Nektar++
Loading...
Searching...
No Matches
UnsteadyInviscidBurgers.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: UnsteadyInviscidBurgers.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Unsteady inviscid Burgers solve routines
32//
33///////////////////////////////////////////////////////////////////////////////
34
37
38namespace Nektar
39{
40
43 "UnsteadyInviscidBurgers", UnsteadyInviscidBurgers::create,
44 "Inviscid Burgers equation");
45
52
53/**
54 * @brief Initialisation object for the inviscid Burgers equation.
55 */
57{
58 AdvectionSystem::v_InitObject(DeclareFields);
59
60 // Type of advection class to be used
61 switch (m_projectionType)
62 {
63 // Discontinuous field
65 {
66 // Do not forwards transform initial condition
67 m_homoInitialFwd = false;
68
69 // Define the normal velocity fields
70 if (m_fields[0]->GetTrace())
71 {
73 }
74
75 // Advection term
76 std::string advName;
77 std::string riemName;
78 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
80 advName, advName);
82 this);
83 m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
86 riemName, m_session);
87 m_riemannSolver->SetScalar(
89 m_advObject->SetRiemannSolver(m_riemannSolver);
90 m_advObject->InitObject(m_session, m_fields);
91 break;
92 }
93 // Continuous field
95 {
96 std::string advName;
97 m_session->LoadSolverInfo("AdvectionType", advName,
98 "NonConservative");
100 advName, advName);
102 this);
103 break;
104 }
105 default:
106 {
107 ASSERTL0(false, "Unsupported projection type.");
108 break;
109 }
110 }
111
112 // Forcing terms
113 m_forcing = SolverUtils::Forcing::Load(m_session, shared_from_this(),
114 m_fields, m_fields.size());
115
117 {
120 }
121 else
122 {
123 ASSERTL0(false, "Implicit unsteady Advection not set up.");
124 }
125}
126
127/**
128 * @brief Compute the right-hand side for the inviscid Burgers equation.
129 *
130 * @param inarray Given fields.
131 * @param outarray Calculated solution.
132 * @param time Time.
133 */
135 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
136 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
137{
138 // Number of fields (variables of the problem)
139 int nVariables = inarray.size();
140
141 // Number of solution points
142 int nSolutionPts = GetNpoints();
143
145 timer.Start();
146 // RHS computation using the new advection base class
147 m_advObject->Advect(nVariables, m_fields, inarray, inarray, outarray, time);
148 timer.Stop();
149 // Elapsed time
150 timer.AccumulateRegion("Advect");
151
152 // Negate the RHS
153 for (int i = 0; i < nVariables; ++i)
154 {
155 Vmath::Neg(nSolutionPts, outarray[i], 1);
156 }
157
158 // Add forcing terms
159 for (auto &x : m_forcing)
160 {
161 // set up non-linear terms
162 x->Apply(m_fields, inarray, outarray, time);
163 }
164}
165
166/**
167 * @brief Compute the projection for the inviscid Burgers equation.
168 *
169 * @param inarray Given fields.
170 * @param outarray Calculated solution.
171 * @param time Time.
172 */
174 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
175 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
176{
177 // Number of variables of the problem
178 int nVariables = inarray.size();
179
180 // Set the boundary conditions
182
183 // Switch on the projection type (Discontinuous or Continuous)
184 switch (m_projectionType)
185 {
186 // Discontinuous projection
188 {
189 // Just copy over array
190 if (inarray != outarray)
191 {
192 int npoints = GetNpoints();
193
194 for (int i = 0; i < nVariables; ++i)
195 {
196 Vmath::Vcopy(npoints, inarray[i], 1, outarray[i], 1);
197 }
198 }
199 break;
200 }
201 // Continuous projection
203 {
205
206 for (int i = 0; i < nVariables; ++i)
207 {
208 m_fields[i]->FwdTrans(inarray[i], coeffs);
209 m_fields[i]->BwdTrans(coeffs, outarray[i]);
210 }
211 break;
212 }
213 default:
214 {
215 ASSERTL0(false, "Unknown projection scheme");
216 break;
217 }
218 }
219}
220
221/**
222 * @brief Get the normal velocity for the inviscid Burgers equation.
223 */
225{
226 // Number of trace (interface) points
227 int nTracePts = GetTraceNpoints();
228
229 // Number of solution points
230 int nSolutionPts = GetNpoints();
231
232 // Auxiliary variables to compute the normal velocity
233 Array<OneD, NekDouble> Fwd(nTracePts);
234 Array<OneD, NekDouble> Bwd(nTracePts);
235 Array<OneD, NekDouble> physfield(nSolutionPts);
236
237 // Reset the normal velocity
238 Vmath::Zero(nTracePts, m_traceVn, 1);
239
240 for (int i = 0; i < m_spacedim; ++i)
241 {
242 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), physfield);
243 m_fields[i]->GetFwdBwdTracePhys(physfield, Fwd, Bwd, true);
244 Vmath::Vadd(nTracePts, Fwd, 1, Bwd, 1, Fwd, 1);
245 Vmath::Smul(nTracePts, 0.5, Fwd, 1, Fwd, 1);
246 Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Fwd, 1, m_traceVn, 1,
247 m_traceVn, 1);
248 }
249 Vmath::Smul(nTracePts, 0.5, m_traceVn, 1, m_traceVn, 1);
250
251 return m_traceVn;
252}
253
254/**
255 * @brief Return the flux vector for the inviscid Burgers equation.
256 *
257 * @param physfield Fields.
258 * @param flux Resulting flux.
259 */
261 const Array<OneD, Array<OneD, NekDouble>> &physfield,
263{
264 const int nq = GetNpoints();
265
266 for (int i = 0; i < flux.size(); ++i)
267 {
268 for (int j = 0; j < flux[0].size(); ++j)
269 {
270 Vmath::Vmul(nq, physfield[i], 1, physfield[i], 1, flux[i][j], 1);
271 Vmath::Smul(nq, 0.5, flux[i][j], 1, flux[i][j], 1);
272 }
273 }
274}
275
277{
278 AdvectionSystem::v_GenerateSummary(s);
279}
280
281} // namespace Nektar
#define ASSERTL0(condition, msg)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void AccumulateRegion(std::string, int iolevel=0)
Accumulate elapsed time for a region.
Definition Timer.cpp:70
A base class for PDEs which include an advection component.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition Forcing.cpp:76
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void v_GenerateSummary(SolverUtils::SummaryList &s) override
Print Summary.
UnsteadyInviscidBurgers(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
void v_InitObject(bool DeclareFields=true) override
Initialise the object.
Array< OneD, NekDouble > & GetNormalVelocity()
Get the normal velocity.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the RHS.
static std::string className
Name of class.
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Evaluate the flux at each solution point.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition Advection.cpp:43
std::vector< std::pair< std::string, std::string > > SummaryList
Definition Misc.h:46
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition MeshGraph.h:217
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition Vmath.hpp:273
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition Vmath.hpp:825