Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | Friends | List of all members
Nektar::Bidomain Class Reference

A model for cardiac conduction. More...

#include <Bidomain.h>

Inheritance diagram for Nektar::Bidomain:
[legend]

Public Member Functions

 ~Bidomain () override
 Desctructor. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::ALEHelper
virtual ~ALEHelper ()=default
 
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
SOLVER_UTILS_EXPORT void InitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity (const NekDouble &time)
 
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass (Array< OneD, Array< OneD, NekDouble > > &fields)
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass (Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
 Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e.g. checkpoint output and L^2 error calculation. More...
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void MoveMesh (const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocity ()
 
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace ()
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

 Bidomain (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Constructor. More...
 
void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
void DoImplicitSolve (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
 Solve for the diffusion term. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Computes the reaction terms \(f(u,v)\) and \(g(u,v)\). More...
 
void v_SetInitialConditions (NekDouble initialtime, bool dumpInitialConditions, const int domain) override
 Sets a custom initial condition. More...
 
void v_GenerateSummary (SummaryList &s) override
 Prints a summary of the model parameters. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Private Attributes

CellModelSharedPtr m_cell
 Cell model. More...
 
NekDouble m_chi
 
NekDouble m_capMembrane
 
NekDouble m_sigmaix
 
NekDouble m_sigmaiy
 
NekDouble m_sigmaiz
 
NekDouble m_sigmaex
 
NekDouble m_sigmaey
 
NekDouble m_sigmaez
 
StdRegions::VarCoeffMap m_vardiffi
 
StdRegions::VarCoeffMap m_vardiffie
 
Array< OneD, Array< OneD, NekDouble > > tmp1
 
Array< OneD, Array< OneD, NekDouble > > tmp2
 
Array< OneD, Array< OneD, NekDouble > > tmp3
 
NekDouble m_stimDuration
 Stimulus current. More...
 

Friends

class MemoryManager< Bidomain >
 

Additional Inherited Members

- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z, U, V, W, Omega_x, Omega_y, Omega_z, A_x, A_y, A_z, DOmega_x, DOmega_y, DOmega_z, pivot_x, pivot_y, pivot_z. More...
 
std::vector< std::string > m_strFrameData
 variable name in m_movingFrameData More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Protected Attributes inherited from Nektar::SolverUtils::ALEHelper
Array< OneD, MultiRegions::ExpListSharedPtrm_fieldsALE
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
 
std::vector< ALEBaseShPtrm_ALEs
 
bool m_ALESolver = false
 
bool m_ImplicitALESolver = false
 
NekDouble m_prevStageTime = 0.0
 
int m_spaceDim
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

A model for cardiac conduction.

Base model of cardiac electrophysiology of the form

\begin{align*} \frac{\partial u}{\partial t} = \nabla^2 u + J_{ion}, \end{align*}

where the reaction term, \(J_{ion}\) is defined by a specific cell model.

This implementation, at present, treats the reaction terms explicitly and the diffusive element implicitly.

Definition at line 47 of file Bidomain.h.

Constructor & Destructor Documentation

◆ ~Bidomain()

Nektar::Bidomain::~Bidomain ( )
override

Desctructor.

Definition at line 166 of file Bidomain.cpp.

167{
168}

◆ Bidomain()

Nektar::Bidomain::Bidomain ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Constructor.

Definition at line 68 of file Bidomain.cpp.

70 : UnsteadySystem(pSession, pGraph)
71{
72}
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

Member Function Documentation

◆ create()

static EquationSystemSharedPtr Nektar::Bidomain::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 53 of file Bidomain.h.

56 {
59 p->InitObject();
60 return p;
61 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ DoImplicitSolve()

void Nektar::Bidomain::DoImplicitSolve ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
NekDouble  time,
NekDouble  lambda 
)
protected

Solve for the diffusion term.

Parameters
inarrayInput array.
outarrayOutput array.
timeCurrent simulation time.
lambdaTimestep.

Definition at line 176 of file Bidomain.cpp.

180{
181 int nvariables = inarray.size();
182 int nq = m_fields[0]->GetNpoints();
183
184 Array<OneD, NekDouble> grad0(nq), grad1(nq), grad2(nq), grad(nq);
185 Array<OneD, NekDouble> ggrad0(nq), ggrad1(nq), ggrad2(nq), ggrad(nq),
186 temp(nq);
187
188 // We solve ( \sigma\nabla^2 - HHlambda ) Y[i] = rhs [i]
189 // inarray = input: \hat{rhs} -> output: \hat{Y}
190 // outarray = output: nabla^2 \hat{Y}
191 // where \hat = modal coeffs
192 for (int i = 0; i < nvariables; ++i)
193 {
194 // Only apply diffusion to first variable.
195 if (i > 1)
196 {
197 Vmath::Vcopy(nq, &inarray[i][0], 1, &outarray[i][0], 1);
198 continue;
199 }
200 if (i == 0)
201 {
204 (1.0 / lambda) * (m_capMembrane * m_chi);
205 if (m_spacedim == 1)
206 {
207 // Take first partial derivative
208 m_fields[i]->PhysDeriv(inarray[1], ggrad0);
209 // Take second partial derivative
210 m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
211 // Multiply by Intracellular-Conductivity
212 if (m_session->DefinesFunction("IntracellularConductivity") &&
213 m_session->DefinesFunction("ExtracellularConductivity"))
214 {
215 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
216 1, ggrad0, 1);
217 }
218 // Add partial derivatives together
219 Vmath::Vcopy(nq, ggrad0, 1, ggrad, 1);
220 Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
221 // Multiply 1.0/timestep/lambda
223 1, temp, 1);
224 Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
225 1);
226 // Solve a system of equations with Helmholtz solver and
227 // transform back into physical space.
228 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
229 m_fields[i]->UpdateCoeffs(), factors);
230 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
231 m_fields[i]->UpdatePhys());
232 m_fields[i]->SetPhysState(true);
233 // Copy the solution vector (required as m_fields must be set).
234 outarray[i] = m_fields[i]->GetPhys();
235 }
236
237 if (m_spacedim == 2)
238 {
239 // Take first partial derivative
240 m_fields[i]->PhysDeriv(inarray[1], ggrad0, ggrad1);
241 // Take second partial derivative
242 m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
243 m_fields[i]->PhysDeriv(1, ggrad1, ggrad1);
244 // Multiply by Intracellular-Conductivity
245 if (m_session->DefinesFunction("IntracellularConductivity") &&
246 m_session->DefinesFunction("ExtracellularConductivity"))
247 {
248 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
249 1, ggrad0, 1);
250 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1,
251 1, ggrad1, 1);
252 }
253 // Add partial derivatives together
254 Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
255 Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
256 // Multiply 1.0/timestep/lambda
258 1, temp, 1);
259 Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
260 1);
261 // Solve a system of equations with Helmholtz solver and
262 // transform back into physical space.
263 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
264 m_fields[i]->UpdateCoeffs(), factors,
265 m_vardiffi);
266 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
267 m_fields[i]->UpdatePhys());
268 m_fields[i]->SetPhysState(true);
269 // Copy the solution vector (required as m_fields must be set).
270 outarray[i] = m_fields[i]->GetPhys();
271 }
272
273 if (m_spacedim == 3)
274 {
275 // Take first partial derivative
276 m_fields[i]->PhysDeriv(inarray[1], ggrad0, ggrad1, ggrad2);
277 // Take second partial derivative
278 m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
279 m_fields[i]->PhysDeriv(1, ggrad1, ggrad1);
280 m_fields[i]->PhysDeriv(2, ggrad2, ggrad2);
281 // Multiply by Intracellular-Conductivity
282 if (m_session->DefinesFunction("IntracellularConductivity") &&
283 m_session->DefinesFunction("ExtracellularConductivity"))
284 {
285 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
286 1, ggrad0, 1);
287 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1,
288 1, ggrad1, 1);
289 Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), ggrad2,
290 1, ggrad2, 1);
291 }
292 // Add partial derivatives together
293 Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
294 Vmath::Vadd(nq, ggrad2, 1, ggrad, 1, ggrad, 1);
295 Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
296 // Multiply 1.0/timestep/lambda
298 1, temp, 1);
299 Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
300 1);
301 // Solve a system of equations with Helmholtz solver and
302 // transform back into physical space.
303 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
304 m_fields[i]->UpdateCoeffs(), factors,
305 m_vardiffi);
306 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
307 m_fields[i]->UpdatePhys());
308 m_fields[i]->SetPhysState(true);
309 // Copy the solution vector (required as m_fields must be set).
310 outarray[i] = m_fields[i]->GetPhys();
311 }
312 }
313 if (i == 1)
314 {
317 if (m_spacedim == 1)
318 {
319 // Take first partial derivative
320 m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0);
321 // Take second derivative
322 m_fields[i]->PhysDeriv(0, grad0, grad0);
323 // Multiply by Intracellular-Conductivity
324 if (m_session->DefinesFunction("IntracellularConductivity") &&
325 m_session->DefinesFunction("ExtracellularConductivity"))
326 {
327 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
328 1, grad0, 1);
329 }
330 // and sum terms
331 Vmath::Vcopy(nq, grad0, 1, grad, 1);
332 Vmath::Smul(nq,
333 (-1.0 * m_session->GetParameter("sigmaix")) /
334 (m_session->GetParameter("sigmaix") +
335 m_session->GetParameter("sigmaix")),
336 grad, 1, grad, 1);
337 // Now solve Poisson problem for \phi_e
338 m_fields[i]->SetPhys(grad);
339 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
340 m_fields[i]->UpdateCoeffs(), factors);
341 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
342 m_fields[i]->UpdatePhys());
343 m_fields[i]->SetPhysState(true);
344 // Copy the solution vector (required as m_fields must be set).
345 outarray[i] = m_fields[i]->GetPhys();
346 }
347
348 if (m_spacedim == 2)
349 {
350 // Take first partial derivative
351 m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0, grad1);
352 // Take second derivative
353 m_fields[i]->PhysDeriv(0, grad0, grad0);
354 m_fields[i]->PhysDeriv(1, grad1, grad1);
355 // Multiply by Intracellular-Conductivity
356 if (m_session->DefinesFunction("IntracellularConductivity") &&
357 m_session->DefinesFunction("ExtracellularConductivity"))
358 {
359 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
360 1, grad0, 1);
361 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1,
362 1, grad1, 1);
363 }
364 // and sum terms
365 Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
366 Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
367 // Now solve Poisson problem for \phi_e
368 m_fields[i]->SetPhys(grad);
369 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
370 m_fields[i]->UpdateCoeffs(), factors,
372 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
373 m_fields[i]->UpdatePhys());
374 m_fields[i]->SetPhysState(true);
375 // Copy the solution vector (required as m_fields must be set).
376 outarray[i] = m_fields[i]->GetPhys();
377 }
378
379 if (m_spacedim == 3)
380 {
381 // Take first partial derivative
382 m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0, grad1,
383 grad2);
384 // Take second derivative
385 m_fields[i]->PhysDeriv(0, grad0, grad0);
386 m_fields[i]->PhysDeriv(1, grad1, grad1);
387 m_fields[i]->PhysDeriv(2, grad2, grad2);
388 // Multiply by Intracellular-Conductivity
389 if (m_session->DefinesFunction("IntracellularConductivity") &&
390 m_session->DefinesFunction("ExtracellularConductivity"))
391 {
392 Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
393 1, grad0, 1);
394 Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1,
395 1, grad1, 1);
396 Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), grad2,
397 1, grad2, 1);
398 }
399 // and sum terms
400 Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
401 Vmath::Vadd(nq, grad2, 1, grad, 1, grad, 1);
402 Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
403 // Now solve Poisson problem for \phi_e
404 m_fields[i]->SetPhys(grad);
405 m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
406 m_fields[i]->UpdateCoeffs(), factors,
408 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
409 m_fields[i]->UpdatePhys());
410 m_fields[i]->SetPhysState(true);
411 // Copy the solution vector (required as m_fields must be set).
412 outarray[i] = m_fields[i]->GetPhys();
413 }
414 }
415 }
416}
NekDouble m_chi
Definition: Bidomain.h:99
StdRegions::VarCoeffMap m_vardiffi
Definition: Bidomain.h:102
NekDouble m_capMembrane
Definition: Bidomain.h:99
StdRegions::VarCoeffMap m_vardiffie
Definition: Bidomain.h:103
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:430
StdRegions::ConstFactorMap factors
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References Nektar::StdRegions::eFactorLambda, Nektar::VarcoeffHashingTest::factors, m_capMembrane, m_chi, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_vardiffi, m_vardiffie, Vmath::Smul(), Vmath::Vadd(), and Vmath::Vcopy().

Referenced by v_InitObject().

◆ DoOdeRhs()

void Nektar::Bidomain::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Computes the reaction terms \(f(u,v)\) and \(g(u,v)\).

Definition at line 418 of file Bidomain.cpp.

421{
422 int nq = m_fields[0]->GetNpoints();
423 m_cell->TimeIntegrate(inarray, outarray, time);
424 if (m_stimDuration > 0 && time < m_stimDuration)
425 {
426 Array<OneD, NekDouble> x0(nq);
427 Array<OneD, NekDouble> x1(nq);
428 Array<OneD, NekDouble> x2(nq);
429 Array<OneD, NekDouble> result(nq);
430
431 // get the coordinates
432 m_fields[0]->GetCoords(x0, x1, x2);
433
435 m_session->GetFunction("Stimulus", "u");
436 ifunc->Evaluate(x0, x1, x2, time, result);
437
438 Vmath::Vadd(nq, outarray[0], 1, result, 1, outarray[0], 1);
439 }
440 Vmath::Smul(nq, 1.0 / m_capMembrane, outarray[0], 1, outarray[0], 1);
441}
CellModelSharedPtr m_cell
Cell model.
Definition: Bidomain.h:97
NekDouble m_stimDuration
Stimulus current.
Definition: Bidomain.h:110
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:125

References m_capMembrane, m_cell, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, m_stimDuration, Vmath::Smul(), and Vmath::Vadd().

Referenced by v_InitObject().

◆ v_GenerateSummary()

void Nektar::Bidomain::v_GenerateSummary ( SummaryList s)
overrideprotectedvirtual

Prints a summary of the model parameters.

@TODO Update summary

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 455 of file Bidomain.cpp.

456{
458
459 /// @TODO Update summary
460 ASSERTL0(false, "Update the generate summary");
461 //
462 // out << "\tChi : " << m_chi << endl;
463 // out << "\tCm : " << m_capMembrane << endl;
464 // if (m_session->DefinesFunction("IntracellularConductivity",
465 // "AnisotropicConductivityX") &&
466 // m_session->GetFunctionType("IntracellularConductivity",
467 // "AnisotropicConductivityX") ==
468 // LibUtilities::eFunctionTypeExpression)
469 // {
470 // out << "\tIntra-Diffusivity-x : "
471 // << m_session->GetFunction("IntracellularConductivity",
472 // "AnisotropicConductivityX")->GetExpression()
473 // << endl;
474 // }
475 // if (m_session->DefinesFunction("IntracellularConductivity",
476 // "AnisotropicConductivityY") &&
477 // m_session->GetFunctionType("IntracellularConductivity",
478 // "AnisotropicConductivityY") ==
479 // LibUtilities::eFunctionTypeExpression)
480 // {
481 // out << "\tIntra-Diffusivity-y : "
482 // << m_session->GetFunction("IntracellularConductivity",
483 // "AnisotropicConductivityY")->GetExpression()
484 // << endl;
485 // }
486 // if (m_session->DefinesFunction("IntracellularConductivity",
487 // "AnisotropicConductivityZ") &&
488 // m_session->GetFunctionType("IntracellularConductivity",
489 // "AnisotropicConductivityZ") ==
490 // LibUtilities::eFunctionTypeExpression)
491 // {
492 // out << "\tIntra-Diffusivity-z : "
493 // << m_session->GetFunction("IntracellularConductivity",
494 // "AnisotropicConductivityZ")->GetExpression()
495 // << endl;
496 // }
497 // if (m_session->DefinesFunction("ExtracellularConductivity",
498 // "AnisotropicConductivityX") &&
499 // m_session->GetFunctionType("ExtracellularConductivity",
500 // "AnisotropicConductivityX") ==
501 // LibUtilities::eFunctionTypeExpression)
502 // {
503 // out << "\tExtra-Diffusivity-x : "
504 // << m_session->GetFunction("ExtracellularConductivity",
505 // "AnisotropicConductivityX")->GetExpression()
506 // << endl;
507 // }
508 // if (m_session->DefinesFunction("ExtracellularConductivity",
509 // "AnisotropicConductivityY") &&
510 // m_session->GetFunctionType("ExtracellularConductivity",
511 // "AnisotropicConductivityY") ==
512 // LibUtilities::eFunctionTypeExpression)
513 // {
514 // out << "\tExtra-Diffusivity-y : "
515 // << m_session->GetFunction("ExtracellularConductivity",
516 // "AnisotropicConductivityY")->GetExpression()
517 // << endl;
518 // }
519 // if (m_session->DefinesFunction("ExtracellularConductivity",
520 // "AnisotropicConductivityZ") &&
521 // m_session->GetFunctionType("ExtracellularConductivity",
522 // "AnisotropicConductivityZ") ==
523 // LibUtilities::eFunctionTypeExpression)
524 // {
525 // out << "\tExtra-Diffusivity-z : "
526 // << m_session->GetFunction("ExtracellularConductivity",
527 // "AnisotropicConductivityZ")->GetExpression()
528 // << endl;
529 // }
530 m_cell->GenerateSummary(s);
531}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.

References ASSERTL0, m_cell, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

◆ v_InitObject()

void Nektar::Bidomain::v_InitObject ( bool  DeclareField = true)
overrideprotectedvirtual

Init object for UnsteadySystem class.

Initialization object for UnsteadySystem class.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 74 of file Bidomain.cpp.

75{
76 UnsteadySystem::v_InitObject(DeclareField);
77 m_session->LoadParameter("Chi", m_chi);
78 m_session->LoadParameter("Cm", m_capMembrane);
79
80 std::string vCellModel;
81 m_session->LoadSolverInfo("CELLMODEL", vCellModel, "");
82
83 ASSERTL0(vCellModel != "", "Cell Model not specified.");
84
86 m_fields[0]);
87 m_intVariables.push_back(0);
88 m_intVariables.push_back(1);
89
90 // Load variable coefficients
94 std::string varName[3] = {"AnisotropicConductivityX",
95 "AnisotropicConductivityY",
96 "AnisotropicConductivityZ"};
97
98 if (m_session->DefinesFunction("IntracellularConductivity") &&
99 m_session->DefinesFunction("ExtracellularConductivity"))
100 {
101 for (int i = 0; i < m_spacedim; ++i)
102 {
103 int nq = m_fields[0]->GetNpoints();
104 Array<OneD, NekDouble> x0(nq);
105 Array<OneD, NekDouble> x1(nq);
106 Array<OneD, NekDouble> x2(nq);
107
108 // get the coordinates
109 m_fields[0]->GetCoords(x0, x1, x2);
110 tmp1 = Array<OneD, const Array<OneD, NekDouble>>(nq);
111 tmp2 = Array<OneD, const Array<OneD, NekDouble>>(nq);
112 tmp3 = Array<OneD, const Array<OneD, NekDouble>>(nq);
113 tmp1[i] = Array<OneD, NekDouble>(nq);
114 tmp2[i] = Array<OneD, NekDouble>(nq);
115 tmp3[i] = Array<OneD, NekDouble>(nq);
116
118 m_session->GetFunction("IntracellularConductivity", varName[i]);
120 m_session->GetFunction("ExtracellularConductivity", varName[i]);
121 for (int j = 0; j < nq; j++)
122 {
123 tmp1[i][j] = ifunc1->Evaluate(x0[j], x1[j], x2[j], 0.0);
124 tmp2[i][j] = ifunc2->Evaluate(x0[j], x1[j], x2[j], 0.0);
125 }
126 Vmath::Vadd(nq, tmp1[i], 1, tmp2[i], 1, tmp3[i], 1);
127 m_vardiffi[varCoeffEnum[i]] = tmp1[i];
128 m_vardiffie[varCoeffEnum[i]] = tmp3[i];
129 }
130 }
131
132 if (m_session->DefinesParameter("StimulusDuration"))
133 {
134 ASSERTL0(m_session->DefinesFunction("Stimulus", "u"),
135 "Stimulus function not defined.");
136 m_session->LoadParameter("StimulusDuration", m_stimDuration);
137 }
138 else
139 {
140 m_stimDuration = 0;
141 }
142
143 // Search through the loaded filters and pass the cell model to any
144 // CheckpointCellModel filters loaded.
145 for (auto &x : m_filters)
146 {
147 if (x.first == "CheckpointCellModel")
148 {
149 std::shared_ptr<FilterCheckpointCellModel> c =
150 std::dynamic_pointer_cast<FilterCheckpointCellModel>(x.second);
151 c->SetCellModel(m_cell);
152 }
153 }
154
156 {
158 }
161}
Array< OneD, Array< OneD, NekDouble > > tmp3
Definition: Bidomain.h:107
Array< OneD, Array< OneD, NekDouble > > tmp2
Definition: Bidomain.h:106
Array< OneD, Array< OneD, NekDouble > > tmp1
Definition: Bidomain.h:105
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Computes the reaction terms and .
Definition: Bidomain.cpp:418
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Solve for the diffusion term.
Definition: Bidomain.cpp:176
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
SOLVER_UTILS_EXPORT void DoDummyProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Perform dummy projection.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
CellModelFactory & GetCellModelFactory()
Definition: CellModel.cpp:46

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), Nektar::SolverUtils::UnsteadySystem::DoDummyProjection(), DoImplicitSolve(), DoOdeRhs(), Nektar::StdRegions::eVarCoeffD00, Nektar::StdRegions::eVarCoeffD11, Nektar::StdRegions::eVarCoeffD22, Nektar::GetCellModelFactory(), m_capMembrane, m_cell, m_chi, Nektar::SolverUtils::UnsteadySystem::m_explicitDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_filters, Nektar::SolverUtils::UnsteadySystem::m_intVariables, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_stimDuration, m_vardiffi, m_vardiffie, tmp1, tmp2, tmp3, Nektar::SolverUtils::UnsteadySystem::v_InitObject(), and Vmath::Vadd().

◆ v_SetInitialConditions()

void Nektar::Bidomain::v_SetInitialConditions ( NekDouble  initialtime,
bool  dumpInitialConditions,
const int  domain 
)
overrideprotectedvirtual

Sets a custom initial condition.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 443 of file Bidomain.cpp.

446{
447 EquationSystem::v_SetInitialConditions(initialtime, dumpInitialConditions,
448 domain);
449 m_cell->Initialise();
450}
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)

References m_cell, and Nektar::SolverUtils::EquationSystem::v_SetInitialConditions().

Friends And Related Function Documentation

◆ MemoryManager< Bidomain >

friend class MemoryManager< Bidomain >
friend

Definition at line 1 of file Bidomain.h.

Member Data Documentation

◆ className

string Nektar::Bidomain::className
static
Initial value:
"Bidomain", Bidomain::create,
"Bidomain model of cardiac electrophysiology with 3D diffusion.")
static EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
Definition: Bidomain.h:53
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Registers the class with the Factory.

Definition at line 64 of file Bidomain.h.

◆ m_capMembrane

NekDouble Nektar::Bidomain::m_capMembrane
private

Definition at line 99 of file Bidomain.h.

Referenced by DoImplicitSolve(), DoOdeRhs(), and v_InitObject().

◆ m_cell

CellModelSharedPtr Nektar::Bidomain::m_cell
private

Cell model.

Definition at line 97 of file Bidomain.h.

Referenced by DoOdeRhs(), v_GenerateSummary(), v_InitObject(), and v_SetInitialConditions().

◆ m_chi

NekDouble Nektar::Bidomain::m_chi
private

Definition at line 99 of file Bidomain.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_sigmaex

NekDouble Nektar::Bidomain::m_sigmaex
private

Definition at line 99 of file Bidomain.h.

◆ m_sigmaey

NekDouble Nektar::Bidomain::m_sigmaey
private

Definition at line 100 of file Bidomain.h.

◆ m_sigmaez

NekDouble Nektar::Bidomain::m_sigmaez
private

Definition at line 100 of file Bidomain.h.

◆ m_sigmaix

NekDouble Nektar::Bidomain::m_sigmaix
private

Definition at line 99 of file Bidomain.h.

◆ m_sigmaiy

NekDouble Nektar::Bidomain::m_sigmaiy
private

Definition at line 99 of file Bidomain.h.

◆ m_sigmaiz

NekDouble Nektar::Bidomain::m_sigmaiz
private

Definition at line 99 of file Bidomain.h.

◆ m_stimDuration

NekDouble Nektar::Bidomain::m_stimDuration
private

Stimulus current.

Definition at line 110 of file Bidomain.h.

Referenced by DoOdeRhs(), and v_InitObject().

◆ m_vardiffi

StdRegions::VarCoeffMap Nektar::Bidomain::m_vardiffi
private

Definition at line 102 of file Bidomain.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ m_vardiffie

StdRegions::VarCoeffMap Nektar::Bidomain::m_vardiffie
private

Definition at line 103 of file Bidomain.h.

Referenced by DoImplicitSolve(), and v_InitObject().

◆ tmp1

Array<OneD, Array<OneD, NekDouble> > Nektar::Bidomain::tmp1
private

Definition at line 105 of file Bidomain.h.

Referenced by v_InitObject().

◆ tmp2

Array<OneD, Array<OneD, NekDouble> > Nektar::Bidomain::tmp2
private

Definition at line 106 of file Bidomain.h.

Referenced by v_InitObject().

◆ tmp3

Array<OneD, Array<OneD, NekDouble> > Nektar::Bidomain::tmp3
private

Definition at line 107 of file Bidomain.h.

Referenced by v_InitObject().