Nektar++
Loading...
Searching...
No Matches
UnsteadyDiffusion.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: UnsteadyDiffusion.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Unsteady diffusion solve routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37namespace Nektar
38{
39
42 "UnsteadyDiffusion", UnsteadyDiffusion::create);
43
50
51/**
52 * @brief Initialisation object for the unsteady diffusion problem.
53 */
54void UnsteadyDiffusion::v_InitObject(bool DeclareFields)
55{
56 UnsteadySystem::v_InitObject(DeclareFields);
57
58 // Load diffusion parameter
59 m_session->LoadParameter("epsilon", m_epsilon, 1.0);
60
61 m_session->MatchSolverInfo("SpectralVanishingViscosity", "True",
62 m_useSpecVanVisc, false);
63
65 {
66 m_session->LoadParameter("SVVCutoffRatio", m_sVVCutoffRatio, 0.75);
67 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 0.1);
68 }
69
70 int npoints = m_fields[0]->GetNpoints();
71
72 if (m_session->DefinesParameter("d00"))
73 {
74 m_d00 = m_session->GetParameter("d00");
76 Array<OneD, NekDouble>(npoints, m_session->GetParameter("d00"));
77 }
78 if (m_session->DefinesParameter("d11"))
79 {
80 m_d11 = m_session->GetParameter("d11");
82 Array<OneD, NekDouble>(npoints, m_session->GetParameter("d11"));
83 }
84 if (m_session->DefinesParameter("d22"))
85 {
86 m_d22 = m_session->GetParameter("d22");
88 Array<OneD, NekDouble>(npoints, m_session->GetParameter("d22"));
89 }
90
91 switch (m_projectionType)
92 {
94 {
95 std::string diffName;
96
97 // Do not forwards transform initial condition
98 m_homoInitialFwd = false;
99
100 m_session->LoadSolverInfo("DiffusionType", diffName, "LDG");
102 diffName, diffName);
103 m_diffusion->SetFluxVector(&UnsteadyDiffusion::GetFluxVector, this);
104 m_diffusion->InitObject(m_session, m_fields);
105 break;
106 }
108 {
109 // In case of Galerkin explicit diffusion gives an error
111 {
112 ASSERTL0(false, "Explicit Galerkin diffusion not set up.");
113 }
114 // In case of Galerkin implicit diffusion: do nothing
115 break;
116 }
117 default:
118 {
119 ASSERTL0(false, "Unknown projection scheme");
120 break;
121 }
122 }
123
127}
128
129/* @brief Compute the right-hand side for the unsteady diffusion problem.
130 *
131 * @param inarray Given fields.
132 * @param outarray Calculated solution.
133 * @param time Time.
134 */
136 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
138 [[maybe_unused]] const NekDouble time)
139{
140 // Number of fields (variables of the problem)
141 int nVariables = inarray.size();
142
143 // RHS computation using the new diffusion base class
144 m_diffusion->Diffuse(nVariables, m_fields, inarray, outarray);
145}
146
147/**
148 * @brief Compute the projection for the unsteady diffusion problem.
149 *
150 * @param inarray Given fields.
151 * @param outarray Calculated solution.
152 * @param time Time.
153 */
155 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
156 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
157{
158 int i;
159 int nvariables = inarray.size();
161
162 switch (m_projectionType)
163 {
165 {
166 // Just copy over array
167 if (inarray != outarray)
168 {
169 int npoints = GetNpoints();
170
171 for (i = 0; i < nvariables; ++i)
172 {
173 Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
174 }
175 }
176 break;
177 }
179 {
181
182 for (i = 0; i < nvariables; ++i)
183 {
184 m_fields[i]->FwdTrans(inarray[i], coeffs);
185 m_fields[i]->BwdTrans(coeffs, outarray[i]);
186 }
187 break;
188 }
189 default:
190 {
191 ASSERTL0(false, "Unknown projection scheme");
192 break;
193 }
194 }
195}
196
197/**
198 * @brief Implicit solution of the unsteady diffusion problem.
199 */
201 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
203 [[maybe_unused]] const NekDouble time, const NekDouble lambda)
204{
206
207 int nvariables = inarray.size();
208 int npoints = m_fields[0]->GetNpoints();
209 factors[StdRegions::eFactorLambda] = 1.0 / lambda / m_epsilon;
210 factors[StdRegions::eFactorTau] = 1.0;
211
213 {
216 }
217
218 // We solve ( \nabla^2 - HHlambda ) Y[i] = rhs [i]
219 // inarray = input: \hat{rhs} -> output: \hat{Y}
220 // outarray = output: nabla^2 \hat{Y}
221 // where \hat = modal coeffs
222 for (int i = 0; i < nvariables; ++i)
223 {
224 // Multiply 1.0/timestep/lambda
225 Vmath::Smul(npoints, -factors[StdRegions::eFactorLambda], inarray[i], 1,
226 outarray[i], 1);
227
228 // Solve a system of equations with Helmholtz solver
229 m_fields[i]->HelmSolve(outarray[i], m_fields[i]->UpdateCoeffs(),
230 factors, m_varcoeff);
231
232 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
233
234 m_fields[i]->SetPhysState(false);
235 }
236}
237
238/**
239 * @brief Return the flux vector for the unsteady diffusion problem.
240 */
242 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &inarray,
243 const Array<OneD, Array<OneD, Array<OneD, NekDouble>>> &qfield,
244 Array<OneD, Array<OneD, Array<OneD, NekDouble>>> &viscousTensor)
245{
246 unsigned int nDim = qfield.size();
247 unsigned int nConvectiveFields = qfield[0].size();
248 unsigned int nPts = qfield[0][0].size();
249
250 NekDouble d[3] = {m_d00, m_d11, m_d22};
251
252 for (unsigned int j = 0; j < nDim; ++j)
253 {
254 for (unsigned int i = 0; i < nConvectiveFields; ++i)
255 {
256 Vmath::Smul(nPts, m_epsilon * d[j], qfield[j][i], 1,
257 viscousTensor[j][i], 1);
258 }
259 }
260}
261
263{
266 {
267 std::stringstream ss;
268 ss << "SVV (cut off = " << m_sVVCutoffRatio
269 << ", coeff = " << m_sVVDiffCoeff << ")";
270 AddSummaryItem(s, "Smoothing", ss.str());
271 }
272}
273
274} // namespace Nektar
#define ASSERTL0(condition, msg)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Implicit solution of the unsteady diffusion problem.
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &inarray, const Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
Return the flux vector for the unsteady diffusion problem.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void v_GenerateSummary(SummaryList &s) override
Virtual function for generating summary information.
StdRegions::VarCoeffMap m_varcoeff
static EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
void v_InitObject(bool DeclareFields=true) override
Initialisation object for the unsteady diffusion problem.
UnsteadyDiffusion(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
static std::string className
Name of class.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection for the unsteady diffusion problem.
SolverUtils::DiffusionSharedPtr m_diffusion
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::vector< std::pair< std::string, std::string > > SummaryList
Definition Misc.h:46
DiffusionFactory & GetDiffusionFactory()
Definition Diffusion.cpp:39
EquationSystemFactory & GetEquationSystemFactory()
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition Misc.cpp:47
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition MeshGraph.h:217
std::map< ConstFactorType, NekDouble > ConstFactorMap
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition Vmath.hpp:100
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition Vmath.hpp:825