Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
Nektar::VelocityCorrectionScheme Class Reference

#include <VelocityCorrectionScheme.h>

Inheritance diagram for Nektar::VelocityCorrectionScheme:
[legend]

Public Member Functions

 VelocityCorrectionScheme (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
 ~VelocityCorrectionScheme () override
 
void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
void SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
void SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
void SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
void SolveViscous (const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
 
void SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
 
void EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
- Public Member Functions inherited from Nektar::IncNavierStokes
 ~IncNavierStokes () override
 
void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
int GetNConvectiveFields (void)
 
void AddForcing (const SolverUtils::ForcingSharedPtr &pForce)
 
void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
bool v_HasConstantDensity () override
 
void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels, const int step) override
 
bool v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels, const int step) override
 
void v_SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp, const int step) override
 
void v_SetMovingFramePivot (const Array< OneD, NekDouble > &vFramePivot) override
 
bool v_GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp, const int step) override
 
void v_SetAeroForce (Array< OneD, NekDouble > forces) override
 
void v_GetAeroForce (Array< OneD, NekDouble > forces) override
 
bool DefinedForcing (const std::string &sForce)
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
SOLVER_UTILS_EXPORT ~AdvectionSystem () override
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::ALEHelper
virtual ~ALEHelper ()=default
 
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
SOLVER_UTILS_EXPORT void InitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity (const NekDouble &time)
 
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass (Array< OneD, Array< OneD, NekDouble > > &fields)
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass (Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
 Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e.g. checkpoint output and L^2 error calculation. More...
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void MoveMesh (const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocity ()
 
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace ()
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels, const int step)
 
SOLVER_UTILS_EXPORT bool GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels, const int step)
 
SOLVER_UTILS_EXPORT void SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp, const int step)
 
SOLVER_UTILS_EXPORT void SetMovingFramePivot (const Array< OneD, NekDouble > &vFramePivot)
 
SOLVER_UTILS_EXPORT bool GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp, const int step)
 
SOLVER_UTILS_EXPORT void SetAeroForce (Array< OneD, NekDouble > forces)
 Set aerodynamic force and moment. More...
 
SOLVER_UTILS_EXPORT void GetAeroForce (Array< OneD, NekDouble > forces)
 Get aerodynamic force and moment. More...
 

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

void SetupFlowrate (NekDouble aii_dt)
 Set up the Stokes solution used to impose constant flowrate through a boundary. More...
 
NekDouble MeasureFlowrate (const Array< OneD, Array< OneD, NekDouble > > &inarray)
 Measure the volumetric flow rate through the volumetric flow rate reference surface. More...
 
bool v_PostIntegrate (int step) override
 
void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
Array< OneD, bool > v_GetSystemSingularChecks () override
 
int v_GetForceDimension () override
 
virtual void v_SetUpPressureForcing (const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
virtual void v_SetUpViscousForcing (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
 
virtual void v_SolvePressure (const Array< OneD, NekDouble > &Forcing)
 
virtual void v_SolveViscous (const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
 
virtual void v_SolveUnsteadyStokesSystem (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
 
virtual void v_EvaluateAdvection_SetPressureBCs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
bool v_RequireFwdTrans () override
 
virtual std::string v_GetExtrapolateStr (void)
 
virtual std::string v_GetSubSteppingExtrapolateStr (const std::string &instr)
 
void SetUpSVV (void)
 
void SetUpExtrapolation (void)
 
void SVVVarDiffCoeff (const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble > > &vel=NullNekDoubleArrayOfArray)
 
void AppendSVVFactors (StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
 
void ComputeGJPNormalVelocity (const Array< OneD, const Array< OneD, NekDouble > > &inarray, StdRegions::VarCoeffMap &varcoeffs)
 
- Protected Member Functions inherited from Nektar::IncNavierStokes
 IncNavierStokes (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
EquationType GetEquationType (void)
 
void EvaluateAdvectionTerms (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void WriteModalEnergy (void)
 
void SetBoundaryConditions (NekDouble time)
 time dependent boundary conditions updating More...
 
void SetRadiationBoundaryForcing (int fieldid)
 Set Radiation forcing term. More...
 
void SetZeroNormalVelocity ()
 Set Normal Velocity Component to Zero. More...
 
void SetWomersleyBoundary (const int fldid, const int bndid)
 Set Womersley Profile if specified. More...
 
void SetUpWomersley (const int fldid, const int bndid, std::string womstr)
 Set Up Womersley details. More...
 
MultiRegions::ExpListSharedPtr v_GetPressure () override
 
void v_TransCoeffToPhys (void) override
 Virtual function for transformation to physical space. More...
 
void v_TransPhysToCoeff (void) override
 Virtual function for transformation to coefficient space. More...
 
virtual int v_GetForceDimension ()=0
 
Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 
bool v_PreIntegrate (int step) override
 
SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels, const int step)
 
virtual SOLVER_UTILS_EXPORT bool v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels, const int step)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp, const int step)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFramePivot (const Array< OneD, NekDouble > &vFramePivot)
 
virtual SOLVER_UTILS_EXPORT bool v_GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp, const int step)
 
virtual SOLVER_UTILS_EXPORT void v_SetAeroForce (Array< OneD, NekDouble > forces)
 
virtual SOLVER_UTILS_EXPORT void v_GetAeroForce (Array< OneD, NekDouble > forces)
 

Protected Attributes

bool m_useHomo1DSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useSpecVanVisc
 bool to identify if spectral vanishing viscosity is active. More...
 
bool m_useGJPStabilisation
 bool to identify if GJP semi-implicit is active. More...
 
bool m_useGJPNormalVel
 bool to identify if GJP normal Velocity should be applied in explicit approach More...
 
NekDouble m_GJPJumpScale
 
NekDouble m_sVVCutoffRatio
 cutt off ratio from which to start decayhing modes More...
 
NekDouble m_sVVDiffCoeff
 Diffusion coefficient of SVV modes. More...
 
NekDouble m_sVVCutoffRatioHomo1D
 
NekDouble m_sVVDiffCoeffHomo1D
 Diffusion coefficient of SVV modes in homogeneous 1D Direction. More...
 
Array< OneD, NekDoublem_svvVarDiffCoeff
 Array of coefficient if power kernel is used in SVV. More...
 
bool m_IsSVVPowerKernel
 Identifier for Power Kernel otherwise DG kernel. More...
 
Array< OneD, NekDoublem_diffCoeff
 Diffusion coefficients (will be kinvis for velocities) More...
 
StdRegions::VarCoeffMap m_varCoeffLap
 Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise. More...
 
NekDouble m_flowrate
 Desired volumetric flowrate. More...
 
NekDouble m_flowrateArea
 Area of the boundary through which we are measuring the flowrate. More...
 
bool m_homd1DFlowinPlane
 
NekDouble m_greenFlux
 Flux of the Stokes function solution. More...
 
NekDouble m_alpha
 Current flowrate correction. More...
 
int m_flowrateBndID
 Boundary ID of the flowrate reference surface. More...
 
int m_planeID
 Plane ID for cases with homogeneous expansion. More...
 
MultiRegions::ExpListSharedPtr m_flowrateBnd
 Flowrate reference surface. More...
 
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
 Stokes solution used to impose flowrate. More...
 
std::ofstream m_flowrateStream
 Output stream to record flowrate. More...
 
int m_flowrateSteps
 Interval at which to record flowrate data. More...
 
NekDouble m_flowrateAiidt
 Value of aii_dt used to compute Stokes flowrate solution. More...
 
Array< OneD, Array< OneD, NekDouble > > m_F
 
- Protected Attributes inherited from Nektar::IncNavierStokes
ExtrapolateSharedPtr m_extrapolation
 
IncBoundaryConditionsSharedPtr m_IncNavierStokesBCs
 
std::ofstream m_mdlFile
 modal energy file More...
 
bool m_SmoothAdvection
 bool to identify if advection term smoothing is requested More...
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 Forcing terms. More...
 
int m_nConvectiveFields
 Number of fields to be convected;. More...
 
Array< OneD, int > m_velocity
 int which identifies which components of m_fields contains the velocity (u,v,w); More...
 
MultiRegions::ExpListSharedPtr m_pressure
 Pointer to field holding pressure field. More...
 
NekDouble m_kinvis
 Kinematic viscosity. More...
 
int m_energysteps
 dump energy to file at steps time More...
 
EquationType m_equationType
 equation type; More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToElmtID
 Mapping from BCs to Elmt IDs. More...
 
Array< OneD, Array< OneD, int > > m_fieldsBCToTraceID
 Mapping from BCs to Elmt Edge IDs. More...
 
Array< OneD, Array< OneD, NekDouble > > m_fieldsRadiationFactor
 RHS Factor for Radiation Condition. More...
 
int m_intSteps
 Number of time integration steps AND Order of extrapolation for pressure boundary conditions. More...
 
Array< OneD, NekDoublem_pivotPoint
 pivot point for moving reference frame More...
 
Array< OneD, NekDoublem_aeroForces
 
std::map< int, std::map< int, WomersleyParamsSharedPtr > > m_womersleyParams
 Womersley parameters if required. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z, U, V, W, Omega_x, Omega_y, Omega_z, A_x, A_y, A_z, DOmega_x, DOmega_y, DOmega_z, pivot_x, pivot_y, pivot_z. More...
 
std::vector< std::string > m_strFrameData
 variable name in m_movingFrameData More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Protected Attributes inherited from Nektar::SolverUtils::ALEHelper
Array< OneD, MultiRegions::ExpListSharedPtrm_fieldsALE
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
 
std::vector< ALEBaseShPtrm_ALEs
 
bool m_ALESolver = false
 
bool m_ImplicitALESolver = false
 
NekDouble m_prevStageTime = 0.0
 
int m_spaceDim
 

Static Protected Attributes

static std::string solverTypeLookupId
 
- Static Protected Attributes inherited from Nektar::IncNavierStokes
static std::string eqTypeLookupIds []
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 42 of file VelocityCorrectionScheme.h.

Constructor & Destructor Documentation

◆ VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::VelocityCorrectionScheme ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)

Constructor.

Constructor. Creates ...

Parameters

param

Definition at line 66 of file VelocityCorrectionScheme.cpp.

69 : UnsteadySystem(pSession, pGraph), IncNavierStokes(pSession, pGraph),
71{
72}
IncNavierStokes(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Constructor.
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.
StdRegions::VarCoeffMap m_varCoeffLap
Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.
static VarCoeffMap NullVarCoeffMap
Definition: StdRegions.hpp:376

◆ ~VelocityCorrectionScheme()

Nektar::VelocityCorrectionScheme::~VelocityCorrectionScheme ( void  )
override

Destructor

Definition at line 521 of file VelocityCorrectionScheme.cpp.

522{
523}

Member Function Documentation

◆ AppendSVVFactors()

void Nektar::VelocityCorrectionScheme::AppendSVVFactors ( StdRegions::ConstFactorMap factors,
MultiRegions::VarFactorsMap varFactorsMap 
)
protected

Definition at line 1161 of file VelocityCorrectionScheme.cpp.

1164{
1165
1166 if (m_useSpecVanVisc)
1167 {
1171 {
1173 {
1176 }
1177 else
1178 {
1181 }
1182 }
1183 }
1184}
NekDouble m_kinvis
Kinematic viscosity.
Array< OneD, NekDouble > m_svvVarDiffCoeff
Array of coefficient if power kernel is used in SVV.
bool m_IsSVVPowerKernel
Identifier for Power Kernel otherwise DG kernel.
NekDouble m_sVVCutoffRatio
cutt off ratio from which to start decayhing modes
NekDouble m_sVVDiffCoeff
Diffusion coefficient of SVV modes.
bool m_useSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
StdRegions::ConstFactorMap factors
static Array< OneD, NekDouble > NullNekDouble1DArray

References Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eFactorSVVDGKerDiffCoeff, Nektar::StdRegions::eFactorSVVDiffCoeff, Nektar::StdRegions::eFactorSVVPowerKerDiffCoeff, Nektar::VarcoeffHashingTest::factors, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, m_sVVCutoffRatio, m_sVVDiffCoeff, m_svvVarDiffCoeff, m_useSpecVanVisc, and Nektar::NullNekDouble1DArray.

Referenced by v_SolveViscous(), and Nektar::VCSImplicit::v_SolveViscous().

◆ ComputeGJPNormalVelocity()

void Nektar::VelocityCorrectionScheme::ComputeGJPNormalVelocity ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
StdRegions::VarCoeffMap varcoeffs 
)
protected

Definition at line 1192 of file VelocityCorrectionScheme.cpp.

1195{
1197 {
1199 std::dynamic_pointer_cast<MultiRegions::ContField>(m_fields[0]);
1200
1202 cfield->GetGJPForcing();
1203
1204 int nTracePts = GJPData->GetNumTracePts();
1205 Array<OneD, NekDouble> unorm(nTracePts, 1.0);
1206 Array<OneD, NekDouble> Fwd(nTracePts), Bwd(nTracePts);
1207 Array<OneD, Array<OneD, NekDouble>> traceNormals =
1208 GJPData->GetTraceNormals();
1209
1210 m_fields[0]->GetFwdBwdTracePhys(inarray[0], Fwd, Bwd, true, true);
1211 Vmath::Vmul(nTracePts, Fwd, 1, traceNormals[0], 1, unorm, 1);
1212
1213 // Evaluate u.n on trace
1214 for (int f = 1; f < m_fields[0]->GetCoordim(0); ++f)
1215 {
1216 m_fields[0]->GetFwdBwdTracePhys(inarray[f], Fwd, Bwd, true, true);
1217 Vmath::Vvtvp(nTracePts, Fwd, 1, traceNormals[f], 1, unorm, 1, unorm,
1218 1);
1219 }
1220 Vmath::Vabs(nTracePts, unorm, 1, unorm, 1);
1221 varcoeffs[StdRegions::eVarCoeffGJPNormVel] = unorm;
1222 }
1223}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
bool m_useGJPNormalVel
bool to identify if GJP normal Velocity should be applied in explicit approach
std::shared_ptr< GJPStabilisation > GJPStabilisationSharedPtr
std::shared_ptr< ContField > ContFieldSharedPtr
Definition: ContField.h:268
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.hpp:352
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366

References Nektar::StdRegions::eVarCoeffGJPNormVel, Nektar::SolverUtils::EquationSystem::m_fields, m_useGJPNormalVel, Vmath::Vabs(), Vmath::Vmul(), and Vmath::Vvtvp().

Referenced by v_SolveViscous(), and Nektar::VCSImplicit::v_SolveViscous().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::VelocityCorrectionScheme::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 46 of file VelocityCorrectionScheme.h.

49 {
52 pGraph);
53 p->InitObject();
54 return p;
55 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
inline

Definition at line 104 of file VelocityCorrectionScheme.h.

107 {
108 v_EvaluateAdvection_SetPressureBCs(inarray, outarray, time);
109 }
virtual void v_EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)

References v_EvaluateAdvection_SetPressureBCs().

Referenced by v_InitObject().

◆ MeasureFlowrate()

NekDouble Nektar::VelocityCorrectionScheme::MeasureFlowrate ( const Array< OneD, Array< OneD, NekDouble > > &  inarray)
protected

Measure the volumetric flow rate through the volumetric flow rate reference surface.

This routine computes the volumetric flow rate

\[ Q(\mathbf{u}) = \frac{1}{\mu(R)} \int_R \mathbf{u} \cdot d\mathbf{s} \]

through the boundary region \( R \).

Definition at line 447 of file VelocityCorrectionScheme.cpp.

449{
450 NekDouble flowrate = 0.0;
451
452 if (m_flowrateBnd && m_flowrateBndID >= 0)
453 {
454 // If we're an actual boundary, calculate the vector flux through
455 // the boundary.
456 Array<OneD, Array<OneD, NekDouble>> boundary(m_spacedim);
457
459 {
460 // General case
461 for (int i = 0; i < m_spacedim; ++i)
462 {
463 m_fields[i]->ExtractPhysToBnd(m_flowrateBndID, inarray[i],
464 boundary[i]);
465 }
466 flowrate = m_flowrateBnd->VectorFlux(boundary);
467 }
468 else if (m_planeID == 0)
469 {
470 // Homogeneous with forcing in plane. Calculate flux only on
471 // the meanmode - calculateFlux necessary for hybrid
472 // parallelisation.
473 for (int i = 0; i < m_spacedim; ++i)
474 {
475 m_fields[i]->GetPlane(m_planeID)->ExtractPhysToBnd(
476 m_flowrateBndID, inarray[i], boundary[i]);
477 }
478
479 // the flowrate is calculated on the mean mode so it needs to be
480 // multiplied by LZ to be consistent with the general case.
481 flowrate = m_flowrateBnd->VectorFlux(boundary) *
482 m_session->GetParameter("LZ");
483 }
484 }
486 {
487 // 3DH1D case with no Flowrate boundary defined: compute flux
488 // through the zero-th (mean) plane.
489 flowrate = m_flowrateBnd->Integral(inarray[2]);
490 }
491
492 // Communication to obtain the total flowrate
494 {
495 m_comm->GetColumnComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
496 }
497 else
498 {
499 m_comm->GetSpaceComm()->AllReduce(flowrate, LibUtilities::ReduceSum);
500 }
501 return flowrate / m_flowrateArea;
502}
int m_spacedim
Spatial dimension (>= expansion dim).
LibUtilities::CommSharedPtr m_comm
Communicator.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
enum HomogeneousType m_HomogeneousType
MultiRegions::ExpListSharedPtr m_flowrateBnd
Flowrate reference surface.
NekDouble m_flowrateArea
Area of the boundary through which we are measuring the flowrate.
int m_planeID
Plane ID for cases with homogeneous expansion.
int m_flowrateBndID
Boundary ID of the flowrate reference surface.
double NekDouble

References Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_planeID, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, and Nektar::LibUtilities::ReduceSum.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ SetUpExtrapolation()

void Nektar::VelocityCorrectionScheme::SetUpExtrapolation ( void  )
protected

Definition at line 151 of file VelocityCorrectionScheme.cpp.

152{
153 // creation of the extrapolation object
156 {
157 std::string vExtrapolation = v_GetExtrapolateStr();
158 if (m_session->DefinesSolverInfo("Extrapolation"))
159 {
160 vExtrapolation = v_GetSubSteppingExtrapolateStr(
161 m_session->GetSolverInfo("Extrapolation"));
162 }
164 vExtrapolation, m_session, m_fields, m_pressure, m_velocity,
166
167 m_extrapolation->SetForcing(m_forcing);
168 m_extrapolation->SubSteppingTimeIntegration(m_intScheme);
169 m_extrapolation->GenerateBndElmtExpansion();
170 m_extrapolation->GenerateHOPBCMap(m_session);
174 }
175}
MultiRegions::ExpListSharedPtr m_pressure
Pointer to field holding pressure field.
IncBoundaryConditionsSharedPtr m_IncNavierStokesBCs
ExtrapolateSharedPtr m_extrapolation
Array< OneD, int > m_velocity
int which identifies which components of m_fields contains the velocity (u,v,w);
EquationType m_equationType
equation type;
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Forcing terms.
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
Wrapper to the time integration scheme.
virtual std::string v_GetExtrapolateStr(void)
virtual std::string v_GetSubSteppingExtrapolateStr(const std::string &instr)
@ eUnsteadyStokes
@ eUnsteadyNavierStokes
ExtrapolateFactory & GetExtrapolateFactory()
Definition: Extrapolate.cpp:48

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::eUnsteadyNavierStokes, Nektar::eUnsteadyStokes, Nektar::GetExtrapolateFactory(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::IncNavierStokes::m_equationType, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::IncNavierStokes::m_IncNavierStokesBCs, Nektar::SolverUtils::UnsteadySystem::m_intScheme, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_velocity, v_GetExtrapolateStr(), and v_GetSubSteppingExtrapolateStr().

Referenced by v_InitObject().

◆ SetupFlowrate()

void Nektar::VelocityCorrectionScheme::SetupFlowrate ( NekDouble  aii_dt)
protected

Set up the Stokes solution used to impose constant flowrate through a boundary.

This routine solves a Stokes equation using a unit forcing direction, specified by the user to be in the desired flow direction. This field can then be used to correct the end of each timestep to impose a constant volumetric flow rate through a user-defined boundary.

There are three modes of operation:

  • Standard two-dimensional or three-dimensional simulations (e.g. pipes or channels)
  • 3DH1D simulations where the forcing is not in the homogeneous direction (e.g. channel flow, where the y-direction of the 2D mesh is perpendicular to the wall);
  • 3DH1D simulations where the forcing is in the homogeneous direction (e.g. pipe flow in the z-direction).

In the first two cases, the user should define:

  • the Flowrate parameter, which dictates the volumetric flux through the reference area
  • tag a boundary region with the Flowrate user-defined type to define the reference area
  • define a FlowrateForce function with components ForceX, ForceY and ForceZ that defines a unit forcing in the appropriate direction.

In the latter case, the user should define only the Flowrate; the reference area is taken to be the homogeneous plane and the force is assumed to be the unit z-vector \( \hat{e}_z \).

This routine solves a single timestep of the Stokes problem (premultiplied by the backwards difference coefficient):

\[ \frac{\partial\mathbf{u}}{\partial t} = -\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f} \]

with a zero initial condition to obtain a field \( \mathbf{u}_s \). The flowrate is then corrected at each timestep \( n \) by adding the correction \( \alpha\mathbf{u}_s \) where

\[ \alpha = \frac{\overline{Q} - Q(\mathbf{u^n})}{Q(\mathbf{u}_s)} \]

where \( Q(\cdot)\) is the volumetric flux through the appropriate surface or line, which is implemented in VelocityCorrectionScheme::MeasureFlowrate. For more details, see chapter 3.2 of the thesis of D. Moxey (University of Warwick, 2011).

Definition at line 225 of file VelocityCorrectionScheme.cpp.

226{
227 m_flowrateBndID = -1;
228 m_flowrateArea = 0.0;
229
230 const Array<OneD, const SpatialDomains::BoundaryConditionShPtr> &bcs =
231 m_fields[0]->GetBndConditions();
232
233 std::string forces[] = {"X", "Y", "Z"};
234 Array<OneD, NekDouble> flowrateForce(m_spacedim, 0.0);
235
236 // Set up flowrate forces.
237 bool defined = true;
238 for (int i = 0; i < m_spacedim; ++i)
239 {
240 std::string varName = std::string("Force") + forces[i];
241 defined = m_session->DefinesFunction("FlowrateForce", varName);
242
243 if (!defined && m_HomogeneousType == eHomogeneous1D)
244 {
245 break;
246 }
247
248 ASSERTL0(defined,
249 "A 'FlowrateForce' function must defined with components "
250 "[ForceX, ...] to define direction of flowrate forcing");
251
253 m_session->GetFunction("FlowrateForce", varName);
254 flowrateForce[i] = ffunc->Evaluate();
255 }
256
257 // Define flag for case with homogeneous expansion and forcing not in the
258 // z-direction
259 m_homd1DFlowinPlane = false;
260 if (defined && m_HomogeneousType == eHomogeneous1D)
261 {
262 m_homd1DFlowinPlane = true;
263 }
264
265 // For 3DH1D simulations, if force isn't defined then assume in
266 // z-direction.
267 if (!defined)
268 {
269 flowrateForce[2] = 1.0;
270 }
271
272 // Find the boundary condition that is tagged as the flowrate boundary.
273 for (size_t i = 0; i < bcs.size(); ++i)
274 {
275 if (boost::iequals(bcs[i]->GetUserDefined(), "Flowrate"))
276 {
277 m_flowrateBndID = i;
278 break;
279 }
280 }
281
282 int tmpBr = m_flowrateBndID;
283 m_comm->AllReduce(tmpBr, LibUtilities::ReduceMax);
285 "One boundary region must be marked using the 'Flowrate' "
286 "user-defined type to monitor the volumetric flowrate.");
287
288 // Extract an appropriate expansion list to represents the boundary.
289 if (m_flowrateBndID >= 0)
290 {
291 // For a boundary, extract the boundary itself.
292 m_flowrateBnd = m_fields[0]->GetBndCondExpansions()[m_flowrateBndID];
293 }
295 {
296 // For 3DH1D simulations with no force specified, find the mean
297 // (0th) plane.
298 Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
299 int tmpId = -1;
300
301 for (size_t i = 0; i < zIDs.size(); ++i)
302 {
303 if (zIDs[i] == 0)
304 {
305 tmpId = i;
306 break;
307 }
308 }
309
310 ASSERTL1(tmpId <= 0, "Should be either at location 0 or -1 if not "
311 "found");
312
313 if (tmpId != -1)
314 {
315 m_flowrateBnd = m_fields[0]->GetPlane(tmpId);
316 }
317 }
318
319 // At this point, some processors may not have m_flowrateBnd
320 // set if they don't contain the appropriate boundary. To
321 // calculate the area, we integrate 1.0 over the boundary
322 // (which has been set up with the appropriate subcommunicator
323 // to avoid deadlock), and then communicate this to the other
324 // processors with an AllReduce.
325 if (m_flowrateBnd)
326 {
327 Array<OneD, NekDouble> inArea(m_flowrateBnd->GetNpoints(), 1.0);
328 m_flowrateArea = m_flowrateBnd->Integral(inArea);
329 }
331
332 // In homogeneous case with forcing not aligned to the z-direction,
333 // redefine m_flowrateBnd so it is a 1D expansion
336 {
337 // For 3DH1D simulations with no force specified, find the mean
338 // (0th) plane.
339 Array<OneD, unsigned int> zIDs = m_fields[0]->GetZIDs();
340 m_planeID = -1;
341
342 for (size_t i = 0; i < zIDs.size(); ++i)
343 {
344 if (zIDs[i] == 0)
345 {
346 m_planeID = i;
347 break;
348 }
349 }
350
351 ASSERTL1(m_planeID <= 0, "Should be either at location 0 or -1 "
352 "if not found");
353
354 if (m_planeID != -1)
355 {
357 m_fields[0]->GetBndCondExpansions()[m_flowrateBndID]->GetPlane(
358 m_planeID);
359 }
360 }
361
362 // Set up some storage for the Stokes solution (to be stored in
363 // m_flowrateStokes) and its initial condition (inTmp), which holds the
364 // unit forcing.
365 int nqTot = m_fields[0]->GetNpoints();
366 Array<OneD, Array<OneD, NekDouble>> inTmp(m_spacedim);
367 m_flowrateStokes = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
368
369 for (int i = 0; i < m_spacedim; ++i)
370 {
371 inTmp[i] = Array<OneD, NekDouble>(nqTot, flowrateForce[i] * aii_dt);
372 m_flowrateStokes[i] = Array<OneD, NekDouble>(nqTot, 0.0);
373
375 {
376 Array<OneD, NekDouble> inTmp2(nqTot);
377 m_fields[i]->HomogeneousFwdTrans(nqTot, inTmp[i], inTmp2);
378 m_fields[i]->SetWaveSpace(true);
379 inTmp[i] = inTmp2;
380 }
381
382 Vmath::Zero(m_fields[i]->GetNcoeffs(), m_fields[i]->UpdateCoeffs(), 1);
383 }
384
385 // Create temporary extrapolation object to avoid issues with
386 // m_extrapolation for HOPBCs using higher order timestepping schemes.
387 // Zero pressure BCs in Neumann boundaries that may have been
388 // set in the advection step.
389 Array<OneD, const SpatialDomains::BoundaryConditionShPtr> PBndConds =
390 m_pressure->GetBndConditions();
391 Array<OneD, MultiRegions::ExpListSharedPtr> PBndExp =
392 m_pressure->GetBndCondExpansions();
393 for (size_t n = 0; n < PBndConds.size(); ++n)
394 {
395 if (PBndConds[n]->GetBoundaryConditionType() ==
397 {
398 Vmath::Zero(PBndExp[n]->GetNcoeffs(), PBndExp[n]->UpdateCoeffs(),
399 1);
400 }
401 }
402
403 // Finally, calculate the solution and the flux of the Stokes
404 // solution. We set m_greenFlux to maximum numeric limit, which signals
405 // to SolveUnsteadyStokesSystem that we don't need to apply a flowrate
406 // force.
407 m_greenFlux = numeric_limits<NekDouble>::max();
408 m_flowrateAiidt = aii_dt;
409
410 // Save the number of convective field in case it is not set
411 // to spacedim. Only need velocity components for stokes forcing
412 int SaveNConvectiveFields = m_nConvectiveFields;
414 SolveUnsteadyStokesSystem(inTmp, m_flowrateStokes, 0.0, aii_dt);
415 m_nConvectiveFields = SaveNConvectiveFields;
417
418 // If the user specified IO_FlowSteps, open a handle to store output.
419 if (m_comm->GetRank() == 0 && m_flowrateSteps &&
420 !m_flowrateStream.is_open())
421 {
422 std::string filename = m_session->GetSessionName();
423 filename += ".prs";
424 m_flowrateStream.open(filename.c_str());
425 m_flowrateStream.setf(ios::scientific, ios::floatfield);
426 m_flowrateStream << "# step time dP" << endl
427 << "# -------------------------------------------"
428 << endl;
429 }
430
431 // Replace pressure BCs with those evaluated from advection step
432 m_extrapolation->CopyPressureHBCsToPbndExp();
433}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
int m_nConvectiveFields
Number of fields to be convected;.
SOLVER_UTILS_EXPORT int GetNcoeffs()
NekDouble m_greenFlux
Flux of the Stokes function solution.
NekDouble MeasureFlowrate(const Array< OneD, Array< OneD, NekDouble > > &inarray)
Measure the volumetric flow rate through the volumetric flow rate reference surface.
Array< OneD, Array< OneD, NekDouble > > m_flowrateStokes
Stokes solution used to impose flowrate.
void SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)
int m_flowrateSteps
Interval at which to record flowrate data.
std::ofstream m_flowrateStream
Output stream to record flowrate.
NekDouble m_flowrateAiidt
Value of aii_dt used to compute Stokes flowrate solution.
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:125
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273

References ASSERTL0, ASSERTL1, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SpatialDomains::eNeumann, Nektar::SolverUtils::EquationSystem::GetNcoeffs(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, m_flowrateArea, m_flowrateBnd, m_flowrateBndID, m_flowrateSteps, m_flowrateStokes, m_flowrateStream, m_greenFlux, m_homd1DFlowinPlane, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::IncNavierStokes::m_nConvectiveFields, m_planeID, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), Nektar::LibUtilities::ReduceMax, SolveUnsteadyStokesSystem(), and Vmath::Zero().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  fields,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 69 of file VelocityCorrectionScheme.h.

72 {
73 v_SetUpPressureForcing(fields, Forcing, aii_Dt);
74 }
virtual void v_SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)

References v_SetUpPressureForcing().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SetUpSVV()

void Nektar::VelocityCorrectionScheme::SetUpSVV ( void  )
protected

Definition at line 933 of file VelocityCorrectionScheme.cpp.

934{
935
936 m_session->MatchSolverInfo("SpectralVanishingViscosity", "PowerKernel",
937 m_useSpecVanVisc, false);
938
940 {
942 }
943 else
944 {
946
947 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
948 "PowerKernel", m_useSpecVanVisc, false);
949 }
950
952 {
953 m_IsSVVPowerKernel = true;
954 }
955 else
956 {
957 m_session->MatchSolverInfo("SpectralVanishingViscosity", "DGKernel",
958 m_useSpecVanVisc, false);
960 {
962 }
963 else
964 {
965 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
966 "DGKernel", m_useSpecVanVisc, false);
967 }
968
970 {
971 m_IsSVVPowerKernel = false;
972 }
973 }
974
975 // set up varcoeff kernel if PowerKernel or DG is specified
977 {
978 Array<OneD, Array<OneD, NekDouble>> SVVVelFields =
980 if (m_session->DefinesFunction("SVVVelocityMagnitude"))
981 {
982 if (m_comm->GetRank() == 0)
983 {
984 cout << "Seting up SVV velocity from "
985 "SVVVelocityMagnitude section in session file"
986 << endl;
987 }
988 size_t nvel = m_velocity.size();
989 size_t phystot = m_fields[0]->GetTotPoints();
990 SVVVelFields = Array<OneD, Array<OneD, NekDouble>>(nvel);
991 vector<string> vars;
992 for (size_t i = 0; i < nvel; ++i)
993 {
994 SVVVelFields[i] = Array<OneD, NekDouble>(phystot);
995 vars.push_back(m_session->GetVariable(m_velocity[i]));
996 }
997
998 // Load up files into m_fields;
999 GetFunction("SVVVelocityMagnitude")->Evaluate(vars, SVVVelFields);
1000 }
1001
1002 m_svvVarDiffCoeff = Array<OneD, NekDouble>(m_fields[0]->GetNumElmts());
1003 SVVVarDiffCoeff(1.0, m_svvVarDiffCoeff, SVVVelFields);
1004 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 1.0);
1005 }
1006 else
1007 {
1009 m_session->LoadParameter("SVVDiffCoeff", m_sVVDiffCoeff, 0.1);
1010 }
1011
1012 // Load parameters for Spectral Vanishing Viscosity
1013 if (m_useSpecVanVisc == false)
1014 {
1015 m_session->MatchSolverInfo("SpectralVanishingViscosity", "True",
1016 m_useSpecVanVisc, false);
1017 if (m_useSpecVanVisc == false)
1018 {
1019 m_session->MatchSolverInfo("SpectralVanishingViscosity",
1020 "ExpKernel", m_useSpecVanVisc, false);
1021 }
1023
1024 if (m_useSpecVanVisc == false)
1025 {
1026 m_session->MatchSolverInfo("SpectralVanishingViscositySpectralHP",
1027 "True", m_useSpecVanVisc, false);
1028 if (m_useSpecVanVisc == false)
1029 {
1030 m_session->MatchSolverInfo(
1031 "SpectralVanishingViscositySpectralHP", "ExpKernel",
1032 m_useSpecVanVisc, false);
1033 }
1034 }
1035 }
1036
1037 // Case of only Homo1D kernel
1038 if (m_session->DefinesSolverInfo("SpectralVanishingViscosityHomo1D"))
1039 {
1040 m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D", "True",
1041 m_useHomo1DSpecVanVisc, false);
1042 if (m_useHomo1DSpecVanVisc == false)
1043 {
1044 m_session->MatchSolverInfo("SpectralVanishingViscosityHomo1D",
1045 "ExpKernel", m_useHomo1DSpecVanVisc,
1046 false);
1047 }
1048 }
1049
1050 m_session->LoadParameter("SVVCutoffRatio", m_sVVCutoffRatio, 0.75);
1051 m_session->LoadParameter("SVVCutoffRatioHomo1D", m_sVVCutoffRatioHomo1D,
1053 m_session->LoadParameter("SVVDiffCoeffHomo1D", m_sVVDiffCoeffHomo1D,
1055
1057 {
1058 ASSERTL0(
1060 "Expect to have three velocity fields with homogenous expansion");
1061
1063 {
1064 Array<OneD, unsigned int> planes;
1065 planes = m_fields[0]->GetZIDs();
1066
1067 size_t num_planes = planes.size();
1068 Array<OneD, NekDouble> SVV(num_planes, 0.0);
1069 NekDouble fac;
1070 size_t kmodes = m_fields[0]->GetHomogeneousBasis()->GetNumModes();
1071 size_t pstart;
1072
1073 pstart = m_sVVCutoffRatioHomo1D * kmodes;
1074
1075 for (size_t n = 0; n < num_planes; ++n)
1076 {
1077 if (planes[n] > pstart)
1078 {
1079 fac = (NekDouble)((planes[n] - kmodes) *
1080 (planes[n] - kmodes)) /
1081 ((NekDouble)((planes[n] - pstart) *
1082 (planes[n] - pstart)));
1083 SVV[n] = m_sVVDiffCoeffHomo1D * exp(-fac) / m_kinvis;
1084 }
1085 }
1086
1087 for (size_t i = 0; i < m_velocity.size(); ++i)
1088 {
1089 m_fields[m_velocity[i]]->SetHomo1DSpecVanVisc(SVV);
1090 }
1091 }
1092 }
1093}
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
NekDouble m_sVVDiffCoeffHomo1D
Diffusion coefficient of SVV modes in homogeneous 1D Direction.
void SVVVarDiffCoeff(const NekDouble velmag, Array< OneD, NekDouble > &diffcoeff, const Array< OneD, Array< OneD, NekDouble > > &vel=NullNekDoubleArrayOfArray)
bool m_useHomo1DSpecVanVisc
bool to identify if spectral vanishing viscosity is active.
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray

References ASSERTL0, Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::SolverUtils::EquationSystem::GetFunction(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_session, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::IncNavierStokes::m_velocity, Nektar::NullNekDouble1DArray, Nektar::NullNekDoubleArrayOfArray, and SVVVarDiffCoeff().

Referenced by v_InitObject().

◆ SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
inline

Definition at line 76 of file VelocityCorrectionScheme.h.

79 {
80 v_SetUpViscousForcing(inarray, Forcing, aii_Dt);
81 }
virtual void v_SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)

References v_SetUpViscousForcing().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SolvePressure()

void Nektar::VelocityCorrectionScheme::SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
inline

Definition at line 83 of file VelocityCorrectionScheme.h.

84 {
85 v_SolvePressure(Forcing);
86 }
virtual void v_SolvePressure(const Array< OneD, NekDouble > &Forcing)

References v_SolvePressure().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const NekDouble  a_iixDt 
)
inline

Definition at line 96 of file VelocityCorrectionScheme.h.

100 {
101 v_SolveUnsteadyStokesSystem(inarray, outarray, time, a_iixDt);
102 }
virtual void v_SolveUnsteadyStokesSystem(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const NekDouble a_iixDt)

References v_SolveUnsteadyStokesSystem().

Referenced by SetupFlowrate(), and v_InitObject().

◆ SolveViscous()

void Nektar::VelocityCorrectionScheme::SolveViscous ( const Array< OneD, const Array< OneD, NekDouble > > &  Forcing,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  aii_Dt 
)
inline

Definition at line 88 of file VelocityCorrectionScheme.h.

92 {
93 v_SolveViscous(Forcing, inarray, outarray, aii_Dt);
94 }
virtual void v_SolveViscous(const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)

References v_SolveViscous().

Referenced by v_SolveUnsteadyStokesSystem().

◆ SVVVarDiffCoeff()

void Nektar::VelocityCorrectionScheme::SVVVarDiffCoeff ( const NekDouble  velmag,
Array< OneD, NekDouble > &  diffcoeff,
const Array< OneD, Array< OneD, NekDouble > > &  vel = NullNekDoubleArrayOfArray 
)
protected

Definition at line 1095 of file VelocityCorrectionScheme.cpp.

1098{
1099 size_t phystot = m_fields[0]->GetTotPoints();
1100 size_t nel = m_fields[0]->GetNumElmts();
1101 size_t nvel, cnt;
1102
1103 Array<OneD, NekDouble> tmp;
1104
1105 Vmath::Fill(nel, velmag, diffcoeff, 1);
1106
1107 if (vel != NullNekDoubleArrayOfArray)
1108 {
1109 Array<OneD, NekDouble> Velmag(phystot);
1110 nvel = vel.size();
1111 // calculate magnitude of v
1112 Vmath::Vmul(phystot, vel[0], 1, vel[0], 1, Velmag, 1);
1113 for (size_t n = 1; n < nvel; ++n)
1114 {
1115 Vmath::Vvtvp(phystot, vel[n], 1, vel[n], 1, Velmag, 1, Velmag, 1);
1116 }
1117 Vmath::Vsqrt(phystot, Velmag, 1, Velmag, 1);
1118
1119 cnt = 0;
1120 Array<OneD, NekDouble> tmp;
1121 // calculate mean value of vel mag.
1122 for (size_t i = 0; i < nel; ++i)
1123 {
1124 size_t nq = m_fields[0]->GetExp(i)->GetTotPoints();
1125 tmp = Velmag + cnt;
1126 diffcoeff[i] = m_fields[0]->GetExp(i)->Integral(tmp);
1127 Vmath::Fill(nq, 1.0, tmp, 1);
1128 NekDouble area = m_fields[0]->GetExp(i)->Integral(tmp);
1129 diffcoeff[i] = diffcoeff[i] / area;
1130 cnt += nq;
1131 }
1132 }
1133 else
1134 {
1135 nvel = m_expdim;
1136 }
1137
1138 for (size_t e = 0; e < nel; e++)
1139 {
1140 LocalRegions::ExpansionSharedPtr exp = m_fields[0]->GetExp(e);
1141 NekDouble h = 0;
1142
1143 // Find maximum length of edge.
1144 size_t nEdge = exp->GetGeom()->GetNumEdges();
1145 for (size_t i = 0; i < nEdge; ++i)
1146 {
1147 h = max(h, exp->GetGeom()->GetEdge(i)->GetVertex(0)->dist(
1148 *(exp->GetGeom()->GetEdge(i)->GetVertex(1))));
1149 }
1150
1151 int p = 0;
1152 for (int i = 0; i < m_expdim; ++i)
1153 {
1154 p = max(p, exp->GetBasisNumModes(i) - 1);
1155 }
1156
1157 diffcoeff[e] *= h / p;
1158 }
1159}
int m_expdim
Expansion dimension.
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:66
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.hpp:340
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54

References Vmath::Fill(), Nektar::SolverUtils::EquationSystem::m_expdim, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::NullNekDoubleArrayOfArray, CellMLToNektar.cellml_metadata::p, Vmath::Vmul(), Vmath::Vsqrt(), and Vmath::Vvtvp().

Referenced by SetUpSVV().

◆ v_DoInitialise()

void Nektar::VelocityCorrectionScheme::v_DoInitialise ( bool  dumpInitialConditions = true)
overrideprotectedvirtual

Sets up initial conditions.

Sets the initial conditions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSImplicit.

Definition at line 615 of file VelocityCorrectionScheme.cpp.

616{
617 m_F = Array<OneD, Array<OneD, NekDouble>>(m_nConvectiveFields);
618
619 for (int i = 0; i < m_nConvectiveFields; ++i)
620 {
621 m_F[i] = Array<OneD, NekDouble>(m_fields[0]->GetTotPoints(), 0.0);
622 }
623
624 m_flowrateAiidt = 0.0;
625
626 AdvectionSystem::v_DoInitialise(dumpInitialConditions);
627
628 // Set up Field Meta Data for output files
629 m_fieldMetaDataMap["Kinvis"] = boost::lexical_cast<std::string>(m_kinvis);
630 m_fieldMetaDataMap["TimeStep"] =
631 boost::lexical_cast<std::string>(m_timestep);
632
633 // set boundary conditions here so that any normal component
634 // correction are imposed before they are imposed on initial
635 // field below
637 std::map<std::string, NekDouble> params;
638 params["Time"] = m_time;
639 for (size_t i = 0; i < m_strFrameData.size(); ++i)
640 {
641 if (std::fabs(m_movingFrameData[i + 21]) != 0.)
642 {
643 params[m_strFrameData[i]] = m_movingFrameData[i + 21];
644 }
645 }
646 Array<OneD, Array<OneD, NekDouble>> fields;
647 Array<OneD, Array<OneD, NekDouble>> Adv;
648 m_IncNavierStokesBCs->Update(fields, Adv, params);
649
650 // Ensure the initial conditions have correct BCs
651 for (size_t i = 0; i < m_fields.size(); ++i)
652 {
653 m_fields[i]->ImposeDirichletConditions(m_fields[i]->UpdateCoeffs());
654 m_fields[i]->LocalToGlobal();
655 m_fields[i]->GlobalToLocal();
656 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
657 m_fields[i]->UpdatePhys());
658 }
659}
void SetBoundaryConditions(NekDouble time)
time dependent boundary conditions updating
NekDouble m_timestep
Time step size.
NekDouble m_time
Current time of simulation.
std::vector< std::string > m_strFrameData
variable name in m_movingFrameData
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
Map to identify relevant solver info to dump in output fields.
Array< OneD, NekDouble > m_movingFrameData
Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z,...
SOLVER_UTILS_EXPORT int GetTotPoints()
SOLVER_UTILS_EXPORT void v_DoInitialise(bool dumpInitialConditions=true) override
Sets up initial conditions.
Array< OneD, Array< OneD, NekDouble > > m_F

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_F, Nektar::SolverUtils::EquationSystem::m_fieldMetaDataMap, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrateAiidt, Nektar::IncNavierStokes::m_IncNavierStokesBCs, Nektar::IncNavierStokes::m_kinvis, Nektar::SolverUtils::EquationSystem::m_movingFrameData, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::EquationSystem::m_strFrameData, Nektar::SolverUtils::EquationSystem::m_time, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::IncNavierStokes::SetBoundaryConditions(), and Nektar::SolverUtils::UnsteadySystem::v_DoInitialise().

Referenced by Nektar::VCSImplicit::v_DoInitialise().

◆ v_EvaluateAdvection_SetPressureBCs()

void Nektar::VelocityCorrectionScheme::v_EvaluateAdvection_SetPressureBCs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protectedvirtual

Explicit part of the method - Advection, Forcing + HOPBCs

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 712 of file VelocityCorrectionScheme.cpp.

715{
716 LibUtilities::Timer timer;
717 timer.Start();
718 EvaluateAdvectionTerms(inarray, outarray, time);
719 timer.Stop();
720 timer.AccumulateRegion("Advection Terms");
721
722 // Smooth advection
724 {
725 for (int i = 0; i < m_nConvectiveFields; ++i)
726 {
727 m_pressure->SmoothField(outarray[i]);
728 }
729 }
730
731 // Add forcing terms
732 for (auto &x : m_forcing)
733 {
734 x->Apply(m_fields, inarray, outarray, time);
735 }
736
737 // Calculate High-Order pressure boundary conditions
738 timer.Start();
739 std::map<std::string, NekDouble> params;
740 params["Kinvis"] = m_kinvis;
741 params["Time"] = time + m_timestep;
742 for (size_t i = 0; i < m_strFrameData.size(); ++i)
743 {
744 if (std::fabs(m_movingFrameData[i + 21]) != 0.)
745 {
746 params[m_strFrameData[i]] = m_movingFrameData[i + 21];
747 }
748 }
749 m_extrapolation->EvaluatePressureBCs(inarray, outarray, m_kinvis);
750 m_IncNavierStokesBCs->Update(inarray, outarray, params);
751 timer.Stop();
752 timer.AccumulateRegion("Pressure BCs");
753}
bool m_SmoothAdvection
bool to identify if advection term smoothing is requested
void EvaluateAdvectionTerms(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::IncNavierStokes::EvaluateAdvectionTerms(), Nektar::IncNavierStokes::m_extrapolation, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_forcing, Nektar::IncNavierStokes::m_IncNavierStokesBCs, Nektar::IncNavierStokes::m_kinvis, Nektar::SolverUtils::EquationSystem::m_movingFrameData, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_SmoothAdvection, Nektar::SolverUtils::EquationSystem::m_strFrameData, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by EvaluateAdvection_SetPressureBCs().

◆ v_GenerateSummary()

void Nektar::VelocityCorrectionScheme::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Prints a summary with some information regards the time-stepping.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Reimplemented in Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 528 of file VelocityCorrectionScheme.cpp.

529{
531 SolverUtils::AddSummaryItem(s, "Splitting Scheme",
532 "Velocity correction (strong press. form)");
533
534 if (m_extrapolation->GetSubStepName().size())
535 {
536 SolverUtils::AddSummaryItem(s, "Substepping",
537 m_extrapolation->GetSubStepName());
538 }
539
540 string dealias = m_homogen_dealiasing ? "Homogeneous1D" : "";
542 {
543 dealias += (dealias == "" ? "" : " + ") + string("spectral/hp");
544 }
545 if (dealias != "")
546 {
547 SolverUtils::AddSummaryItem(s, "Dealiasing", dealias);
548 }
549
550 string smoothing = m_useSpecVanVisc ? "spectral/hp" : "";
551 if (smoothing != "")
552 {
554 {
556 s, "Smoothing-SpecHP",
557 "SVV (" + smoothing + " Exp Kernel(cut-off = " +
558 boost::lexical_cast<string>(m_sVVCutoffRatio) +
559 ", diff coeff = " +
560 boost::lexical_cast<string>(m_sVVDiffCoeff) + "))");
561 }
562 else
563 {
565 {
567 s, "Smoothing-SpecHP",
568 "SVV (" + smoothing + " Power Kernel (Power ratio =" +
569 boost::lexical_cast<string>(m_sVVCutoffRatio) +
570 ", diff coeff = " +
571 boost::lexical_cast<string>(m_sVVDiffCoeff) +
572 "*Uh/p))");
573 }
574 else
575 {
577 s, "Smoothing-SpecHP",
578 "SVV (" + smoothing + " DG Kernel (diff coeff = " +
579 boost::lexical_cast<string>(m_sVVDiffCoeff) +
580 "*Uh/p))");
581 }
582 }
583 }
584
586 {
588 s, "Smoothing-Homo1D",
589 "SVV (Homogeneous1D - Exp Kernel(cut-off = " +
590 boost::lexical_cast<string>(m_sVVCutoffRatioHomo1D) +
591 ", diff coeff = " +
592 boost::lexical_cast<string>(m_sVVDiffCoeffHomo1D) + "))");
593 }
594
596 {
598 s, "GJP Stab. Impl. ",
599 m_session->GetSolverInfo("GJPStabilisation"));
600 SolverUtils::AddSummaryItem(s, "GJP Stab. JumpScale", m_GJPJumpScale);
601
602 if (boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
603 "Explicit"))
604 {
606 s, "GJP Normal Velocity",
607 m_session->GetSolverInfo("GJPNormalVelocity"));
608 }
609 }
610}
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
bool m_homogen_dealiasing
Flag to determine if dealiasing is used for homogeneous simulations.
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
bool m_useGJPStabilisation
bool to identify if GJP semi-implicit is active.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, Nektar::IncNavierStokes::m_extrapolation, m_GJPJumpScale, Nektar::SolverUtils::EquationSystem::m_homogen_dealiasing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, m_IsSVVPowerKernel, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing, m_sVVCutoffRatio, m_sVVCutoffRatioHomo1D, m_sVVDiffCoeff, m_sVVDiffCoeffHomo1D, m_svvVarDiffCoeff, m_useGJPStabilisation, m_useHomo1DSpecVanVisc, m_useSpecVanVisc, Nektar::NullNekDouble1DArray, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

Referenced by Nektar::SmoothedProfileMethod::v_GenerateSummary().

◆ v_GetExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetExtrapolateStr ( void  )
inlineprotectedvirtual

Reimplemented in Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 216 of file VelocityCorrectionScheme.h.

217 {
218 return "Standard";
219 }

Referenced by SetUpExtrapolation().

◆ v_GetForceDimension()

int Nektar::VelocityCorrectionScheme::v_GetForceDimension ( void  )
overrideprotectedvirtual

Implements Nektar::IncNavierStokes.

Definition at line 704 of file VelocityCorrectionScheme.cpp.

705{
706 return m_session->GetVariables().size() - 1;
707}

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_GetSubSteppingExtrapolateStr()

virtual std::string Nektar::VelocityCorrectionScheme::v_GetSubSteppingExtrapolateStr ( const std::string &  instr)
inlineprotectedvirtual

Reimplemented in Nektar::VCSWeakPressure.

Definition at line 221 of file VelocityCorrectionScheme.h.

222 {
223 return instr;
224 }

Referenced by SetUpExtrapolation().

◆ v_GetSystemSingularChecks()

Array< OneD, bool > Nektar::VelocityCorrectionScheme::v_GetSystemSingularChecks ( )
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 693 of file VelocityCorrectionScheme.cpp.

694{
695 int vVar = m_session->GetVariables().size();
696 Array<OneD, bool> vChecks(vVar, false);
697 vChecks[vVar - 1] = true;
698 return vChecks;
699}

References Nektar::SolverUtils::EquationSystem::m_session.

◆ v_InitObject()

void Nektar::VelocityCorrectionScheme::v_InitObject ( bool  DeclareFeld = true)
overridevirtual

Initialisation object for EquationSystem.

Continuous field

Setting up the normals

Setting up the normals

Reimplemented from Nektar::IncNavierStokes.

Definition at line 74 of file VelocityCorrectionScheme.cpp.

75{
76 int n;
77
79 m_explicitDiffusion = false;
80
81 // Set m_pressure to point to last field of m_fields;
82 if (boost::iequals(m_session->GetVariable(m_fields.size() - 1), "p"))
83 {
84 m_nConvectiveFields = m_fields.size() - 1;
86 }
87 else
88 {
89 ASSERTL0(false, "Need to set up pressure field definition");
90 }
91
92 // Determine diffusion coefficients for each field
93 m_diffCoeff = Array<OneD, NekDouble>(m_nConvectiveFields, m_kinvis);
94 for (n = 0; n < m_nConvectiveFields; ++n)
95 {
96 std::string varName = m_session->GetVariable(n);
97 if (m_session->DefinesFunction("DiffusionCoefficient", varName))
98 {
100 m_session->GetFunction("DiffusionCoefficient", varName);
101 m_diffCoeff[n] = ffunc->Evaluate();
102 }
103 }
104
105 // Integrate only the convective fields
106 for (n = 0; n < m_nConvectiveFields; ++n)
107 {
108 m_intVariables.push_back(n);
109 }
110
112 SetUpSVV();
113
114 // check to see if it is explicity turned off
115 m_session->MatchSolverInfo("GJPStabilisation", "False",
117
118 // if GJPStabilisation set to False bool will be true and
119 // if not false so negate/revese bool
121
122 m_session->MatchSolverInfo("GJPNormalVelocity", "True", m_useGJPNormalVel,
123 false);
124
126 {
127 ASSERTL0(boost::iequals(m_session->GetSolverInfo("GJPStabilisation"),
128 "Explicit"),
129 "Can only specify GJPNormalVelocity with"
130 " GJPStabilisation set to Explicit currently");
131 }
132
133 m_session->LoadParameter("GJPJumpScale", m_GJPJumpScale, 1.0);
134
135 m_session->MatchSolverInfo("SmoothAdvection", "True", m_SmoothAdvection,
136 false);
137
138 // set explicit time-intregration class operators
141
142 // set implicit time-intregration class operators
145
146 // Set up bits for flowrate.
147 m_session->LoadParameter("Flowrate", m_flowrate, 0.0);
148 m_session->LoadParameter("IO_FlowSteps", m_flowrateSteps, 0);
149}
void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
NekDouble m_flowrate
Desired volumetric flowrate.
void EvaluateAdvection_SetPressureBCs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Array< OneD, NekDouble > m_diffCoeff
Diffusion coefficients (will be kinvis for velocities)

References ASSERTL0, Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), EvaluateAdvection_SetPressureBCs(), m_diffCoeff, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateSteps, m_GJPJumpScale, Nektar::SolverUtils::UnsteadySystem::m_intVariables, Nektar::IncNavierStokes::m_kinvis, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::IncNavierStokes::m_pressure, Nektar::SolverUtils::EquationSystem::m_session, Nektar::IncNavierStokes::m_SmoothAdvection, m_useGJPNormalVel, m_useGJPStabilisation, SetUpExtrapolation(), SetUpSVV(), SolveUnsteadyStokesSystem(), and Nektar::IncNavierStokes::v_InitObject().

Referenced by Nektar::SmoothedProfileMethod::v_InitObject(), and Nektar::VCSMapping::v_InitObject().

◆ v_PostIntegrate()

bool Nektar::VelocityCorrectionScheme::v_PostIntegrate ( int  step)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 504 of file VelocityCorrectionScheme.cpp.

505{
506 if (m_flowrateSteps > 0)
507 {
508 if (m_comm->GetRank() == 0 && (step + 1) % m_flowrateSteps == 0)
509 {
510 m_flowrateStream << setw(8) << step << setw(16) << m_time
511 << setw(16) << m_alpha << endl;
512 }
513 }
514
516}
SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step) override
NekDouble m_alpha
Current flowrate correction.

References m_alpha, Nektar::SolverUtils::EquationSystem::m_comm, m_flowrateSteps, m_flowrateStream, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::AdvectionSystem::v_PostIntegrate().

◆ v_RequireFwdTrans()

bool Nektar::VelocityCorrectionScheme::v_RequireFwdTrans ( void  )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 211 of file VelocityCorrectionScheme.h.

212 {
213 return false;
214 }

◆ v_SetUpPressureForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpPressureForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  fields,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Poisson solver solver

Reimplemented in Nektar::VCSMapping, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 824 of file VelocityCorrectionScheme.cpp.

827{
828 size_t i;
829 size_t physTot = m_fields[0]->GetTotPoints();
830 size_t nvel = m_velocity.size();
831
832 m_fields[0]->PhysDeriv(eX, fields[0], Forcing[0]);
833
834 for (i = 1; i < nvel; ++i)
835 {
836 // Use Forcing[1] as storage since it is not needed for the pressure
837 m_fields[i]->PhysDeriv(DirCartesianMap[i], fields[i], Forcing[1]);
838 Vmath::Vadd(physTot, Forcing[1], 1, Forcing[0], 1, Forcing[0], 1);
839 }
840
841 Vmath::Smul(physTot, 1.0 / aii_Dt, Forcing[0], 1, Forcing[0], 1);
842}
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:87
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eX, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_velocity, Vmath::Smul(), and Vmath::Vadd().

Referenced by SetUpPressureForcing(), and Nektar::VCSMapping::v_SetUpPressureForcing().

◆ v_SetUpViscousForcing()

void Nektar::VelocityCorrectionScheme::v_SetUpViscousForcing ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  Forcing,
const NekDouble  aii_Dt 
)
protectedvirtual

Forcing term for Helmholtz solver

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 847 of file VelocityCorrectionScheme.cpp.

850{
851 NekDouble aii_dtinv = 1.0 / aii_Dt;
852 size_t phystot = m_fields[0]->GetTotPoints();
853
854 // Grad p
855 m_pressure->BwdTrans(m_pressure->GetCoeffs(), m_pressure->UpdatePhys());
856
857 int nvel = m_velocity.size();
858 if (nvel == 2)
859 {
860 m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
861 Forcing[m_velocity[1]]);
862 }
863 else
864 {
865 m_pressure->PhysDeriv(m_pressure->GetPhys(), Forcing[m_velocity[0]],
866 Forcing[m_velocity[1]], Forcing[m_velocity[2]]);
867 }
868
869 // zero convective fields.
870 for (int i = nvel; i < m_nConvectiveFields; ++i)
871 {
872 Vmath::Zero(phystot, Forcing[i], 1);
873 }
874
875 // Subtract inarray/(aii_dt) and divide by kinvis. Kinvis will
876 // need to be updated for the convected fields.
877 for (int i = 0; i < m_nConvectiveFields; ++i)
878 {
879 Blas::Daxpy(phystot, -aii_dtinv, inarray[i], 1, Forcing[i], 1);
880 Blas::Dscal(phystot, 1.0 / m_diffCoeff[i], &(Forcing[i])[0], 1);
881 }
882}
static void Dscal(const int &n, const double &alpha, double *x, const int &incx)
BLAS level 1: x = alpha x.
Definition: Blas.hpp:149
static void Daxpy(const int &n, const double &alpha, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: y = alpha x plus y.
Definition: Blas.hpp:135

References Blas::Daxpy(), Blas::Dscal(), m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::IncNavierStokes::m_nConvectiveFields, Nektar::IncNavierStokes::m_pressure, Nektar::IncNavierStokes::m_velocity, and Vmath::Zero().

Referenced by SetUpViscousForcing().

◆ v_SolvePressure()

void Nektar::VelocityCorrectionScheme::v_SolvePressure ( const Array< OneD, NekDouble > &  Forcing)
protectedvirtual

Solve pressure system

Reimplemented in Nektar::VCSMapping, Nektar::VCSImplicit, and Nektar::VCSWeakPressure.

Definition at line 887 of file VelocityCorrectionScheme.cpp.

889{
891 // Setup coefficient for equation
893
894 // Solver Pressure Poisson Equation
895 m_pressure->HelmSolve(Forcing, m_pressure->UpdateCoeffs(), factors);
896
897 // Add presure to outflow bc if using convective like BCs
898 m_extrapolation->AddPressureToOutflowBCs(m_kinvis);
899}
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:430

References Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, Nektar::IncNavierStokes::m_extrapolation, Nektar::IncNavierStokes::m_kinvis, and Nektar::IncNavierStokes::m_pressure.

Referenced by SolvePressure(), and Nektar::VCSMapping::v_SolvePressure().

◆ v_SolveUnsteadyStokesSystem()

void Nektar::VelocityCorrectionScheme::v_SolveUnsteadyStokesSystem ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const NekDouble  aii_Dt 
)
protectedvirtual

Implicit part of the method - Poisson + nConv*Helmholtz

Reimplemented in Nektar::SmoothedProfileMethod.

Definition at line 758 of file VelocityCorrectionScheme.cpp.

762{
763 // Set up flowrate if we're starting for the first time or the value of
764 // aii_Dt has changed.
765 if (m_flowrate > 0.0 && (aii_Dt != m_flowrateAiidt))
766 {
767 SetupFlowrate(aii_Dt);
768 }
769
770 size_t physTot = m_fields[0]->GetTotPoints();
771
772 // Substep the pressure boundary condition if using substepping
773 m_extrapolation->SubStepSetPressureBCs(inarray, aii_Dt, m_kinvis);
774
775 // Set up forcing term for pressure Poisson equation
776 LibUtilities::Timer timer;
777 timer.Start();
778 SetUpPressureForcing(inarray, m_F, aii_Dt);
779 timer.Stop();
780 timer.AccumulateRegion("Pressure Forcing");
781
782 // Solve Pressure System
783 timer.Start();
784 SolvePressure(m_F[0]);
785 timer.Stop();
786 timer.AccumulateRegion("Pressure Solve");
787
788 // Set up forcing term for Helmholtz problems
789 timer.Start();
790 SetUpViscousForcing(inarray, m_F, aii_Dt);
791 timer.Stop();
792 timer.AccumulateRegion("Viscous Forcing");
793
794 // Solve velocity system
795 timer.Start();
796 SolveViscous(m_F, inarray, outarray, aii_Dt);
797 timer.Stop();
798 timer.AccumulateRegion("Viscous Solve");
799
800 // Apply flowrate correction
801 if (m_flowrate > 0.0 && m_greenFlux != numeric_limits<NekDouble>::max())
802 {
803 NekDouble currentFlux = MeasureFlowrate(outarray);
804 m_alpha = (m_flowrate - currentFlux) / m_greenFlux;
805
806 for (int i = 0; i < m_spacedim; ++i)
807 {
808 Vmath::Svtvp(physTot, m_alpha, m_flowrateStokes[i], 1, outarray[i],
809 1, outarray[i], 1);
810 // Enusre coeff space is updated for next time step
811 m_fields[i]->FwdTransLocalElmt(outarray[i],
812 m_fields[i]->UpdateCoeffs());
813 // Impsoe symmetry of flow on coeff space (good to enfore
814 // periodicity).
815 m_fields[i]->LocalToGlobal();
816 m_fields[i]->GlobalToLocal();
817 }
818 }
819}
void SetUpViscousForcing(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
void SetupFlowrate(NekDouble aii_dt)
Set up the Stokes solution used to impose constant flowrate through a boundary.
void SetUpPressureForcing(const Array< OneD, const Array< OneD, NekDouble > > &fields, Array< OneD, Array< OneD, NekDouble > > &Forcing, const NekDouble aii_Dt)
void SolveViscous(const Array< OneD, const Array< OneD, NekDouble > > &Forcing, const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble aii_Dt)
void SolvePressure(const Array< OneD, NekDouble > &Forcing)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396

References Nektar::LibUtilities::Timer::AccumulateRegion(), m_alpha, Nektar::IncNavierStokes::m_extrapolation, m_F, Nektar::SolverUtils::EquationSystem::m_fields, m_flowrate, m_flowrateAiidt, m_flowrateStokes, m_greenFlux, Nektar::IncNavierStokes::m_kinvis, Nektar::SolverUtils::EquationSystem::m_spacedim, MeasureFlowrate(), SetupFlowrate(), SetUpPressureForcing(), SetUpViscousForcing(), SolvePressure(), SolveViscous(), Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), and Vmath::Svtvp().

Referenced by SolveUnsteadyStokesSystem(), and Nektar::SmoothedProfileMethod::v_SolveUnsteadyStokesSystem().

◆ v_SolveViscous()

void Nektar::VelocityCorrectionScheme::v_SolveViscous ( const Array< OneD, const Array< OneD, NekDouble > > &  Forcing,
const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  aii_Dt 
)
protectedvirtual

Solve velocity system

Reimplemented in Nektar::VCSMapping, and Nektar::VCSImplicit.

Definition at line 904 of file VelocityCorrectionScheme.cpp.

908{
912
913 AppendSVVFactors(factors, varFactorsMap);
914 ComputeGJPNormalVelocity(inarray, varCoeffMap);
915
916 // Solve Helmholtz system and put in Physical space
917 for (int i = 0; i < m_nConvectiveFields; ++i)
918 {
919 // Add diffusion coefficient to GJP matrix operator (Implicit part)
921 {
923 }
924
925 // Setup coefficients for equation
926 factors[StdRegions::eFactorLambda] = 1.0 / aii_Dt / m_diffCoeff[i];
927 m_fields[i]->HelmSolve(Forcing[i], m_fields[i]->UpdateCoeffs(), factors,
928 varCoeffMap, varFactorsMap);
929 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(), outarray[i]);
930 }
931}
void AppendSVVFactors(StdRegions::ConstFactorMap &factors, MultiRegions::VarFactorsMap &varFactorsMap)
void ComputeGJPNormalVelocity(const Array< OneD, const Array< OneD, NekDouble > > &inarray, StdRegions::VarCoeffMap &varcoeffs)
static VarFactorsMap NullVarFactorsMap
std::map< StdRegions::ConstFactorType, Array< OneD, NekDouble > > VarFactorsMap
std::map< StdRegions::VarCoeffType, VarCoeffEntry > VarCoeffMap
Definition: StdRegions.hpp:375

References AppendSVVFactors(), ComputeGJPNormalVelocity(), Nektar::StdRegions::eFactorGJP, Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, m_diffCoeff, Nektar::SolverUtils::EquationSystem::m_fields, m_GJPJumpScale, Nektar::IncNavierStokes::m_nConvectiveFields, m_useGJPStabilisation, Nektar::StdRegions::NullVarCoeffMap, and Nektar::MultiRegions::NullVarFactorsMap.

Referenced by SolveViscous(), and Nektar::VCSMapping::v_SolveViscous().

◆ v_TransCoeffToPhys()

void Nektar::VelocityCorrectionScheme::v_TransCoeffToPhys ( void  )
overrideprotectedvirtual

Virtual function for transformation to physical space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 664 of file VelocityCorrectionScheme.cpp.

665{
666 size_t nfields = m_fields.size() - 1;
667 for (size_t k = 0; k < nfields; ++k)
668 {
669 // Backward Transformation in physical space for time evolution
670 m_fields[k]->BwdTrans(m_fields[k]->GetCoeffs(),
671 m_fields[k]->UpdatePhys());
672 }
673}

References Nektar::SolverUtils::EquationSystem::m_fields.

◆ v_TransPhysToCoeff()

void Nektar::VelocityCorrectionScheme::v_TransPhysToCoeff ( void  )
overrideprotectedvirtual

Virtual function for transformation to coefficient space.

Reimplemented from Nektar::IncNavierStokes.

Definition at line 678 of file VelocityCorrectionScheme.cpp.

679{
680
681 size_t nfields = m_fields.size() - 1;
682 for (size_t k = 0; k < nfields; ++k)
683 {
684 // Forward Transformation in physical space for time evolution
685 m_fields[k]->FwdTransLocalElmt(m_fields[k]->GetPhys(),
686 m_fields[k]->UpdateCoeffs());
687 }
688}

References Nektar::SolverUtils::EquationSystem::m_fields.

Member Data Documentation

◆ className

string Nektar::VelocityCorrectionScheme::className
static
Initial value:
=
"VelocityCorrectionScheme", VelocityCorrectionScheme::create)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 58 of file VelocityCorrectionScheme.h.

◆ m_alpha

NekDouble Nektar::VelocityCorrectionScheme::m_alpha
protected

Current flowrate correction.

Definition at line 150 of file VelocityCorrectionScheme.h.

Referenced by v_PostIntegrate(), and v_SolveUnsteadyStokesSystem().

◆ m_diffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_diffCoeff
protected

◆ m_F

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_F
protected

◆ m_flowrate

NekDouble Nektar::VelocityCorrectionScheme::m_flowrate
protected

Desired volumetric flowrate.

Definition at line 142 of file VelocityCorrectionScheme.h.

Referenced by v_InitObject(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateAiidt

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateAiidt
protected

Value of aii_dt used to compute Stokes flowrate solution.

Definition at line 164 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_DoInitialise(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateArea

NekDouble Nektar::VelocityCorrectionScheme::m_flowrateArea
protected

Area of the boundary through which we are measuring the flowrate.

Definition at line 144 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBnd

MultiRegions::ExpListSharedPtr Nektar::VelocityCorrectionScheme::m_flowrateBnd
protected

Flowrate reference surface.

Definition at line 156 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateBndID

int Nektar::VelocityCorrectionScheme::m_flowrateBndID
protected

Boundary ID of the flowrate reference surface.

Definition at line 152 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_flowrateSteps

int Nektar::VelocityCorrectionScheme::m_flowrateSteps
protected

Interval at which to record flowrate data.

Definition at line 162 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), v_InitObject(), and v_PostIntegrate().

◆ m_flowrateStokes

Array<OneD, Array<OneD, NekDouble> > Nektar::VelocityCorrectionScheme::m_flowrateStokes
protected

Stokes solution used to impose flowrate.

Definition at line 158 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ m_flowrateStream

std::ofstream Nektar::VelocityCorrectionScheme::m_flowrateStream
protected

Output stream to record flowrate.

Definition at line 160 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_PostIntegrate().

◆ m_GJPJumpScale

NekDouble Nektar::VelocityCorrectionScheme::m_GJPJumpScale
protected

◆ m_greenFlux

NekDouble Nektar::VelocityCorrectionScheme::m_greenFlux
protected

Flux of the Stokes function solution.

Definition at line 148 of file VelocityCorrectionScheme.h.

Referenced by SetupFlowrate(), and v_SolveUnsteadyStokesSystem().

◆ m_homd1DFlowinPlane

bool Nektar::VelocityCorrectionScheme::m_homd1DFlowinPlane
protected

Definition at line 146 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_IsSVVPowerKernel

bool Nektar::VelocityCorrectionScheme::m_IsSVVPowerKernel
protected

Identifier for Power Kernel otherwise DG kernel.

Definition at line 133 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_planeID

int Nektar::VelocityCorrectionScheme::m_planeID
protected

Plane ID for cases with homogeneous expansion.

Definition at line 154 of file VelocityCorrectionScheme.h.

Referenced by MeasureFlowrate(), and SetupFlowrate().

◆ m_sVVCutoffRatio

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatio
protected

◆ m_sVVCutoffRatioHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVCutoffRatioHomo1D
protected

◆ m_sVVDiffCoeff

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeff
protected

◆ m_sVVDiffCoeffHomo1D

NekDouble Nektar::VelocityCorrectionScheme::m_sVVDiffCoeffHomo1D
protected

Diffusion coefficient of SVV modes in homogeneous 1D Direction.

Definition at line 129 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_svvVarDiffCoeff

Array<OneD, NekDouble> Nektar::VelocityCorrectionScheme::m_svvVarDiffCoeff
protected

Array of coefficient if power kernel is used in SVV.

Definition at line 131 of file VelocityCorrectionScheme.h.

Referenced by AppendSVVFactors(), SetUpSVV(), v_GenerateSummary(), and Nektar::VCSImplicit::v_GenerateSummary().

◆ m_useGJPNormalVel

bool Nektar::VelocityCorrectionScheme::m_useGJPNormalVel
protected

bool to identify if GJP normal Velocity should be applied in explicit approach

Definition at line 120 of file VelocityCorrectionScheme.h.

Referenced by ComputeGJPNormalVelocity(), and v_InitObject().

◆ m_useGJPStabilisation

bool Nektar::VelocityCorrectionScheme::m_useGJPStabilisation
protected

◆ m_useHomo1DSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useHomo1DSpecVanVisc
protected

bool to identify if spectral vanishing viscosity is active.

Definition at line 113 of file VelocityCorrectionScheme.h.

Referenced by SetUpSVV(), v_GenerateSummary(), Nektar::VCSImplicit::v_GenerateSummary(), and Nektar::VCSWeakPressure::v_GenerateSummary().

◆ m_useSpecVanVisc

bool Nektar::VelocityCorrectionScheme::m_useSpecVanVisc
protected

◆ m_varCoeffLap

StdRegions::VarCoeffMap Nektar::VelocityCorrectionScheme::m_varCoeffLap
protected

Variable Coefficient map for the Laplacian which can be activated as part of SVV or otherwise.

Definition at line 139 of file VelocityCorrectionScheme.h.

◆ solverTypeLookupId

string Nektar::VelocityCorrectionScheme::solverTypeLookupId
staticprotected
Initial value:
=
"SolverType", "VelocityCorrectionScheme", eVelocityCorrectionScheme)
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.
@ eVelocityCorrectionScheme

Definition at line 166 of file VelocityCorrectionScheme.h.