;
364 }
365
366 // Change to advect coeffs
367 if (m_meshDistorted)
368 {
371 }
372 else
373 {
374 // Transform data into coefficient space
375 for (i = 0; i < nvariables; ++i)
376 {
377 // copy fields into ExpList::m_phys and assign the new
378 // array to fields
379 m_fields[m_intVariables[i]]->SetPhys(fields[i]);
380 fields[i] = m_fields[m_intVariables[i]]->UpdatePhys();
381 if (v_RequireFwdTrans())
382 {
383 if (m_comm->IsParallelInTime())
384 {
385 m_fields[m_intVariables[i]]->FwdTrans(
386 m_fields[m_intVariables[i]]->GetPhys(),
387 m_fields[m_intVariables[i]]->UpdateCoeffs());
388 }
389 else
390 {
391 m_fields[m_intVariables[i]]->FwdTransLocalElmt(
392 m_fields[m_intVariables[i]]->GetPhys(),
393 m_fields[m_intVariables[i]]->UpdateCoeffs());
394 }
395 }
396 m_fields[m_intVariables[i]]->SetPhysState(false);
397 }
398 }
399
400 // Perform any solver-specific post-integration steps.
401 if (v_PostIntegrate(step))
402 {
403 break;
404 }
405
406 // Check for steady-state.
408 (!((step + 1) % m_steadyStateSteps)))
409 {
410 if (CheckSteadyState(step, intTime))
411 {
412 if (m_comm->GetRank() == 0)
413 {
414 cout << "Reached Steady State to tolerance "
415 << m_steadyStateTol << endl;
416 }
417 break;
418 }
419 }
420
421 // Test for abort conditions (nan, or abort file).
422 if (m_abortSteps && !((step + 1) % m_abortSteps))
423 {
424 abortFlags[0] = 0;
425 for (i = 0; i < nvariables; ++i)
426 {
427 if (Vmath::Nnan(m_fields[m_intVariables[i]]->GetPhys().size(),
428 m_fields[m_intVariables[i]]->GetPhys(), 1) > 0)
429 {
430 abortFlags[0] = 1;
431 }
432 }
433
434 // Rank zero looks for abort file and deletes it
435 // if it exists. Communicates the abort.
436 if (m_session->GetComm()->GetSpaceComm()->GetRank() == 0)
437 {
438 if (fs::exists(abortFile))
439 {
440 fs::remove(abortFile);
441 abortFlags[1] = 1;
442 }
443 }
444
445 m_session->GetComm()->GetSpaceComm()->AllReduce(
446 abortFlags, LibUtilities::ReduceMax);
447
448 ASSERTL0(!abortFlags[0], "NaN found during time integration.");
449 }
450
451 // Update filters.
452 for (auto &x : m_filters)
453 {
454 timer.Start();
455 x.second->Update(m_fields, m_time);
456 timer.Stop();
457 elapsed = timer.TimePerTest(1);
458 totFilterTime += elapsed;
459
460 // Write out individual filter status information.
461 if (m_filtersInfosteps && m_session->GetComm()->GetRank() == 0 &&
462 !((step + 1) % m_filtersInfosteps) && !m_filters.empty() &&
463 m_session->DefinesCmdLineArgument("verbose"))
464 {
465 stringstream s0;
466 s0 << x.first << ":";
467 stringstream s1;
468 s1 << elapsed << "s";
469 stringstream s2;
470 s2 << elapsed / cpuPrevious * 100 << "%";
471 cout << "CPU time for filter " << setw(25) << left << s0.str()
472 << setw(12) << left << s1.str() << endl
473 << "\t Percentage of time integration: " << setw(10)
474 << left << s2.str() << endl;
475 }
476 }
477
478 // Write out overall filter status information.
479 if (m_filtersInfosteps && m_session->GetComm()->GetRank() == 0 &&
480 !((step + 1) % m_filtersInfosteps) && !m_filters.empty())
481 {
482 stringstream ss;
483 ss << totFilterTime << "s";
484 cout << "Total filters CPU Time:\t\t\t " << setw(10) << left
485 << ss.str() << endl;
486 }
487 totFilterTime = 0.0;
488
489 // Write out checkpoint files.
490 if ((m_checksteps && !((step + 1) % m_checksteps)) || doCheckTime)
491 {
493 {
494 // Transform to physical space for output.
495 vector<bool> transformed(nfields, false);
496 for (i = 0; i < nfields; i++)
497 {
498 if (m_fields[i]->GetWaveSpace())
499 {
500 m_fields[i]->SetWaveSpace(false);
501 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
502 m_fields[i]->UpdatePhys());
503 transformed[i] = true;
504 }
505 }
507 m_nchk++;
508
509 // Transform back to wave-space after output.
510 for (i = 0; i < nfields; i++)
511 {
512 if (transformed[i])
513 {
514 m_fields[i]->SetWaveSpace(true);
515 m_fields[i]->HomogeneousFwdTrans(
516 m_fields[i]->GetTotPoints(), m_fields[i]->GetPhys(),
517 m_fields[i]->UpdatePhys());
518 m_fields[i]->SetPhysState(false);
519 }
520 }
521 }
522 else
523 {
525 m_nchk++;
526 }
527 doCheckTime = false;
528 }
529
530 // Step advance.
531 ++step;
532 ++stepCounter;
533 }
534
535 // Print out summary statistics.
537
538 // If homogeneous, transform back into physical space if necessary.
539 if (!m_meshDistorted)
540 {
542 {
543 for (i = 0; i < nfields; i++)
544 {
545 if (m_fields[i]->GetWaveSpace())
546 {
547 m_fields[i]->SetWaveSpace(false);
548 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
549 m_fields[i]->UpdatePhys());
550 }
551 }
552 }
553 else
554 {
555 for (i = 0; i < nvariables; ++i)
556 {
557 m_fields[m_intVariables[i]]->SetPhysState(true);
558 }
559 }
560 }
561 // Finalise filters.
562 for (auto &x : m_filters)
563 {
564 x.second->Finalise(m_fields, m_time);
565 }
566
567 // Print for 1D problems.
568 if (m_spacedim == 1)
569 {
571 }
572}
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass(Array< OneD, Array< OneD, NekDouble > > &fields)
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass(Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e....
int m_spacedim
Spatial dimension (>= expansion dim).
NekDouble m_timestep
Time step size.
NekDouble m_fintime
Finish time of the simulation.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
NekDouble m_checktime
Time between checkpoints.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
int m_steps
Number of steps to take.
int m_checksteps
Number of steps between checkpoints.
NekDouble m_CFLGrowth
CFL growth rate.
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck()
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
int m_abortSteps
Number of steps between checks for abort conditions.
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step)
NekDouble m_CFLEnd
Maximun cfl in cfl growth.
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics(const NekDouble intTime)
Print Summary Statistics.
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation(const int step, const NekDouble cpuTime)
Print Status Information.
bool CheckSteadyState(int step, const NekDouble &totCPUTime=0.0)
Calculate whether the system has reached a steady state by observing residuals to a user-defined tole...
SOLVER_UTILS_EXPORT void AppendOutput1D(void)
Print the solution at each solution point in a txt file.
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate(int step)
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans()
int m_steadyStateSteps
Check for steady state at step interval.
int m_filtersInfosteps
Number of time steps between outputting filters information.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
SOLVER_UTILS_EXPORT NekDouble GetTimeStep()
static const NekDouble kNekZeroTol
int Nnan(int n, const T *x, const int incx)
Return number of NaN elements of x.
Definition Vmath.hpp:743
scalarT< T > min(scalarT< T > lhs, scalarT< T > rhs)
Definition scalar.hpp:300

References Nektar::SolverUtils::ALEHelper::ALEDoElmtInvMass(), AppendOutput1D(), ASSERTL0, Nektar::SolverUtils::EquationSystem::Checkpoint_Output(), CheckSteadyState(), Nektar::SolverUtils::EquationSystem::eNotHomogeneous, GetTimeStep(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::NekConstants::kNekZeroTol, m_abortSteps, m_CFLEnd, m_CFLGrowth, m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_checksteps, Nektar::SolverUtils::EquationSystem::m_checktime, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_filters, m_filtersInfosteps, Nektar::SolverUtils::EquationSystem::m_fintime, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_homoInitialFwd, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_initialStep, m_intScheme, m_intVariables, Nektar::SolverUtils::EquationSystem::m_lastCheckTime, Nektar::SolverUtils::ALEHelper::m_meshDistorted, Nektar::SolverUtils::EquationSystem::m_nchk, m_ode, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_steadyStateSteps, m_steadyStateTol, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_TimeIncrementFactor, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::SolverUtils::EquationSystem::m_traceNormals, tinysimd::min(), Vmath::Nnan(), Nektar::LibUtilities::ReduceMax, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), Nektar::LibUtilities::Timer::TimePerTest(), Nektar::SolverUtils::ALEHelper::v_ALEPreMultiplyMass(), v_PostIntegrate(), v_PreIntegrate(), v_PrintStatusInformation(), v_PrintSummaryStatistics(), v_RequireFwdTrans(), and v_UpdateTimeStepCheck().

Referenced by Nektar::CFSImplicit::v_DoSolve(), and Nektar::CoupledLinearNS::v_DoSolve().

◆ v_GenerateSummary()

void Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary ( SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Prints a summary with some information regards the time-stepping.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::UnsteadyViscousBurgers, Nektar::VelocityCorrectionScheme, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 640 of file UnsteadySystem.cpp.

641{
643 AddSummaryItem(s, "Advect. advancement",
644 m_explicitAdvection ? "explicit" : "implicit");
645
646 AddSummaryItem(s, "Diffuse. advancement",
647 m_explicitDiffusion ? "explicit" : "implicit");
648
649 if (m_session->GetSolverInfo("EQTYPE") ==
650 "SteadyAdvectionDiffusionReaction")
651 {
652 AddSummaryItem(s, "React. advancement",
653 m_explicitReaction ? "explicit" : "implicit");
654 }
655
656 AddSummaryItem(s, "Time Step", m_timestep);
657 AddSummaryItem(s, "No. of Steps", m_steps);
658 AddSummaryItem(s, "Checkpoints (steps)", m_checksteps);
659 if (m_intScheme)
660 {
661 AddSummaryItem(s, "Integration Type", m_intScheme->GetName());
662 }
663}
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &l)
Virtual function for generating summary information.
bool m_explicitReaction
Indicates if explicit or implicit treatment of reaction is used.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::m_checksteps, m_explicitAdvection, m_explicitDiffusion, m_explicitReaction, m_intScheme, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_timestep, and Nektar::SolverUtils::EquationSystem::v_GenerateSummary().

Referenced by Nektar::CompressibleFlowSystem::v_GenerateSummary(), Nektar::VCSWeakPressure::v_GenerateSummary(), Nektar::ShallowWaterSystem::v_GenerateSummary(), Nektar::SolverUtils::MMFSystem::v_GenerateSummary(), Nektar::UnsteadyDiffusion::v_GenerateSummary(), Nektar::Bidomain::v_GenerateSummary(), Nektar::BidomainRoth::v_GenerateSummary(), and Nektar::Monodomain::v_GenerateSummary().

◆ v_GetTimeStep()

NekDouble Nektar::SolverUtils::UnsteadySystem::v_GetTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray)
protectedvirtual

Return the timestep to be used for the next step in the time-marching loop.

See also
UnsteadySystem::GetTimeStep

Reimplemented in Nektar::CompressibleFlowSystem.

Definition at line 762 of file UnsteadySystem.cpp.

764{
765 NEKERROR(ErrorUtil::efatal, "Not defined for this class");
766 return 0.0;
767}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetTimeStep().

◆ v_InitObject()

void Nektar::SolverUtils::UnsteadySystem::v_InitObject ( bool  DeclareField = true)
overrideprotectedvirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::VCSMapping, Nektar::VelocityCorrectionScheme, and Nektar::UnsteadyViscousBurgers.

Definition at line 85 of file UnsteadySystem.cpp.

86{
87 EquationSystem::v_InitObject(DeclareField);
89 m_initialStep = 0;
90
91 // Load SolverInfo parameters.
92 m_session->MatchSolverInfo("DIFFUSIONADVANCEMENT", "Explicit",
94 m_session->MatchSolverInfo("ADVECTIONADVANCEMENT", "Explicit",
96 m_session->MatchSolverInfo("REACTIONADVANCEMENT", "Explicit",
97 m_explicitReaction, true);
98 m_session->LoadParameter("CheckAbortSteps", m_abortSteps, 1);
99
100 // Steady state tolerance.
101 m_session->LoadParameter("SteadyStateTol", m_steadyStateTol, 0.0);
102
103 // Frequency for checking steady state.
104 m_session->LoadParameter("SteadyStateSteps", m_steadyStateSteps, 1);
105
106 // For steady problems, we do not initialise the time integration.
107 if (m_session->DefinesSolverInfo("TimeIntegrationMethod") ||
108 m_session->DefinesTimeIntScheme())
109 {
110 LibUtilities::TimeIntScheme timeInt;
111 if (m_session->DefinesTimeIntScheme())
112 {
113 timeInt = m_session->GetTimeIntScheme();
114 }
115 else
116 {
117 std::cout << "TimeIntegrationMethod is deprecated, please use "
118 "TIMEINTEGRATIONSCHEME";
119 timeInt.method = m_session->GetSolverInfo("TimeIntegrationMethod");
120 }
121
124 timeInt.method, timeInt.variant, timeInt.order,
125 timeInt.freeParams);
126
127 // Load generic input parameters.
128 m_session->LoadParameter("IO_InfoSteps", m_infosteps, 0);
129 m_session->LoadParameter("IO_FiltersInfoSteps", m_filtersInfosteps,
130 10 * m_infosteps);
131 m_session->LoadParameter("CFL", m_cflSafetyFactor, 0.0);
132 m_session->LoadParameter("CFLEnd", m_CFLEnd, 0.0);
133 m_session->LoadParameter("CFLGrowth", m_CFLGrowth, 1.0);
134
135 // Ensure that there is no conflict of parameters.
136 if (m_cflSafetyFactor > 0.0)
137 {
138 // Check final condition.
139 ASSERTL0(m_fintime == 0.0 || m_steps == 0,
140 "Final condition not unique: "
141 "fintime > 0.0 and Nsteps > 0");
142 // Check timestep condition.
143 ASSERTL0(m_timestep == 0.0,
144 "Timestep not unique: timestep > 0.0 & CFL > 0.0");
145 }
146 else
147 {
148 ASSERTL0(m_timestep != 0.0, "Need to set either TimeStep or CFL");
149 }
150
151 // Ensure that there is no conflict of parameters.
152 if (m_CFLGrowth > 1.0)
153 {
154 // Check final condition.
156 "m_CFLEnd >= m_cflSafetyFactor required");
157 }
158
159 // Set up time to be dumped in field information.
160 m_fieldMetaDataMap["Time"] = boost::lexical_cast<std::string>(m_time);
161 }
162
163 // By default attempt to forward transform initial condition.
164 m_homoInitialFwd = true;
165
166 // Set up filters.
167 for (auto &x : m_session->GetFilters())
168 {
169 m_filters.push_back(make_pair(
170 x.name, GetFilterFactory().CreateInstance(
171 x.name, m_session, shared_from_this(), x.params)));
172 }
173}
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject(int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
Definition ALEHelper.cpp:42
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareFeld=true)
Initialisation object for EquationSystem.
TimeIntegrationSchemeFactory & GetTimeIntegrationSchemeFactory()
FilterFactory & GetFilterFactory()

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntScheme::freeParams, Nektar::SolverUtils::GetFilterFactory(), Nektar::LibUtilities::GetTimeIntegrationSchemeFactory(), m_abortSteps, m_CFLEnd, m_CFLGrowth, m_cflSafetyFactor, m_explicitAdvection, m_explicitDiffusion, m_explicitReaction, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, m_filters, m_filtersInfosteps, Nektar::SolverUtils::EquationSystem::m_fintime, m_homoInitialFwd, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_initialStep, m_intScheme, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_steadyStateSteps, m_steadyStateTol, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::LibUtilities::TimeIntScheme::method, Nektar::LibUtilities::TimeIntScheme::order, Nektar::SolverUtils::ALEHelper::v_ALEInitObject(), Nektar::SolverUtils::EquationSystem::v_InitObject(), and Nektar::LibUtilities::TimeIntScheme::variant.

Referenced by Nektar::PulseWaveSystem::v_InitObject(), Nektar::SolverUtils::AdvectionSystem::v_InitObject(), Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), Nektar::MMFDiffusion::v_InitObject(), Nektar::MMFAdvection::v_InitObject(), Nektar::UnsteadyDiffusion::v_InitObject(), Nektar::Dummy::v_InitObject(), Nektar::MMFMaxwell::v_InitObject(), Nektar::MMFSWE::v_InitObject(), and Nektar::ShallowWaterSystem::v_InitObject().

◆ v_PostIntegrate()

bool Nektar::SolverUtils::UnsteadySystem::v_PostIntegrate ( int  step)
protectedvirtual

◆ v_PreIntegrate()

bool Nektar::SolverUtils::UnsteadySystem::v_PreIntegrate ( int  step)
protectedvirtual

◆ v_PrintStatusInformation()

void Nektar::SolverUtils::UnsteadySystem::v_PrintStatusInformation ( const int  step,
const NekDouble  cpuTime 
)
protectedvirtual

Print Status Information.

Reimplemented in Nektar::CFSImplicit.

Definition at line 574 of file UnsteadySystem.cpp.

576{
577 if (m_infosteps && m_session->GetComm()->GetSpaceComm()->GetRank() == 0 &&
578 !((step + 1) % m_infosteps))
579 {
580 if (m_comm->IsParallelInTime())
581 {
582 cout << "RANK " << m_session->GetComm()->GetTimeComm()->GetRank()
583 << " Steps: " << setw(8) << left << step + 1 << " "
584 << "Time: " << setw(12) << left << m_time;
585 }
586 else
587 {
588 cout << "Steps: " << setw(8) << left << step + 1 << " "
589 << "Time: " << setw(12) << left << m_time;
590 }
591
593 {
594 cout << " Time-step: " << setw(12) << left << m_timestep;
595 }
596
597 stringstream ss;
598 ss << cpuTime << "s";
599 cout << " CPU Time: " << setw(8) << left << ss.str() << endl;
600 }
601}

References m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::EquationSystem::m_timestep.

Referenced by v_DoSolve(), and Nektar::CFSImplicit::v_PrintStatusInformation().

◆ v_PrintSummaryStatistics()

void Nektar::SolverUtils::UnsteadySystem::v_PrintSummaryStatistics ( const NekDouble  intTime)
protectedvirtual

Print Summary Statistics.

Reimplemented in Nektar::CFSImplicit.

Definition at line 603 of file UnsteadySystem.cpp.

604{
605 if (m_session->GetComm()->GetRank() == 0)
606 {
607 if (m_cflSafetyFactor > 0.0)
608 {
609 cout << "CFL safety factor : " << m_cflSafetyFactor << endl
610 << "CFL time-step : " << m_timestep << endl;
611 }
612
613 if (m_session->GetSolverInfo("Driver") != "SteadyState" &&
614 m_session->GetSolverInfo("Driver") != "Parareal" &&
615 m_session->GetSolverInfo("Driver") != "PFASST")
616 {
617 cout << "Time-integration : " << intTime << "s" << endl;
618 }
619 }
620}

References m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::m_timestep.

Referenced by v_DoSolve(), and Nektar::CFSImplicit::v_PrintSummaryStatistics().

◆ v_RequireFwdTrans()

bool Nektar::SolverUtils::UnsteadySystem::v_RequireFwdTrans ( void  )
protectedvirtual

Reimplemented in Nektar::Dummy, Nektar::VelocityCorrectionScheme, and Nektar::SolverUtils::FileSolution.

Definition at line 788 of file UnsteadySystem.cpp.

789{
790 return true;
791}

Referenced by v_DoSolve().

◆ v_SteadyStateResidual()

void Nektar::SolverUtils::UnsteadySystem::v_SteadyStateResidual ( int  step,
Array< OneD, NekDouble > &  L2 
)
protectedvirtual

Reimplemented in Nektar::CompressibleFlowSystem.

Definition at line 944 of file UnsteadySystem.cpp.

946{
947 const int nPoints = GetTotPoints();
948 const int nFields = m_fields.size();
949
950 // Holds L2 errors.
951 Array<OneD, NekDouble> RHSL2(nFields);
952 Array<OneD, NekDouble> residual(nFields);
953 Array<OneD, NekDouble> reference(nFields);
954
955 for (int i = 0; i < nFields; ++i)
956 {
957 Array<OneD, NekDouble> tmp(nPoints);
958
959 Vmath::Vsub(nPoints, m_fields[i]->GetPhys(), 1, m_previousSolution[i],
960 1, tmp, 1);
961 Vmath::Vmul(nPoints, tmp, 1, tmp, 1, tmp, 1);
962 residual[i] = Vmath::Vsum(nPoints, tmp, 1);
963
965 tmp, 1);
966 reference[i] = Vmath::Vsum(nPoints, tmp, 1);
967 }
968
969 m_comm->GetSpaceComm()->AllReduce(residual, LibUtilities::ReduceSum);
970 m_comm->GetSpaceComm()->AllReduce(reference, LibUtilities::ReduceSum);
971
972 // L2 error.
973 for (int i = 0; i < nFields; ++i)
974 {
975 reference[i] = (reference[i] == 0) ? 1 : reference[i];
976 L2[i] = sqrt(residual[i] / reference[i]);
977 }
978}
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition Vmath.hpp:608
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition Vmath.hpp:220
scalarT< T > sqrt(scalarT< T > in)
Definition scalar.hpp:290

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_previousSolution, Nektar::LibUtilities::ReduceSum, tinysimd::sqrt(), Vmath::Vmul(), Vmath::Vsub(), and Vmath::Vsum().

Referenced by SteadyStateResidual().

◆ v_UpdateTimeStepCheck()

bool Nektar::SolverUtils::UnsteadySystem::v_UpdateTimeStepCheck ( void  )
protectedvirtual

Reimplemented in Nektar::CFSImplicit.

Definition at line 796 of file UnsteadySystem.cpp.

797{
798 return true;
799}

Referenced by v_DoSolve().

Member Data Documentation

◆ cmdSetStartChkNum

std::string Nektar::SolverUtils::UnsteadySystem::cmdSetStartChkNum
static
Initial value:
=
"set-start-chknumber", "",
"Set the starting number of the checkpoint file.")
static std::string RegisterCmdLineArgument(const std::string &pName, const std::string &pShortName, const std::string &pDescription)
Registers a command-line argument with the session reader.

Definition at line 82 of file UnsteadySystem.h.

◆ cmdSetStartTime

std::string Nektar::SolverUtils::UnsteadySystem::cmdSetStartTime
static
Initial value:
=
"set-start-time", "", "Set the starting time of the simulation.")

Definition at line 81 of file UnsteadySystem.h.

◆ m_abortSteps

int Nektar::SolverUtils::UnsteadySystem::m_abortSteps
protected

Number of steps between checks for abort conditions.

Definition at line 104 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_CFLEnd

NekDouble Nektar::SolverUtils::UnsteadySystem::m_CFLEnd
protected

Maximun cfl in cfl growth.

Definition at line 101 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_CFLGrowth

NekDouble Nektar::SolverUtils::UnsteadySystem::m_CFLGrowth
protected

CFL growth rate.

Definition at line 99 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_cflSafetyFactor

NekDouble Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor
protected

◆ m_epsilon

NekDouble Nektar::SolverUtils::UnsteadySystem::m_epsilon
protected

Diffusion coefficient.

Definition at line 130 of file UnsteadySystem.h.

◆ m_errFile

std::ofstream Nektar::SolverUtils::UnsteadySystem::m_errFile
protected

Definition at line 127 of file UnsteadySystem.h.

Referenced by CheckSteadyState(), and InitializeSteadyState().

◆ m_explicitAdvection

bool Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection
protected

◆ m_explicitDiffusion

bool Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion
protected

◆ m_explicitReaction

bool Nektar::SolverUtils::UnsteadySystem::m_explicitReaction
protected

Indicates if explicit or implicit treatment of reaction is used.

Definition at line 111 of file UnsteadySystem.h.

Referenced by v_GenerateSummary(), and v_InitObject().

◆ m_filters

std::vector<std::pair<std::string, FilterSharedPtr> > Nektar::SolverUtils::UnsteadySystem::m_filters
protected

◆ m_filtersInfosteps

int Nektar::SolverUtils::UnsteadySystem::m_filtersInfosteps
protected

Number of time steps between outputting filters information.

Definition at line 119 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_homoInitialFwd

bool Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd
protected

◆ m_intScheme

LibUtilities::TimeIntegrationSchemeSharedPtr Nektar::SolverUtils::UnsteadySystem::m_intScheme
protected

◆ m_intVariables

std::vector<int> Nektar::SolverUtils::UnsteadySystem::m_intVariables
protected

◆ m_ode

LibUtilities::TimeIntegrationSchemeOperators Nektar::SolverUtils::UnsteadySystem::m_ode
protected

◆ m_previousSolution

Array<OneD, Array<OneD, NekDouble> > Nektar::SolverUtils::UnsteadySystem::m_previousSolution
protected

Storage for previous solution for steady-state check.

Definition at line 92 of file UnsteadySystem.h.

Referenced by CheckSteadyState(), InitializeSteadyState(), and v_SteadyStateResidual().

◆ m_steadyStateSteps

int Nektar::SolverUtils::UnsteadySystem::m_steadyStateSteps
protected

Check for steady state at step interval.

Definition at line 114 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_steadyStateTol

NekDouble Nektar::SolverUtils::UnsteadySystem::m_steadyStateTol
protected

Tolerance to which steady state should be evaluated at.

Definition at line 116 of file UnsteadySystem.h.

Referenced by CheckSteadyState(), InitializeSteadyState(), v_DoSolve(), and v_InitObject().