Nektar++
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::SolverUtils::UnsteadySystem Class Reference

Base class for unsteady solvers. More...

#include <UnsteadySystem.h>

Inheritance diagram for Nektar::SolverUtils::UnsteadySystem:
[legend]

Public Member Functions

SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::ALEHelper
virtual ~ALEHelper ()=default
 
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
SOLVER_UTILS_EXPORT void InitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity (const NekDouble &time)
 
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass (Array< OneD, Array< OneD, NekDouble > > &fields)
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass (Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
 Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e.g. checkpoint output and L^2 error calculation. More...
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void MoveMesh (const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocity ()
 
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace ()
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Static Public Attributes

static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z, U, V, W, Omega_x, Omega_y, Omega_z, A_x, A_y, A_z, DOmega_x, DOmega_y, DOmega_z, pivot_x, pivot_y, pivot_z. More...
 
std::vector< std::string > m_strFrameData
 variable name in m_movingFrameData More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Protected Attributes inherited from Nektar::SolverUtils::ALEHelper
Array< OneD, MultiRegions::ExpListSharedPtrm_fieldsALE
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
 
std::vector< ALEBaseShPtrm_ALEs
 
bool m_ALESolver = false
 
bool m_ImplicitALESolver = false
 
NekDouble m_prevStageTime = 0.0
 
int m_spaceDim
 

Private Member Functions

SOLVER_UTILS_EXPORT void AppendOutput1D (void)
 Print the solution at each solution point in a txt file. More...
 
void InitializeSteadyState ()
 
bool CheckSteadyState (int step, const NekDouble &totCPUTime=0.0)
 Calculate whether the system has reached a steady state by observing residuals to a user-defined tolerance. More...
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Base class for unsteady solvers.

Provides the underlying timestepping framework for unsteady solvers including the general timestepping routines. This class is not intended to be directly instantiated, but rather is a base class on which to define unsteady solvers.

For details on implementing unsteady solvers see sectionADRSolverModuleImplementation here

Definition at line 46 of file UnsteadySystem.h.

Constructor & Destructor Documentation

◆ ~UnsteadySystem()

Nektar::SolverUtils::UnsteadySystem::~UnsteadySystem ( )
override

Destructor.

Destructor for the class UnsteadyAdvection.

Definition at line 176 of file UnsteadySystem.cpp.

177{
178}

◆ UnsteadySystem()

Nektar::SolverUtils::UnsteadySystem::UnsteadySystem ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Initialises UnsteadySystem class members.

Processes SolverInfo parameters from the session file and sets up timestepping-specific code.

Parameters
pSessionSession object to read parameters from.

Definition at line 74 of file UnsteadySystem.cpp.

77 : EquationSystem(pSession, pGraph), SolverUtils::ALEHelper()
78
79{
80}
SOLVER_UTILS_EXPORT EquationSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises EquationSystem class members.

Member Function Documentation

◆ AppendOutput1D()

void Nektar::SolverUtils::UnsteadySystem::AppendOutput1D ( void  )
private

Print the solution at each solution point in a txt file.

Stores the solution in a file for 1D problems only. This method has been implemented to facilitate the post-processing for 1D problems.

Definition at line 673 of file UnsteadySystem.cpp.

674{
675 // Coordinates of the quadrature points in the real physical space.
676 Array<OneD, NekDouble> x(GetNpoints());
677 Array<OneD, NekDouble> y(GetNpoints());
678 Array<OneD, NekDouble> z(GetNpoints());
679 m_fields[0]->GetCoords(x, y, z);
680
681 // Print out the solution in a txt file.
682 ofstream outfile;
683 outfile.open("solution1D.txt");
684 for (int i = 0; i < GetNpoints(); i++)
685 {
686 outfile << scientific << setw(17) << setprecision(16) << x[i] << " "
687 << m_fields[m_intVariables[0]]->GetPhys()[i] << endl;
688 }
689 outfile << endl << endl;
690 outfile.close();
691}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
std::vector< double > z(NPUPPER)

References Nektar::SolverUtils::EquationSystem::GetNpoints(), Nektar::SolverUtils::EquationSystem::m_fields, m_intVariables, and Nektar::UnitTests::z().

Referenced by v_DoSolve().

◆ CheckForRestartTime()

void Nektar::SolverUtils::UnsteadySystem::CheckForRestartTime ( NekDouble time,
int &  nchk 
)
protected

Definition at line 696 of file UnsteadySystem.cpp.

697{
698 if (m_session->DefinesFunction("InitialConditions"))
699 {
700 for (int i = 0; i < m_fields.size(); ++i)
701 {
703
704 vType = m_session->GetFunctionType("InitialConditions",
705 m_session->GetVariable(i));
706
708 {
709 std::string filename = m_session->GetFunctionFilename(
710 "InitialConditions", m_session->GetVariable(i));
711
712 fs::path pfilename(filename);
713
714 // Redefine path for parallel file which is in directory.
715 if (fs::is_directory(pfilename))
716 {
717 fs::path metafile("Info.xml");
718 fs::path fullpath = pfilename / metafile;
719 filename = LibUtilities::PortablePath(fullpath);
720 }
723 fld->ImportFieldMetaData(filename, m_fieldMetaDataMap);
724
725 // Check to see if time defined.
727 {
728 auto iter = m_fieldMetaDataMap.find("Time");
729 if (iter != m_fieldMetaDataMap.end())
730 {
731 time = std::stod(iter->second);
732 }
733
734 iter = m_fieldMetaDataMap.find("ChkFileNum");
735 if (iter != m_fieldMetaDataMap.end())
736 {
737 nchk = std::stod(iter->second);
738 }
739 }
740
741 break;
742 }
743 }
744 }
745 if (m_session->DefinesCmdLineArgument("set-start-time"))
746 {
747 time = std::stod(
748 m_session->GetCmdLineArgument<std::string>("set-start-time")
749 .c_str());
750 }
751 if (m_session->DefinesCmdLineArgument("set-start-chknumber"))
752 {
753 nchk = boost::lexical_cast<int>(
754 m_session->GetCmdLineArgument<std::string>("set-start-chknumber"));
755 }
756 ASSERTL0(time >= 0 && nchk >= 0,
757 "Starting time and checkpoint number should be >= 0");
758}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
static std::shared_ptr< FieldIO > CreateForFile(const LibUtilities::SessionReaderSharedPtr session, const std::string &filename)
Construct a FieldIO object for a given input filename.
Definition: FieldIO.cpp:224
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
std::shared_ptr< FieldIO > FieldIOSharedPtr
Definition: FieldIO.h:322
static std::string PortablePath(const fs::path &path)
create portable path on different platforms for std::filesystem path.
Definition: Filesystem.hpp:56
static FieldMetaDataMap NullFieldMetaDataMap
Definition: FieldIO.h:51

References ASSERTL0, Nektar::LibUtilities::FieldIO::CreateForFile(), Nektar::LibUtilities::eFunctionTypeFile, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::LibUtilities::NullFieldMetaDataMap, and Nektar::LibUtilities::PortablePath().

Referenced by v_DoInitialise().

◆ CheckSteadyState()

bool Nektar::SolverUtils::UnsteadySystem::CheckSteadyState ( int  step,
const NekDouble totCPUTime = 0.0 
)
private

Calculate whether the system has reached a steady state by observing residuals to a user-defined tolerance.

Definition at line 891 of file UnsteadySystem.cpp.

892{
893 const int nPoints = GetTotPoints();
894 const int nFields = m_fields.size();
895
896 // Holds L2 errors.
897 Array<OneD, NekDouble> L2(nFields);
898
899 SteadyStateResidual(step, L2);
900
901 if (m_infosteps && m_comm->GetRank() == 0 &&
902 (((step + 1) % m_infosteps == 0) || ((step == m_initialStep))))
903 {
904 // Output time.
905 m_errFile << boost::format("%25.19e") % m_time;
906
907 m_errFile << " " << boost::format("%25.19e") % totCPUTime;
908
909 int stepp = step + 1;
910
911 m_errFile << " " << boost::format("%25.19e") % stepp;
912
913 // Output residuals.
914 for (int i = 0; i < nFields; ++i)
915 {
916 m_errFile << " " << boost::format("%25.19e") % L2[i];
917 }
918
919 m_errFile << endl;
920 }
921
922 // Calculate maximum L2 error.
923 NekDouble maxL2 = Vmath::Vmax(nFields, L2, 1);
924
925 if (m_infosteps && m_session->DefinesCmdLineArgument("verbose") &&
926 m_comm->GetRank() == 0 && ((step + 1) % m_infosteps == 0))
927 {
928 cout << "-- Maximum L^2 residual: " << maxL2 << endl;
929 }
930
931 if (maxL2 <= m_steadyStateTol)
932 {
933 return true;
934 }
935
936 for (int i = 0; i < m_fields.size(); ++i)
937 {
938 Vmath::Vcopy(nPoints, m_fields[i]->GetPhys(), 1, m_previousSolution[i],
939 1);
940 }
941
942 return false;
943}
LibUtilities::CommSharedPtr m_comm
Communicator.
int m_infosteps
Number of time steps between outputting status information.
NekDouble m_time
Current time of simulation.
int m_initialStep
Number of the step where the simulation should begin.
SOLVER_UTILS_EXPORT int GetTotPoints()
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
Storage for previous solution for steady-state check.
NekDouble m_steadyStateTol
Tolerance to which steady state should be evaluated at.
SOLVER_UTILS_EXPORT void SteadyStateResidual(int step, Array< OneD, NekDouble > &L2)
double NekDouble
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.hpp:644
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References CellMLToNektar.pycml::format, Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_comm, m_errFile, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_initialStep, m_previousSolution, Nektar::SolverUtils::EquationSystem::m_session, m_steadyStateTol, Nektar::SolverUtils::EquationSystem::m_time, SteadyStateResidual(), Vmath::Vcopy(), and Vmath::Vmax().

Referenced by v_DoSolve().

◆ DoDummyProjection()

void Nektar::SolverUtils::UnsteadySystem::DoDummyProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Perform dummy projection.

Definition at line 987 of file UnsteadySystem.cpp.

991{
992
993 if (&inarray != &outarray)
994 {
995 for (int i = 0; i < inarray.size(); ++i)
996 {
997 Vmath::Vcopy(GetNpoints(), inarray[i], 1, outarray[i], 1);
998 }
999 }
1000}

References Nektar::SolverUtils::EquationSystem::GetNpoints(), and Vmath::Vcopy().

Referenced by Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), and Nektar::Monodomain::v_InitObject().

◆ GetTimeIntegrationScheme()

LibUtilities::TimeIntegrationSchemeSharedPtr & Nektar::SolverUtils::UnsteadySystem::GetTimeIntegrationScheme ( )

Returns the time integration scheme.

Definition at line 191 of file UnsteadySystem.cpp.

193{
194 return m_intScheme;
195}
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.

References m_intScheme.

◆ GetTimeIntegrationSchemeOperators()

LibUtilities::TimeIntegrationSchemeOperators & Nektar::SolverUtils::UnsteadySystem::GetTimeIntegrationSchemeOperators ( )

Returns the time integration scheme operators.

Definition at line 200 of file UnsteadySystem.cpp.

202{
203 return m_ode;
204}
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.

References m_ode.

◆ GetTimeStep() [1/2]

SOLVER_UTILS_EXPORT NekDouble Nektar::SolverUtils::UnsteadySystem::GetTimeStep ( void  )
inline

Definition at line 59 of file UnsteadySystem.h.

60 {
62 }
SOLVER_UTILS_EXPORT NekDouble GetTimeStep()

References Nektar::SolverUtils::EquationSystem::GetTimeStep().

Referenced by v_DoSolve().

◆ GetTimeStep() [2/2]

SOLVER_UTILS_EXPORT NekDouble Nektar::SolverUtils::UnsteadySystem::GetTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray)
inline

Calculate the larger time-step mantaining the problem stable.

Definition at line 54 of file UnsteadySystem.h.

55 {
56 return v_GetTimeStep(inarray);
57 }
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep(const Array< OneD, const Array< OneD, NekDouble > > &inarray)
Return the timestep to be used for the next step in the time-marching loop.

References v_GetTimeStep().

◆ InitializeSteadyState()

void Nektar::SolverUtils::UnsteadySystem::InitializeSteadyState ( )
private

Definition at line 851 of file UnsteadySystem.cpp.

852{
853 if (m_steadyStateTol > 0.0)
854 {
855 const int nPoints = m_fields[0]->GetTotPoints();
857 Array<OneD, Array<OneD, NekDouble>>(m_fields.size());
858
859 for (int i = 0; i < m_fields.size(); ++i)
860 {
861 m_previousSolution[i] = Array<OneD, NekDouble>(nPoints);
862 Vmath::Vcopy(nPoints, m_fields[i]->GetPhys(), 1,
863 m_previousSolution[i], 1);
864 }
865
866 if (m_comm->GetRank() == 0)
867 {
868 std::string fName =
869 m_session->GetSessionName() + std::string(".resd");
870 m_errFile.open(fName.c_str());
871 m_errFile << setw(26) << left << "# Time";
872
873 m_errFile << setw(26) << left << "CPU_Time";
874
875 m_errFile << setw(26) << left << "Step";
876
877 for (int i = 0; i < m_fields.size(); ++i)
878 {
879 m_errFile << setw(26) << m_session->GetVariables()[i];
880 }
881
882 m_errFile << endl;
883 }
884 }
885}

References Nektar::SolverUtils::EquationSystem::m_comm, m_errFile, Nektar::SolverUtils::EquationSystem::m_fields, m_previousSolution, Nektar::SolverUtils::EquationSystem::m_session, m_steadyStateTol, and Vmath::Vcopy().

Referenced by v_DoInitialise().

◆ MaxTimeStepEstimator()

NekDouble Nektar::SolverUtils::UnsteadySystem::MaxTimeStepEstimator ( )
protected

Get the maximum timestep estimator for cfl control.

Returns the maximum time estimator for CFL control.

Definition at line 183 of file UnsteadySystem.cpp.

184{
185 return m_intScheme->GetTimeStability();
186}

References m_intScheme.

Referenced by Nektar::CompressibleFlowSystem::GetElmtTimeStep().

◆ SetTimeStep()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::UnsteadySystem::SetTimeStep ( const NekDouble  timestep)
inline

Definition at line 64 of file UnsteadySystem.h.

65 {
67 }
SOLVER_UTILS_EXPORT void SetTimeStep(const NekDouble timestep)

References Nektar::SolverUtils::EquationSystem::SetTimeStep().

◆ SteadyStateResidual()

SOLVER_UTILS_EXPORT void Nektar::SolverUtils::UnsteadySystem::SteadyStateResidual ( int  step,
Array< OneD, NekDouble > &  L2 
)
inline

Definition at line 69 of file UnsteadySystem.h.

71 {
72 v_SteadyStateResidual(step, L2);
73 }
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual(int step, Array< OneD, NekDouble > &L2)

References v_SteadyStateResidual().

Referenced by CheckSteadyState().

◆ SVVVarDiffCoeff()

void Nektar::SolverUtils::UnsteadySystem::SVVVarDiffCoeff ( const Array< OneD, Array< OneD, NekDouble > >  vel,
StdRegions::VarCoeffMap varCoeffMap 
)
protected

Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity.

Definition at line 808 of file UnsteadySystem.cpp.

811{
812 int phystot = m_fields[0]->GetTotPoints();
813 int nvel = vel.size();
814
815 Array<OneD, NekDouble> varcoeff(phystot), tmp;
816
817 // Calculate magnitude of v.
818 Vmath::Vmul(phystot, vel[0], 1, vel[0], 1, varcoeff, 1);
819 for (int n = 1; n < nvel; ++n)
820 {
821 Vmath::Vvtvp(phystot, vel[n], 1, vel[n], 1, varcoeff, 1, varcoeff, 1);
822 }
823 Vmath::Vsqrt(phystot, varcoeff, 1, varcoeff, 1);
824
825 for (int i = 0; i < m_fields[0]->GetNumElmts(); ++i)
826 {
827 int offset = m_fields[0]->GetPhys_Offset(i);
828 int nq = m_fields[0]->GetExp(i)->GetTotPoints();
829 Array<OneD, NekDouble> unit(nq, 1.0);
830
831 int nmodes = 0;
832
833 for (int n = 0; n < m_fields[0]->GetExp(i)->GetNumBases(); ++n)
834 {
835 nmodes = max(nmodes, m_fields[0]->GetExp(i)->GetBasisNumModes(n));
836 }
837
838 NekDouble h = m_fields[0]->GetExp(i)->Integral(unit);
839 h = pow(h, (NekDouble)(1.0 / nvel)) / ((NekDouble)nmodes);
840
841 Vmath::Smul(nq, h, varcoeff + offset, 1, tmp = varcoeff + offset, 1);
842 }
843
844 // Set up map with eVarCoffLaplacian key.
845 varCoeffMap[StdRegions::eVarCoeffLaplacian] = varcoeff;
846}
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::StdRegions::eVarCoeffLaplacian, Nektar::SolverUtils::EquationSystem::m_fields, Vmath::Smul(), Vmath::Vmul(), Vmath::Vsqrt(), and Vmath::Vvtvp().

Referenced by Nektar::UnsteadyViscousBurgers::DoImplicitSolve().

◆ v_DoInitialise()

void Nektar::SolverUtils::UnsteadySystem::v_DoInitialise ( bool  dumpInitialConditions = true)
overrideprotectedvirtual

Sets up initial conditions.

Sets the initial conditions.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::VCSImplicit, Nektar::SolverUtils::FileSolution, Nektar::PulseWaveSystem, Nektar::MMFSWE, Nektar::CoupledLinearNS, Nektar::VCSMapping, and Nektar::VelocityCorrectionScheme.

Definition at line 629 of file UnsteadySystem.cpp.

630{
633 SetInitialConditions(m_time, dumpInitialConditions);
634
636
638}
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity(const NekDouble &time)
Definition: ALEHelper.cpp:90
int m_nchk
Number of checkpoints written so far.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
SOLVER_UTILS_EXPORT void SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Initialise the data in the dependent fields.
SOLVER_UTILS_EXPORT void CheckForRestartTime(NekDouble &time, int &nchk)

References CheckForRestartTime(), InitializeSteadyState(), Nektar::SolverUtils::EquationSystem::m_nchk, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), Nektar::SolverUtils::EquationSystem::SetInitialConditions(), and Nektar::SolverUtils::ALEHelper::v_UpdateGridVelocity().

Referenced by Nektar::VCSMapping::v_DoInitialise(), and Nektar::VelocityCorrectionScheme::v_DoInitialise().

◆ v_DoSolve()

void Nektar::SolverUtils::UnsteadySystem::v_DoSolve ( void  )
overrideprotectedvirtual

Solves an unsteady problem.

Initialises the time integration scheme (as specified in the session file), and perform the time integration.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::MMFAdvection, Nektar::CFSImplicit, Nektar::MMFMaxwell, Nektar::PulseWaveSystem, Nektar::MMFSWE, and Nektar::CoupledLinearNS.

Definition at line 210 of file UnsteadySystem.cpp.

211{
212 ASSERTL0(m_intScheme != nullptr, "No time integration scheme.");
213
214 int i = 1;
215 int nvariables = 0;
216 int nfields = m_fields.size();
217 if (m_intVariables.empty())
218 {
219 for (i = 0; i < nfields; ++i)
220 {
221 m_intVariables.push_back(i);
222 }
223 nvariables = nfields;
224 }
225 else
226 {
227 nvariables = m_intVariables.size();
228 }
229
230 // Integrate in wave-space if using homogeneous1D.
232 {
233 for (i = 0; i < nfields; ++i)
234 {
235 m_fields[i]->HomogeneousFwdTrans(m_fields[i]->GetTotPoints(),
236 m_fields[i]->GetPhys(),
237 m_fields[i]->UpdatePhys());
238 m_fields[i]->SetWaveSpace(true);
239 m_fields[i]->SetPhysState(false);
240 }
241 }
242
243 // Set up wrapper to fields data storage.
244 Array<OneD, Array<OneD, NekDouble>> fields(nvariables);
245
246 // Order storage to list time-integrated fields first.
247 // @TODO: Refactor to take coeffs (FwdTrans) if boolean flag (in constructor
248 // function) says to.
249 for (i = 0; i < nvariables; ++i)
250 {
251 fields[i] = m_fields[m_intVariables[i]]->UpdatePhys();
252 m_fields[m_intVariables[i]]->SetPhysState(false);
253 }
254
255 // @TODO: Virtual function that allows to transform the field space, embed
256 // the MultiplyMassMatrix in here.
257 // @TODO: Specify what the fields variables are physical or coefficient,
258 // boolean in UnsteadySystem class...
259
260 v_ALEPreMultiplyMass(fields);
261
262 // Initialise time integration scheme.
263 m_intScheme->InitializeScheme(m_timestep, fields, m_time, m_ode);
264
265 // Initialise filters.
266 for (auto &x : m_filters)
267 {
268 x.second->Initialise(m_fields, m_time);
269 }
270
271 LibUtilities::Timer timer;
272 bool doCheckTime = false;
273 int step = m_initialStep;
274 int stepCounter = 0;
275 NekDouble intTime = 0.0;
276 NekDouble cpuTime = 0.0;
277 NekDouble cpuPrevious = 0.0;
278 NekDouble elapsed = 0.0;
279 NekDouble totFilterTime = 0.0;
280
281 m_lastCheckTime = 0.0;
282
283 Array<OneD, int> abortFlags(2, 0);
284 string abortFile = "abort";
285 if (m_session->DefinesSolverInfo("CheckAbortFile"))
286 {
287 abortFile = m_session->GetSolverInfo("CheckAbortFile");
288 }
289
290 NekDouble tmp_cflSafetyFactor = m_cflSafetyFactor;
291 while ((step < m_steps || m_time < m_fintime - NekConstants::kNekZeroTol) &&
292 abortFlags[1] == 0)
293 {
295 {
296 tmp_cflSafetyFactor =
297 min(m_CFLEnd, m_CFLGrowth * tmp_cflSafetyFactor);
298 }
299
300 // Frozen preconditioner checks.
301 if (!m_comm->IsParallelInTime())
302 {
304 {
305 m_cflSafetyFactor = tmp_cflSafetyFactor;
306
308 {
309 m_timestep = GetTimeStep(fields);
310 }
311
312 // Ensure that the final timestep finishes at the final
313 // time, or at a prescribed IO_CheckTime.
314 if (m_time + m_timestep > m_fintime && m_fintime > 0.0)
315 {
317 }
318 else if (m_checktime &&
320 {
323 doCheckTime = true;
324 }
325 }
326 }
327
328 if (m_TimeIncrementFactor > 1.0)
329 {
330 NekDouble timeincrementFactor = m_TimeIncrementFactor;
331 m_timestep *= timeincrementFactor;
332
333 if (m_time + m_timestep > m_fintime && m_fintime > 0.0)
334 {
336 }
337 }
338
339 // Perform any solver-specific pre-integration steps.
340 timer.Start();
341 if (v_PreIntegrate(
342 step)) // Could be possible to put a preintegrate step in the
343 // ALEHelper class, put in the Unsteady Advection class
344 {
345 break;
346 }
347
348 ASSERTL0(m_timestep > 0, "m_timestep < 0");
349
350 fields = m_intScheme->TimeIntegrate(stepCounter, m_timestep);
351 timer.Stop();
352
354 elapsed = timer.TimePerTest(1);
355 intTime += elapsed;
356 cpuTime += elapsed;
357
358 // Write out status information.
359 v_PrintStatusInformation(step, cpuTime);
360 if (m_infosteps &&
361 m_session->GetComm()->GetSpaceComm()->GetRank() == 0 &&
362 !((step + 1) % m_infosteps))
363 {
364 cpuPrevious = cpuTime;
365 cpuTime = 0.0;
366 }
367
368 // @TODO: Another virtual function with this in it based on if ALE or
369 // not.
370 if (m_ALESolver) // Change to advect coeffs, change flag to physical vs
371 // coefficent space
372 {
375 }
376 else
377 {
378 // Transform data into coefficient space
379 for (i = 0; i < nvariables; ++i)
380 {
381 // copy fields into ExpList::m_phys and assign the new
382 // array to fields
383 m_fields[m_intVariables[i]]->SetPhys(fields[i]);
384 fields[i] = m_fields[m_intVariables[i]]->UpdatePhys();
385 if (v_RequireFwdTrans())
386 {
387 if (m_comm->IsParallelInTime())
388 {
389 m_fields[m_intVariables[i]]->FwdTrans(
390 m_fields[m_intVariables[i]]->GetPhys(),
391 m_fields[m_intVariables[i]]->UpdateCoeffs());
392 }
393 else
394 {
395 m_fields[m_intVariables[i]]->FwdTransLocalElmt(
396 m_fields[m_intVariables[i]]->GetPhys(),
397 m_fields[m_intVariables[i]]->UpdateCoeffs());
398 }
399 }
400 m_fields[m_intVariables[i]]->SetPhysState(false);
401 }
402 }
403
404 // Perform any solver-specific post-integration steps.
405 if (v_PostIntegrate(step))
406 {
407 break;
408 }
409
410 // Check for steady-state.
412 (!((step + 1) % m_steadyStateSteps)))
413 {
414 if (CheckSteadyState(step, intTime))
415 {
416 if (m_comm->GetRank() == 0)
417 {
418 cout << "Reached Steady State to tolerance "
419 << m_steadyStateTol << endl;
420 }
421 break;
422 }
423 }
424
425 // Test for abort conditions (nan, or abort file).
426 if (m_abortSteps && !((step + 1) % m_abortSteps))
427 {
428 abortFlags[0] = 0;
429 for (i = 0; i < nvariables; ++i)
430 {
431 if (Vmath::Nnan(m_fields[m_intVariables[i]]->GetPhys().size(),
432 m_fields[m_intVariables[i]]->GetPhys(), 1) > 0)
433 {
434 abortFlags[0] = 1;
435 }
436 }
437
438 // Rank zero looks for abort file and deletes it
439 // if it exists. Communicates the abort.
440 if (m_session->GetComm()->GetSpaceComm()->GetRank() == 0)
441 {
442 if (fs::exists(abortFile))
443 {
444 fs::remove(abortFile);
445 abortFlags[1] = 1;
446 }
447 }
448
449 m_session->GetComm()->GetSpaceComm()->AllReduce(
450 abortFlags, LibUtilities::ReduceMax);
451
452 ASSERTL0(!abortFlags[0], "NaN found during time integration.");
453 }
454
455 // Update filters.
456 for (auto &x : m_filters)
457 {
458 timer.Start();
459 x.second->Update(m_fields, m_time);
460 timer.Stop();
461 elapsed = timer.TimePerTest(1);
462 totFilterTime += elapsed;
463
464 // Write out individual filter status information.
465 if (m_filtersInfosteps && m_session->GetComm()->GetRank() == 0 &&
466 !((step + 1) % m_filtersInfosteps) && !m_filters.empty() &&
467 m_session->DefinesCmdLineArgument("verbose"))
468 {
469 stringstream s0;
470 s0 << x.first << ":";
471 stringstream s1;
472 s1 << elapsed << "s";
473 stringstream s2;
474 s2 << elapsed / cpuPrevious * 100 << "%";
475 cout << "CPU time for filter " << setw(25) << left << s0.str()
476 << setw(12) << left << s1.str() << endl
477 << "\t Percentage of time integration: " << setw(10)
478 << left << s2.str() << endl;
479 }
480 }
481
482 // Write out overall filter status information.
483 if (m_filtersInfosteps && m_session->GetComm()->GetRank() == 0 &&
484 !((step + 1) % m_filtersInfosteps) && !m_filters.empty())
485 {
486 stringstream ss;
487 ss << totFilterTime << "s";
488 cout << "Total filters CPU Time:\t\t\t " << setw(10) << left
489 << ss.str() << endl;
490 }
491 totFilterTime = 0.0;
492
493 // Write out checkpoint files.
494 if ((m_checksteps && !((step + 1) % m_checksteps)) || doCheckTime)
495 {
497 {
498 // Transform to physical space for output.
499 vector<bool> transformed(nfields, false);
500 for (i = 0; i < nfields; i++)
501 {
502 if (m_fields[i]->GetWaveSpace())
503 {
504 m_fields[i]->SetWaveSpace(false);
505 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
506 m_fields[i]->UpdatePhys());
507 transformed[i] = true;
508 }
509 }
511 m_nchk++;
512
513 // Transform back to wave-space after output.
514 for (i = 0; i < nfields; i++)
515 {
516 if (transformed[i])
517 {
518 m_fields[i]->SetWaveSpace(true);
519 m_fields[i]->HomogeneousFwdTrans(
520 m_fields[i]->GetTotPoints(), m_fields[i]->GetPhys(),
521 m_fields[i]->UpdatePhys());
522 m_fields[i]->SetPhysState(false);
523 }
524 }
525 }
526 else
527 {
529 m_nchk++;
530 }
531 doCheckTime = false;
532 }
533
534 // Step advance.
535 ++step;
536 ++stepCounter;
537 }
538
539 // Print out summary statistics.
541
542 // If homogeneous, transform back into physical space if necessary.
543 if (!m_ALESolver)
544 {
546 {
547 for (i = 0; i < nfields; i++)
548 {
549 if (m_fields[i]->GetWaveSpace())
550 {
551 m_fields[i]->SetWaveSpace(false);
552 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
553 m_fields[i]->UpdatePhys());
554 }
555 }
556 }
557 else
558 {
559 for (i = 0; i < nvariables; ++i)
560 {
561 m_fields[m_intVariables[i]]->SetPhysState(true);
562 }
563 }
564 }
565 // Finalise filters.
566 for (auto &x : m_filters)
567 {
568 x.second->Finalise(m_fields, m_time);
569 }
570
571 // Print for 1D problems.
572 if (m_spacedim == 1)
573 {
575 }
576}
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass(Array< OneD, Array< OneD, NekDouble > > &fields)
Definition: ALEHelper.cpp:108
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass(Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e....
Definition: ALEHelper.cpp:131
int m_spacedim
Spatial dimension (>= expansion dim).
NekDouble m_timestep
Time step size.
NekDouble m_fintime
Finish time of the simulation.
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
NekDouble m_checktime
Time between checkpoints.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
enum HomogeneousType m_HomogeneousType
int m_steps
Number of steps to take.
int m_checksteps
Number of steps between checkpoints.
NekDouble m_CFLGrowth
CFL growth rate.
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck()
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
int m_abortSteps
Number of steps between checks for abort conditions.
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step)
NekDouble m_CFLEnd
Maximun cfl in cfl growth.
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics(const NekDouble intTime)
Print Summary Statistics.
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation(const int step, const NekDouble cpuTime)
Print Status Information.
bool CheckSteadyState(int step, const NekDouble &totCPUTime=0.0)
Calculate whether the system has reached a steady state by observing residuals to a user-defined tole...
SOLVER_UTILS_EXPORT void AppendOutput1D(void)
Print the solution at each solution point in a txt file.
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate(int step)
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans()
int m_steadyStateSteps
Check for steady state at step interval.
int m_filtersInfosteps
Number of time steps between outputting filters information.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
SOLVER_UTILS_EXPORT NekDouble GetTimeStep()
static const NekDouble kNekZeroTol
int Nnan(int n, const T *x, const int incx)
Return number of NaN elements of x.
Definition: Vmath.hpp:743

References Nektar::SolverUtils::ALEHelper::ALEDoElmtInvMass(), AppendOutput1D(), ASSERTL0, Nektar::SolverUtils::EquationSystem::Checkpoint_Output(), CheckSteadyState(), Nektar::SolverUtils::EquationSystem::eNotHomogeneous, GetTimeStep(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::NekConstants::kNekZeroTol, m_abortSteps, Nektar::SolverUtils::ALEHelper::m_ALESolver, m_CFLEnd, m_CFLGrowth, m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_checksteps, Nektar::SolverUtils::EquationSystem::m_checktime, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_filters, m_filtersInfosteps, Nektar::SolverUtils::EquationSystem::m_fintime, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_homoInitialFwd, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_initialStep, m_intScheme, m_intVariables, Nektar::SolverUtils::EquationSystem::m_lastCheckTime, Nektar::SolverUtils::EquationSystem::m_nchk, m_ode, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_steadyStateSteps, m_steadyStateTol, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_TimeIncrementFactor, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Nnan(), Nektar::LibUtilities::ReduceMax, Nektar::SolverUtils::EquationSystem::SetBoundaryConditions(), Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), Nektar::LibUtilities::Timer::TimePerTest(), Nektar::SolverUtils::ALEHelper::v_ALEPreMultiplyMass(), v_PostIntegrate(), v_PreIntegrate(), v_PrintStatusInformation(), v_PrintSummaryStatistics(), v_RequireFwdTrans(), and v_UpdateTimeStepCheck().

Referenced by Nektar::CFSImplicit::v_DoSolve(), and Nektar::CoupledLinearNS::v_DoSolve().

◆ v_GenerateSummary()

void Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary ( SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Prints a summary with some information regards the time-stepping.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::MMFAdvection, Nektar::UnsteadyAdvection, Nektar::UnsteadyAdvectionDiffusion, Nektar::UnsteadyInviscidBurgers, Nektar::UnsteadyViscousBurgers, Nektar::CompressibleFlowSystem, Nektar::MMFDiffusion, Nektar::ImageWarpingSystem, Nektar::CoupledLinearNS, Nektar::SmoothedProfileMethod, Nektar::VelocityCorrectionScheme, Nektar::VCSImplicit, Nektar::VCSWeakPressure, Nektar::MMFMaxwell, Nektar::PulseWavePropagation, Nektar::LinearSWE, Nektar::MMFSWE, Nektar::NonlinearPeregrine, Nektar::NonlinearSWE, Nektar::ShallowWaterSystem, Nektar::CFLtester, Nektar::UnsteadyDiffusion, Nektar::Bidomain, Nektar::BidomainRoth, and Nektar::Monodomain.

Definition at line 644 of file UnsteadySystem.cpp.

645{
647 AddSummaryItem(s, "Advect. advancement",
648 m_explicitAdvection ? "explicit" : "implicit");
649
650 AddSummaryItem(s, "Diffuse. advancement",
651 m_explicitDiffusion ? "explicit" : "implicit");
652
653 if (m_session->GetSolverInfo("EQTYPE") ==
654 "SteadyAdvectionDiffusionReaction")
655 {
656 AddSummaryItem(s, "React. advancement",
657 m_explicitReaction ? "explicit" : "implicit");
658 }
659
660 AddSummaryItem(s, "Time Step", m_timestep);
661 AddSummaryItem(s, "No. of Steps", m_steps);
662 AddSummaryItem(s, "Checkpoints (steps)", m_checksteps);
663 if (m_intScheme)
664 {
665 AddSummaryItem(s, "Integration Type", m_intScheme->GetName());
666 }
667}
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &l)
Virtual function for generating summary information.
bool m_explicitReaction
Indicates if explicit or implicit treatment of reaction is used.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::m_checksteps, m_explicitAdvection, m_explicitDiffusion, m_explicitReaction, m_intScheme, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_timestep, and Nektar::SolverUtils::EquationSystem::v_GenerateSummary().

Referenced by Nektar::UnsteadyAdvection::v_GenerateSummary(), Nektar::UnsteadyInviscidBurgers::v_GenerateSummary(), Nektar::CompressibleFlowSystem::v_GenerateSummary(), Nektar::ImageWarpingSystem::v_GenerateSummary(), Nektar::VelocityCorrectionScheme::v_GenerateSummary(), Nektar::VCSImplicit::v_GenerateSummary(), Nektar::VCSWeakPressure::v_GenerateSummary(), Nektar::PulseWavePropagation::v_GenerateSummary(), Nektar::ShallowWaterSystem::v_GenerateSummary(), Nektar::SolverUtils::MMFSystem::v_GenerateSummary(), Nektar::UnsteadyDiffusion::v_GenerateSummary(), Nektar::Bidomain::v_GenerateSummary(), Nektar::BidomainRoth::v_GenerateSummary(), and Nektar::Monodomain::v_GenerateSummary().

◆ v_GetTimeStep()

NekDouble Nektar::SolverUtils::UnsteadySystem::v_GetTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray)
protectedvirtual

Return the timestep to be used for the next step in the time-marching loop.

See also
UnsteadySystem::GetTimeStep

Reimplemented in Nektar::CompressibleFlowSystem.

Definition at line 766 of file UnsteadySystem.cpp.

768{
769 NEKERROR(ErrorUtil::efatal, "Not defined for this class");
770 return 0.0;
771}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by GetTimeStep().

◆ v_InitObject()

void Nektar::SolverUtils::UnsteadySystem::v_InitObject ( bool  DeclareField = true)
overrideprotectedvirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::PulseWavePropagation, Nektar::PulseWaveSystem, Nektar::Bidomain, Nektar::BidomainRoth, Nektar::Monodomain, Nektar::NavierStokesCFE, Nektar::MMFDiffusion, Nektar::ImageWarpingSystem, Nektar::CoupledLinearNS, Nektar::IncNavierStokes, Nektar::SmoothedProfileMethod, Nektar::VCSMapping, Nektar::VelocityCorrectionScheme, Nektar::SolverUtils::FileSolution, Nektar::AcousticSystem, Nektar::APE, Nektar::LEE, Nektar::CFLtester, Nektar::MMFAdvection, Nektar::UnsteadyAdvection, Nektar::UnsteadyAdvectionDiffusion, Nektar::UnsteadyDiffusion, Nektar::UnsteadyInviscidBurgers, Nektar::UnsteadyReactionDiffusion, Nektar::UnsteadyViscousBurgers, Nektar::CompressibleFlowSystem, Nektar::CFSImplicit, Nektar::EulerCFE, Nektar::EulerImplicitCFE, Nektar::NavierStokesCFEAxisym, Nektar::NavierStokesImplicitCFE, Nektar::Dummy, Nektar::MMFMaxwell, Nektar::LinearSWE, Nektar::MMFSWE, Nektar::NonlinearPeregrine, Nektar::NonlinearSWE, and Nektar::ShallowWaterSystem.

Definition at line 85 of file UnsteadySystem.cpp.

86{
87 EquationSystem::v_InitObject(DeclareField);
89 m_initialStep = 0;
90
91 // Load SolverInfo parameters.
92 m_session->MatchSolverInfo("DIFFUSIONADVANCEMENT", "Explicit",
94 m_session->MatchSolverInfo("ADVECTIONADVANCEMENT", "Explicit",
96 m_session->MatchSolverInfo("REACTIONADVANCEMENT", "Explicit",
97 m_explicitReaction, true);
98 m_session->LoadParameter("CheckAbortSteps", m_abortSteps, 1);
99
100 // Steady state tolerance.
101 m_session->LoadParameter("SteadyStateTol", m_steadyStateTol, 0.0);
102
103 // Frequency for checking steady state.
104 m_session->LoadParameter("SteadyStateSteps", m_steadyStateSteps, 1);
105
106 // For steady problems, we do not initialise the time integration.
107 if (m_session->DefinesSolverInfo("TimeIntegrationMethod") ||
108 m_session->DefinesTimeIntScheme())
109 {
110 LibUtilities::TimeIntScheme timeInt;
111 if (m_session->DefinesTimeIntScheme())
112 {
113 timeInt = m_session->GetTimeIntScheme();
114 }
115 else
116 {
117 timeInt.method = m_session->GetSolverInfo("TimeIntegrationMethod");
118 }
119
122 timeInt.method, timeInt.variant, timeInt.order,
123 timeInt.freeParams);
124
125 // Load generic input parameters.
126 m_session->LoadParameter("IO_InfoSteps", m_infosteps, 0);
127 m_session->LoadParameter("IO_FiltersInfoSteps", m_filtersInfosteps,
128 10 * m_infosteps);
129 m_session->LoadParameter("CFL", m_cflSafetyFactor, 0.0);
130 m_session->LoadParameter("CFLEnd", m_CFLEnd, 0.0);
131 m_session->LoadParameter("CFLGrowth", m_CFLGrowth, 1.0);
132
133 // Ensure that there is no conflict of parameters.
134 if (m_cflSafetyFactor > 0.0)
135 {
136 // Check final condition.
137 ASSERTL0(m_fintime == 0.0 || m_steps == 0,
138 "Final condition not unique: "
139 "fintime > 0.0 and Nsteps > 0");
140 // Check timestep condition.
141 ASSERTL0(m_timestep == 0.0,
142 "Timestep not unique: timestep > 0.0 & CFL > 0.0");
143 }
144 else
145 {
146 ASSERTL0(m_timestep != 0.0, "Need to set either TimeStep or CFL");
147 }
148
149 // Ensure that there is no conflict of parameters.
150 if (m_CFLGrowth > 1.0)
151 {
152 // Check final condition.
154 "m_CFLEnd >= m_cflSafetyFactor required");
155 }
156
157 // Set up time to be dumped in field information.
158 m_fieldMetaDataMap["Time"] = boost::lexical_cast<std::string>(m_time);
159 }
160
161 // By default attempt to forward transform initial condition.
162 m_homoInitialFwd = true;
163
164 // Set up filters.
165 for (auto &x : m_session->GetFilters())
166 {
167 m_filters.push_back(make_pair(
168 x.first, GetFilterFactory().CreateInstance(
169 x.first, m_session, shared_from_this(), x.second)));
170 }
171}
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject(int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
Definition: ALEHelper.cpp:42
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareFeld=true)
Initialisation object for EquationSystem.
TimeIntegrationSchemeFactory & GetTimeIntegrationSchemeFactory()
FilterFactory & GetFilterFactory()

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntScheme::freeParams, Nektar::SolverUtils::GetFilterFactory(), Nektar::LibUtilities::GetTimeIntegrationSchemeFactory(), m_abortSteps, m_CFLEnd, m_CFLGrowth, m_cflSafetyFactor, m_explicitAdvection, m_explicitDiffusion, m_explicitReaction, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, m_filters, m_filtersInfosteps, Nektar::SolverUtils::EquationSystem::m_fintime, m_homoInitialFwd, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_initialStep, m_intScheme, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_steadyStateSteps, m_steadyStateTol, Nektar::SolverUtils::EquationSystem::m_steps, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::LibUtilities::TimeIntScheme::method, Nektar::LibUtilities::TimeIntScheme::order, Nektar::SolverUtils::ALEHelper::v_ALEInitObject(), Nektar::SolverUtils::EquationSystem::v_InitObject(), and Nektar::LibUtilities::TimeIntScheme::variant.

Referenced by Nektar::PulseWaveSystem::v_InitObject(), Nektar::SolverUtils::AdvectionSystem::v_InitObject(), Nektar::Bidomain::v_InitObject(), Nektar::BidomainRoth::v_InitObject(), Nektar::Monodomain::v_InitObject(), Nektar::MMFDiffusion::v_InitObject(), Nektar::MMFAdvection::v_InitObject(), Nektar::UnsteadyDiffusion::v_InitObject(), Nektar::Dummy::v_InitObject(), Nektar::MMFMaxwell::v_InitObject(), Nektar::MMFSWE::v_InitObject(), and Nektar::ShallowWaterSystem::v_InitObject().

◆ v_PostIntegrate()

bool Nektar::SolverUtils::UnsteadySystem::v_PostIntegrate ( int  step)
protectedvirtual

◆ v_PreIntegrate()

bool Nektar::SolverUtils::UnsteadySystem::v_PreIntegrate ( int  step)
protectedvirtual

◆ v_PrintStatusInformation()

void Nektar::SolverUtils::UnsteadySystem::v_PrintStatusInformation ( const int  step,
const NekDouble  cpuTime 
)
protectedvirtual

Print Status Information.

Reimplemented in Nektar::CFSImplicit.

Definition at line 578 of file UnsteadySystem.cpp.

580{
581 if (m_infosteps && m_session->GetComm()->GetSpaceComm()->GetRank() == 0 &&
582 !((step + 1) % m_infosteps))
583 {
584 if (m_comm->IsParallelInTime())
585 {
586 cout << "RANK " << m_session->GetComm()->GetTimeComm()->GetRank()
587 << " Steps: " << setw(8) << left << step + 1 << " "
588 << "Time: " << setw(12) << left << m_time;
589 }
590 else
591 {
592 cout << "Steps: " << setw(8) << left << step + 1 << " "
593 << "Time: " << setw(12) << left << m_time;
594 }
595
597 {
598 cout << " Time-step: " << setw(12) << left << m_timestep;
599 }
600
601 stringstream ss;
602 ss << cpuTime << "s";
603 cout << " CPU Time: " << setw(8) << left << ss.str() << endl;
604 }
605}

References m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_infosteps, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::EquationSystem::m_timestep.

Referenced by v_DoSolve(), and Nektar::CFSImplicit::v_PrintStatusInformation().

◆ v_PrintSummaryStatistics()

void Nektar::SolverUtils::UnsteadySystem::v_PrintSummaryStatistics ( const NekDouble  intTime)
protectedvirtual

Print Summary Statistics.

Reimplemented in Nektar::CFSImplicit.

Definition at line 607 of file UnsteadySystem.cpp.

608{
609 if (m_session->GetComm()->GetRank() == 0)
610 {
611 if (m_cflSafetyFactor > 0.0)
612 {
613 cout << "CFL safety factor : " << m_cflSafetyFactor << endl
614 << "CFL time-step : " << m_timestep << endl;
615 }
616
617 if (m_session->GetSolverInfo("Driver") != "SteadyState" &&
618 m_session->GetSolverInfo("Driver") != "Parareal" &&
619 m_session->GetSolverInfo("Driver") != "PFASST")
620 {
621 cout << "Time-integration : " << intTime << "s" << endl;
622 }
623 }
624}

References m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::m_timestep.

Referenced by v_DoSolve(), and Nektar::CFSImplicit::v_PrintSummaryStatistics().

◆ v_RequireFwdTrans()

bool Nektar::SolverUtils::UnsteadySystem::v_RequireFwdTrans ( void  )
protectedvirtual

Reimplemented in Nektar::Dummy, Nektar::VelocityCorrectionScheme, and Nektar::SolverUtils::FileSolution.

Definition at line 792 of file UnsteadySystem.cpp.

793{
794 return true;
795}

Referenced by v_DoSolve().

◆ v_SteadyStateResidual()

void Nektar::SolverUtils::UnsteadySystem::v_SteadyStateResidual ( int  step,
Array< OneD, NekDouble > &  L2 
)
protectedvirtual

Reimplemented in Nektar::CompressibleFlowSystem.

Definition at line 948 of file UnsteadySystem.cpp.

950{
951 const int nPoints = GetTotPoints();
952 const int nFields = m_fields.size();
953
954 // Holds L2 errors.
955 Array<OneD, NekDouble> RHSL2(nFields);
956 Array<OneD, NekDouble> residual(nFields);
957 Array<OneD, NekDouble> reference(nFields);
958
959 for (int i = 0; i < nFields; ++i)
960 {
961 Array<OneD, NekDouble> tmp(nPoints);
962
963 Vmath::Vsub(nPoints, m_fields[i]->GetPhys(), 1, m_previousSolution[i],
964 1, tmp, 1);
965 Vmath::Vmul(nPoints, tmp, 1, tmp, 1, tmp, 1);
966 residual[i] = Vmath::Vsum(nPoints, tmp, 1);
967
969 tmp, 1);
970 reference[i] = Vmath::Vsum(nPoints, tmp, 1);
971 }
972
973 m_comm->GetSpaceComm()->AllReduce(residual, LibUtilities::ReduceSum);
974 m_comm->GetSpaceComm()->AllReduce(reference, LibUtilities::ReduceSum);
975
976 // L2 error.
977 for (int i = 0; i < nFields; ++i)
978 {
979 reference[i] = (reference[i] == 0) ? 1 : reference[i];
980 L2[i] = sqrt(residual[i] / reference[i]);
981 }
982}
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.hpp:608
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_previousSolution, Nektar::LibUtilities::ReduceSum, tinysimd::sqrt(), Vmath::Vmul(), Vmath::Vsub(), and Vmath::Vsum().

Referenced by SteadyStateResidual().

◆ v_UpdateTimeStepCheck()

bool Nektar::SolverUtils::UnsteadySystem::v_UpdateTimeStepCheck ( void  )
protectedvirtual

Reimplemented in Nektar::CFSImplicit.

Definition at line 800 of file UnsteadySystem.cpp.

801{
802 return true;
803}

Referenced by v_DoSolve().

Member Data Documentation

◆ cmdSetStartChkNum

std::string Nektar::SolverUtils::UnsteadySystem::cmdSetStartChkNum
static
Initial value:
=
"set-start-chknumber", "",
"Set the starting number of the checkpoint file.")
static std::string RegisterCmdLineArgument(const std::string &pName, const std::string &pShortName, const std::string &pDescription)
Registers a command-line argument with the session reader.

Definition at line 82 of file UnsteadySystem.h.

◆ cmdSetStartTime

std::string Nektar::SolverUtils::UnsteadySystem::cmdSetStartTime
static
Initial value:
=
"set-start-time", "", "Set the starting time of the simulation.")

Definition at line 81 of file UnsteadySystem.h.

◆ m_abortSteps

int Nektar::SolverUtils::UnsteadySystem::m_abortSteps
protected

Number of steps between checks for abort conditions.

Definition at line 104 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_CFLEnd

NekDouble Nektar::SolverUtils::UnsteadySystem::m_CFLEnd
protected

Maximun cfl in cfl growth.

Definition at line 101 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_CFLGrowth

NekDouble Nektar::SolverUtils::UnsteadySystem::m_CFLGrowth
protected

CFL growth rate.

Definition at line 99 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_cflSafetyFactor

NekDouble Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor
protected

◆ m_epsilon

NekDouble Nektar::SolverUtils::UnsteadySystem::m_epsilon
protected

Diffusion coefficient.

Definition at line 130 of file UnsteadySystem.h.

◆ m_errFile

std::ofstream Nektar::SolverUtils::UnsteadySystem::m_errFile
protected

Definition at line 127 of file UnsteadySystem.h.

Referenced by CheckSteadyState(), and InitializeSteadyState().

◆ m_explicitAdvection

bool Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection
protected

◆ m_explicitDiffusion

bool Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion
protected

◆ m_explicitReaction

bool Nektar::SolverUtils::UnsteadySystem::m_explicitReaction
protected

Indicates if explicit or implicit treatment of reaction is used.

Definition at line 111 of file UnsteadySystem.h.

Referenced by v_GenerateSummary(), and v_InitObject().

◆ m_filters

std::vector<std::pair<std::string, FilterSharedPtr> > Nektar::SolverUtils::UnsteadySystem::m_filters
protected

◆ m_filtersInfosteps

int Nektar::SolverUtils::UnsteadySystem::m_filtersInfosteps
protected

Number of time steps between outputting filters information.

Definition at line 119 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_homoInitialFwd

bool Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd
protected

◆ m_intScheme

LibUtilities::TimeIntegrationSchemeSharedPtr Nektar::SolverUtils::UnsteadySystem::m_intScheme
protected

◆ m_intVariables

std::vector<int> Nektar::SolverUtils::UnsteadySystem::m_intVariables
protected

◆ m_ode

LibUtilities::TimeIntegrationSchemeOperators Nektar::SolverUtils::UnsteadySystem::m_ode
protected

◆ m_previousSolution

Array<OneD, Array<OneD, NekDouble> > Nektar::SolverUtils::UnsteadySystem::m_previousSolution
protected

Storage for previous solution for steady-state check.

Definition at line 92 of file UnsteadySystem.h.

Referenced by CheckSteadyState(), InitializeSteadyState(), and v_SteadyStateResidual().

◆ m_steadyStateSteps

int Nektar::SolverUtils::UnsteadySystem::m_steadyStateSteps
protected

Check for steady state at step interval.

Definition at line 114 of file UnsteadySystem.h.

Referenced by v_DoSolve(), and v_InitObject().

◆ m_steadyStateTol

NekDouble Nektar::SolverUtils::UnsteadySystem::m_steadyStateTol
protected

Tolerance to which steady state should be evaluated at.

Definition at line 116 of file UnsteadySystem.h.

Referenced by CheckSteadyState(), InitializeSteadyState(), v_DoSolve(), and v_InitObject().