Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Friends | List of all members
Nektar::CompressibleFlowSystem Class Referenceabstract

#include <CompressibleFlowSystem.h>

Inheritance diagram for Nektar::CompressibleFlowSystem:
[legend]

Public Member Functions

 ~CompressibleFlowSystem () override=default
 
NekDouble GetStabilityLimit (int n)
 Function to calculate the stability limit for DG/CG. More...
 
Array< OneD, NekDoubleGetStabilityLimitVector (const Array< OneD, int > &ExpOrder)
 Function to calculate the stability limit for DG/CG (a vector of them). More...
 
- Public Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT AdvectionSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
SOLVER_UTILS_EXPORT ~AdvectionSystem () override
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Initialisation object for EquationSystem. More...
 
SOLVER_UTILS_EXPORT AdvectionSharedPtr GetAdvObject ()
 Returns the advection object held by this instance. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleGetElmtCFLVals (const bool FlagAcousticCFL=true)
 
SOLVER_UTILS_EXPORT NekDouble GetCFLEstimate (int &elmtid)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme. More...
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::ALEHelper
virtual ~ALEHelper ()=default
 
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
SOLVER_UTILS_EXPORT void InitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity (const NekDouble &time)
 
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass (Array< OneD, Array< OneD, NekDouble > > &fields)
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass (Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
 Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e.g. checkpoint output and L^2 error calculation. More...
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void MoveMesh (const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocity ()
 
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace ()
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Public Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual ~FluidInterface ()=default
 
SOLVER_UTILS_EXPORT void GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Extract array with velocity from physfield. More...
 
SOLVER_UTILS_EXPORT bool HasConstantDensity ()
 
SOLVER_UTILS_EXPORT void GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)
 Extract array with density from physfield. More...
 
SOLVER_UTILS_EXPORT void GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)
 Extract array with pressure from physfield. More...
 
SOLVER_UTILS_EXPORT void SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels, const int step)
 
SOLVER_UTILS_EXPORT bool GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels, const int step)
 
SOLVER_UTILS_EXPORT void SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp, const int step)
 
SOLVER_UTILS_EXPORT void SetMovingFramePivot (const Array< OneD, NekDouble > &vFramePivot)
 
SOLVER_UTILS_EXPORT bool GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp, const int step)
 
SOLVER_UTILS_EXPORT void SetAeroForce (Array< OneD, NekDouble > forces)
 Set aerodynamic force and moment. More...
 
SOLVER_UTILS_EXPORT void GetAeroForce (Array< OneD, NekDouble > forces)
 Get aerodynamic force and moment. More...
 

Protected Member Functions

 CompressibleFlowSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
void v_InitObject (bool DeclareFields=true) override
 Initialization object for CompressibleFlowSystem class. More...
 
void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure) override
 
void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density) override
 
bool v_HasConstantDensity () override
 
void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity) override
 
void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields) override
 
void InitialiseParameters ()
 Load CFS parameters from the session file. More...
 
void InitAdvection ()
 Create advection and diffusion objects for CFS. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void DoAdvection (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Compute the advection terms for the right-hand side. More...
 
void DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
 Add the diffusions terms to the right-hand side. More...
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations. More...
 
void GetFluxVectorDeAlias (const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
 Return the flux vector for the compressible Euler equations by using the de-aliasing technique. More...
 
void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void SetBoundaryConditionsBwdWeight ()
 Set up a weight on physical boundaries for boundary condition applications. More...
 
void GetElmtTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
 Calculate the maximum timestep on each element subject to CFL restrictions. More...
 
NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray) override
 Calculate the maximum timestep subject to CFL restrictions. More...
 
void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0) override
 Set up logic for residual calculation. More...
 
void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time=0.0) override
 
NekDouble GetGamma ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 
MultiRegions::ExpListSharedPtr v_GetPressure () override
 
void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables) override
 
virtual void v_DoDiffusion (const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)=0
 
Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor) override
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2) override
 
virtual bool v_SupportsShockCaptType (const std::string type) const =0
 
- Protected Member Functions inherited from Nektar::SolverUtils::AdvectionSystem
SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step) override
 
virtual SOLVER_UTILS_EXPORT Array< OneD, NekDoublev_GetMaxStdVelocity (const NekDouble SpeedSoundFactor=1.0)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class. More...
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information. More...
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics. More...
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions. More...
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareFeld=true)
 Initialisation object for EquationSystem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Virtual function for solve implementation. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &l)
 Virtual function for generating summary information. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve. More...
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Member Functions inherited from Nektar::SolverUtils::FluidInterface
virtual SOLVER_UTILS_EXPORT void v_GetVelocity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)=0
 
virtual SOLVER_UTILS_EXPORT bool v_HasConstantDensity ()=0
 
virtual SOLVER_UTILS_EXPORT void v_GetDensity (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &density)=0
 
virtual SOLVER_UTILS_EXPORT void v_GetPressure (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure)=0
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameVelocities (const Array< OneD, NekDouble > &vFrameVels, const int step)
 
virtual SOLVER_UTILS_EXPORT bool v_GetMovingFrameVelocities (Array< OneD, NekDouble > &vFrameVels, const int step)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFrameDisp (const Array< OneD, NekDouble > &vFrameDisp, const int step)
 
virtual SOLVER_UTILS_EXPORT void v_SetMovingFramePivot (const Array< OneD, NekDouble > &vFramePivot)
 
virtual SOLVER_UTILS_EXPORT bool v_GetMovingFrameDisp (Array< OneD, NekDouble > &vFrameDisp, const int step)
 
virtual SOLVER_UTILS_EXPORT void v_SetAeroForce (Array< OneD, NekDouble > forces)
 
virtual SOLVER_UTILS_EXPORT void v_GetAeroForce (Array< OneD, NekDouble > forces)
 

Protected Attributes

SolverUtils::DiffusionSharedPtr m_diffusion
 
ArtificialDiffusionSharedPtr m_artificialDiffusion
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
NekDouble m_gamma
 
std::string m_shockCaptureType
 
NekDouble m_filterAlpha
 
NekDouble m_filterExponent
 
NekDouble m_filterCutoff
 
bool m_useFiltering
 
bool m_useLocalTimeStep
 
Array< OneD, NekDoublem_muav
 
Array< OneD, NekDoublem_muavTrace
 
VariableConverterSharedPtr m_varConv
 
std::vector< CFSBndCondSharedPtrm_bndConds
 
NekDouble m_bndEvaluateTime
 
std::vector< SolverUtils::ForcingSharedPtrm_forcing
 
- Protected Attributes inherited from Nektar::SolverUtils::AdvectionSystem
SolverUtils::AdvectionSharedPtr m_advObject
 Advection term. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient. More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration. More...
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
Array< OneD, NekDoublem_movingFrameData
 Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z, U, V, W, Omega_x, Omega_y, Omega_z, A_x, A_y, A_z, DOmega_x, DOmega_y, DOmega_z, pivot_x, pivot_y, pivot_z. More...
 
std::vector< std::string > m_strFrameData
 variable name in m_movingFrameData More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 
- Protected Attributes inherited from Nektar::SolverUtils::ALEHelper
Array< OneD, MultiRegions::ExpListSharedPtrm_fieldsALE
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
 
std::vector< ALEBaseShPtrm_ALEs
 
bool m_ALESolver = false
 
bool m_ImplicitALESolver = false
 
NekDouble m_prevStageTime = 0.0
 
int m_spaceDim
 

Private Member Functions

void EvaluateIsentropicVortex (unsigned int field, Array< OneD, NekDouble > &outfield, NekDouble time, const int o=0)
 Isentropic Vortex Test Case. More...
 
void GetExactRinglebFlow (int field, Array< OneD, NekDouble > &outarray)
 Ringleb Flow Test Case. More...
 

Friends

class MemoryManager< CompressibleFlowSystem >
 

Additional Inherited Members

- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Definition at line 56 of file CompressibleFlowSystem.h.

Constructor & Destructor Documentation

◆ ~CompressibleFlowSystem()

Nektar::CompressibleFlowSystem::~CompressibleFlowSystem ( )
overridedefault

◆ CompressibleFlowSystem()

Nektar::CompressibleFlowSystem::CompressibleFlowSystem ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Definition at line 44 of file CompressibleFlowSystem.cpp.

47 : UnsteadySystem(pSession, pGraph), AdvectionSystem(pSession, pGraph)
48{
49}
SOLVER_UTILS_EXPORT AdvectionSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.

Member Function Documentation

◆ DoAdvection()

void Nektar::CompressibleFlowSystem::DoAdvection ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protected

Compute the advection terms for the right-hand side.

Definition at line 354 of file CompressibleFlowSystem.cpp.

359{
360 int nvariables = inarray.size();
361 Array<OneD, Array<OneD, NekDouble>> advVel(m_spacedim);
362
363 if (m_ALESolver)
364 {
365 auto advWeakDGObject =
366 std::dynamic_pointer_cast<SolverUtils::AdvectionWeakDG>(
368 advWeakDGObject->AdvectCoeffs(nvariables, m_fields, advVel, inarray,
369 outarray, time, pFwd, pBwd);
370 }
371 else
372 {
373 m_advObject->Advect(nvariables, m_fields, advVel, inarray, outarray,
374 time, pFwd, pBwd);
375 }
376}
SolverUtils::AdvectionSharedPtr m_advObject
Advection term.
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.

References Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::ALEHelper::m_ALESolver, Nektar::SolverUtils::EquationSystem::m_fields, and Nektar::SolverUtils::EquationSystem::m_spacedim.

Referenced by DoOdeRhs().

◆ DoDiffusion()

void Nektar::CompressibleFlowSystem::DoDiffusion ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protected

Add the diffusions terms to the right-hand side.

Definition at line 381 of file CompressibleFlowSystem.cpp.

386{
387 v_DoDiffusion(inarray, outarray, pFwd, pBwd);
388}
virtual void v_DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)=0

References v_DoDiffusion().

Referenced by DoOdeRhs().

◆ DoOdeProjection()

void Nektar::CompressibleFlowSystem::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection.

Definition at line 307 of file CompressibleFlowSystem.cpp.

310{
311 size_t nvariables = inarray.size();
312
313 // Perform ALE movement
314 if (m_ALESolver)
315 {
317 }
318
319 switch (m_projectionType)
320 {
322 {
323 // Just copy over array
324 for (size_t i = 0; i < nvariables; ++i)
325 {
326 Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
327
328 if (m_useFiltering)
329 {
330 m_fields[i]->ExponentialFilter(outarray[i], m_filterAlpha,
333 }
334 }
335 SetBoundaryConditions(outarray, time);
336 break;
337 }
340 {
341 NEKERROR(ErrorUtil::efatal, "No Continuous Galerkin for full "
342 "compressible Navier-Stokes equations");
343 break;
344 }
345 default:
346 NEKERROR(ErrorUtil::efatal, "Unknown projection scheme");
347 break;
348 }
349}
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:202
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
SOLVER_UTILS_EXPORT void MoveMesh(const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
Definition: ALEHelper.cpp:169
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.hpp:825

References Nektar::MultiRegions::eDiscontinuous, Nektar::ErrorUtil::efatal, Nektar::MultiRegions::eGalerkin, Nektar::MultiRegions::eMixed_CG_Discontinuous, Nektar::SolverUtils::ALEHelper::m_ALESolver, Nektar::SolverUtils::EquationSystem::m_fields, m_filterAlpha, m_filterCutoff, m_filterExponent, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_traceNormals, m_useFiltering, Nektar::SolverUtils::ALEHelper::MoveMesh(), NEKERROR, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by Nektar::CFSImplicit::NonlinSysEvaluatorCoeff(), Nektar::CFSImplicit::PreconCoeff(), and v_InitObject().

◆ DoOdeRhs()

void Nektar::CompressibleFlowSystem::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the right-hand side.

Definition at line 213 of file CompressibleFlowSystem.cpp.

216{
217 LibUtilities::Timer timer;
218
219 size_t nvariables = inarray.size();
220 size_t nTracePts = GetTraceTotPoints();
221
222 // This converts our Mu in coefficient space to u in physical space for ALE
223 Array<OneD, Array<OneD, NekDouble>> tmpIn(nvariables);
224 if (m_ALESolver)
225 {
227 }
228 else
229 {
230 tmpIn = inarray;
231 }
232
233 m_bndEvaluateTime = time;
234
235 // Store forwards/backwards space along trace space
236 Array<OneD, Array<OneD, NekDouble>> Fwd(nvariables);
237 Array<OneD, Array<OneD, NekDouble>> Bwd(nvariables);
238
240 {
243 }
244 else
245 {
246 for (size_t i = 0; i < nvariables; ++i)
247 {
248 Fwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
249 Bwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
250 m_fields[i]->GetFwdBwdTracePhys(tmpIn[i], Fwd[i], Bwd[i]);
251 }
252 }
253
254 // Calculate advection
255 timer.Start();
256 DoAdvection(tmpIn, outarray, time, Fwd, Bwd);
257 timer.Stop();
258 timer.AccumulateRegion("DoAdvection");
259
260 // Negate results
261 for (size_t i = 0; i < nvariables; ++i)
262 {
263 Vmath::Neg(outarray[i].size(), outarray[i], 1);
264 }
265
266 // Add diffusion terms
267 timer.Start();
268 DoDiffusion(tmpIn, outarray, Fwd, Bwd);
269 timer.Stop();
270 timer.AccumulateRegion("DoDiffusion");
271
272 // Add forcing terms
273 for (auto &x : m_forcing)
274 {
275 x->Apply(m_fields, tmpIn, outarray, time);
276 }
277
279 {
280 size_t nElements = m_fields[0]->GetExpSize();
281 int nq, offset;
282 NekDouble fac;
283 Array<OneD, NekDouble> tmp;
284
285 Array<OneD, NekDouble> tstep(nElements, 0.0);
286 GetElmtTimeStep(tmpIn, tstep);
287
288 // Loop over elements
289 for (size_t n = 0; n < nElements; ++n)
290 {
291 nq = m_fields[0]->GetExp(n)->GetTotPoints();
292 offset = m_fields[0]->GetPhys_Offset(n);
293 fac = tstep[n] / m_timestep;
294 for (size_t i = 0; i < nvariables; ++i)
295 {
296 Vmath::Smul(nq, fac, outarray[i] + offset, 1,
297 tmp = outarray[i] + offset, 1);
298 }
299 }
300 }
301}
void GetElmtTimeStep(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &tstep)
Calculate the maximum timestep on each element subject to CFL restrictions.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
void DoAdvection(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
Compute the advection terms for the right-hand side.
void DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd)
Add the diffusions terms to the right-hand side.
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
Definition: ALEHelper.cpp:149
NekDouble m_timestep
Time step size.
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
enum HomogeneousType m_HomogeneousType
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray
double NekDouble
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100

References Nektar::LibUtilities::Timer::AccumulateRegion(), Nektar::SolverUtils::ALEHelper::ALEDoElmtInvMassBwdTrans(), DoAdvection(), DoDiffusion(), Nektar::SolverUtils::EquationSystem::eHomogeneous1D, GetElmtTimeStep(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::ALEHelper::m_ALESolver, m_bndEvaluateTime, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, Nektar::SolverUtils::EquationSystem::m_HomogeneousType, Nektar::SolverUtils::EquationSystem::m_timestep, m_useLocalTimeStep, Vmath::Neg(), Nektar::NullNekDoubleArrayOfArray, Vmath::Smul(), Nektar::LibUtilities::Timer::Start(), and Nektar::LibUtilities::Timer::Stop().

Referenced by v_InitObject(), and v_SteadyStateResidual().

◆ EvaluateIsentropicVortex()

void Nektar::CompressibleFlowSystem::EvaluateIsentropicVortex ( unsigned int  field,
Array< OneD, NekDouble > &  outfield,
NekDouble  time,
const int  o = 0 
)
private

Isentropic Vortex Test Case.

Definition at line 1116 of file CompressibleFlowSystem.cpp.

1119{
1120 NekDouble beta, u0, v0, x0, y0;
1121
1122 int nTotQuadPoints = GetTotPoints();
1123 Array<OneD, NekDouble> x(nTotQuadPoints);
1124 Array<OneD, NekDouble> y(nTotQuadPoints);
1125 Array<OneD, NekDouble> z(nTotQuadPoints);
1126 Array<OneD, Array<OneD, NekDouble>> u(m_spacedim + 2);
1127
1128 m_fields[0]->GetCoords(x, y, z);
1129
1130 for (int i = 0; i < m_spacedim + 2; ++i)
1131 {
1132 u[i] = Array<OneD, NekDouble>(nTotQuadPoints);
1133 }
1134 m_session->LoadParameter("IsentropicBeta", beta, 5.0);
1135 m_session->LoadParameter("IsentropicU0", u0, 1.0);
1136 m_session->LoadParameter("IsentropicV0", v0, 0.5);
1137 m_session->LoadParameter("IsentropicX0", x0, 5.0);
1138 m_session->LoadParameter("IsentropicY0", y0, 0.0);
1139
1140 // Flow parameters
1141 NekDouble r, xbar, ybar, tmp;
1142 NekDouble fac = 1.0 / (16.0 * m_gamma * M_PI * M_PI);
1143
1144 // In 3D zero rhow field.
1145 if (m_spacedim == 3)
1146 {
1147 Vmath::Zero(nTotQuadPoints, &u[3][o], 1);
1148 }
1149
1150 // Fill storage
1151 for (int i = 0; i < nTotQuadPoints; ++i)
1152 {
1153 xbar = x[i] - u0 * time - x0;
1154 ybar = y[i] - v0 * time - y0;
1155 r = sqrt(xbar * xbar + ybar * ybar);
1156 tmp = beta * exp(1 - r * r);
1157 u[0][i + o] =
1158 pow(1.0 - (m_gamma - 1.0) * tmp * tmp * fac, 1.0 / (m_gamma - 1.0));
1159 u[1][i + o] = u[0][i + o] * (u0 - tmp * ybar / (2 * M_PI));
1160 u[2][i + o] = u[0][i + o] * (v0 + tmp * xbar / (2 * M_PI));
1161 u[m_spacedim + 1][i + o] =
1162 pow(u[0][i + o], m_gamma) / (m_gamma - 1.0) +
1163 0.5 * (u[1][i + o] * u[1][i + o] + u[2][i + o] * u[2][i + o]) /
1164 u[0][i + o];
1165 }
1166 Vmath::Vcopy(nTotQuadPoints, u[field].get(), 1, outfield.get(), 1);
1167}
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT int GetTotPoints()
@ beta
Gauss Radau pinned at x=-1,.
Definition: PointsType.h:59
std::vector< double > z(NPUPPER)
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.hpp:273
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References Nektar::LibUtilities::beta, FilterPython_Function::field, Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, tinysimd::sqrt(), Vmath::Vcopy(), Nektar::UnitTests::z(), and Vmath::Zero().

Referenced by v_EvaluateExactSolution(), and v_SetInitialConditions().

◆ GetElmtTimeStep()

void Nektar::CompressibleFlowSystem::GetElmtTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, NekDouble > &  tstep 
)
protected

Calculate the maximum timestep on each element subject to CFL restrictions.

Definition at line 615 of file CompressibleFlowSystem.cpp.

618{
619 size_t nElements = m_fields[0]->GetExpSize();
620
621 // Change value of m_timestep (in case it is set to zero)
622 NekDouble tmp = m_timestep;
623 m_timestep = 1.0;
624
625 Array<OneD, NekDouble> cfl(nElements);
626 cfl = GetElmtCFLVals();
627
628 // Factors to compute the time-step limit
630
631 // Loop over elements to compute the time-step limit for each element
632 for (size_t n = 0; n < nElements; ++n)
633 {
634 tstep[n] = m_cflSafetyFactor * alpha / cfl[n];
635 }
636
637 // Restore value of m_timestep
638 m_timestep = tmp;
639}
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > GetElmtCFLVals(const bool FlagAcousticCFL=true)
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator()
Get the maximum timestep estimator for cfl control.

References Nektar::SolverUtils::AdvectionSystem::GetElmtCFLVals(), Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_timestep, and Nektar::SolverUtils::UnsteadySystem::MaxTimeStepEstimator().

Referenced by DoOdeRhs(), and v_GetTimeStep().

◆ GetExactRinglebFlow()

void Nektar::CompressibleFlowSystem::GetExactRinglebFlow ( int  field,
Array< OneD, NekDouble > &  outarray 
)
private

Ringleb Flow Test Case.

Compute the exact solution for the Ringleb flow problem.

Definition at line 1172 of file CompressibleFlowSystem.cpp.

1174{
1175 int nTotQuadPoints = GetTotPoints();
1176
1177 Array<OneD, NekDouble> rho(nTotQuadPoints, 100.0);
1178 Array<OneD, NekDouble> rhou(nTotQuadPoints);
1179 Array<OneD, NekDouble> rhov(nTotQuadPoints);
1180 Array<OneD, NekDouble> E(nTotQuadPoints);
1181 Array<OneD, NekDouble> x(nTotQuadPoints);
1182 Array<OneD, NekDouble> y(nTotQuadPoints);
1183 Array<OneD, NekDouble> z(nTotQuadPoints);
1184
1185 m_fields[0]->GetCoords(x, y, z);
1186
1187 // Flow parameters
1188 NekDouble c, k, phi, r, J, VV, pp, sint, P, ss;
1189 NekDouble J11, J12, J21, J22, det;
1190 NekDouble Fx, Fy;
1191 NekDouble xi, yi;
1192 NekDouble dV;
1193 NekDouble dtheta;
1194 NekDouble par1;
1195 NekDouble theta = M_PI / 4.0;
1196 NekDouble kExt = 0.7;
1197 NekDouble V = kExt * sin(theta);
1198 NekDouble toll = 1.0e-8;
1199 NekDouble errV = 1.0;
1200 NekDouble errTheta = 1.0;
1201 NekDouble gamma = m_gamma;
1202 NekDouble gamma_1_2 = (gamma - 1.0) / 2.0;
1203
1204 for (int i = 0; i < nTotQuadPoints; ++i)
1205 {
1206 while ((abs(errV) > toll) || (abs(errTheta) > toll))
1207 {
1208 VV = V * V;
1209 sint = sin(theta);
1210 c = sqrt(1.0 - gamma_1_2 * VV);
1211 k = V / sint;
1212 phi = 1.0 / k;
1213 pp = phi * phi;
1214 J = 1.0 / c + 1.0 / (3.0 * c * c * c) +
1215 1.0 / (5.0 * c * c * c * c * c) -
1216 0.5 * log((1.0 + c) / (1.0 - c));
1217
1218 r = pow(c, 1.0 / gamma_1_2);
1219 xi = 1.0 / (2.0 * r) * (1.0 / VV - 2.0 * pp) + J / 2.0;
1220 yi = phi / (r * V) * sqrt(1.0 - VV * pp);
1221 par1 = 25.0 - 5.0 * VV;
1222 ss = sint * sint;
1223
1224 Fx = xi - x[i];
1225 Fy = yi - y[i];
1226
1227 J11 =
1228 39062.5 / pow(par1, 3.5) * (1.0 / VV - 2.0 / VV * ss) * V +
1229 1562.5 / pow(par1, 2.5) *
1230 (-2.0 / (VV * V) + 4.0 / (VV * V) * ss) +
1231 12.5 / pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
1232 7812.5 / pow(par1, 3.5) * V -
1233 0.25 *
1234 (-1.0 / pow(par1, 0.5) * V / (1.0 - 0.2 * pow(par1, 0.5)) -
1235 (1.0 + 0.2 * pow(par1, 0.5)) /
1236 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
1237 pow(par1, 0.5) * V) /
1238 (1.0 + 0.2 * pow(par1, 0.5)) * (1.0 - 0.2 * pow(par1, 0.5));
1239
1240 J12 = -6250.0 / pow(par1, 2.5) / VV * sint * cos(theta);
1241 J21 = -6250.0 / (VV * V) * sint / pow(par1, 2.5) *
1242 pow((1.0 - ss), 0.5) +
1243 78125.0 / V * sint / pow(par1, 3.5) * pow((1.0 - ss), 0.5);
1244
1245 // the matrix is singular when theta = pi/2
1246 if (abs(y[i]) < toll && abs(cos(theta)) < toll)
1247 {
1248 J22 = -39062.5 / pow(par1, 3.5) / V +
1249 3125 / pow(par1, 2.5) / (VV * V) +
1250 12.5 / pow(par1, 1.5) * V + 312.5 / pow(par1, 2.5) * V +
1251 7812.5 / pow(par1, 3.5) * V -
1252 0.25 *
1253 (-1.0 / pow(par1, 0.5) * V /
1254 (1.0 - 0.2 * pow(par1, 0.5)) -
1255 (1.0 + 0.2 * pow(par1, 0.5)) /
1256 pow((1.0 - 0.2 * pow(par1, 0.5)), 2.0) /
1257 pow(par1, 0.5) * V) /
1258 (1.0 + 0.2 * pow(par1, 0.5)) *
1259 (1.0 - 0.2 * pow(par1, 0.5));
1260
1261 // dV = -dV/dx * Fx
1262 dV = -1.0 / J22 * Fx;
1263 dtheta = 0.0;
1264 theta = M_PI / 2.0;
1265 }
1266 else
1267 {
1268 J22 = 3125.0 / VV * cos(theta) / pow(par1, 2.5) *
1269 pow((1.0 - ss), 0.5) -
1270 3125.0 / VV * ss / pow(par1, 2.5) / pow((1.0 - ss), 0.5) *
1271 cos(theta);
1272
1273 det = -1.0 / (J11 * J22 - J12 * J21);
1274
1275 // [dV dtheta]' = -[invJ]*[Fx Fy]'
1276 dV = det * (J22 * Fx - J12 * Fy);
1277 dtheta = det * (-J21 * Fx + J11 * Fy);
1278 }
1279
1280 V = V + dV;
1281 theta = theta + dtheta;
1282
1283 errV = abs(dV);
1284 errTheta = abs(dtheta);
1285 }
1286
1287 c = sqrt(1.0 - gamma_1_2 * VV);
1288 r = pow(c, 1.0 / gamma_1_2);
1289
1290 rho[i] = r;
1291 rhou[i] = rho[i] * V * cos(theta);
1292 rhov[i] = rho[i] * V * sin(theta);
1293 P = (c * c) * rho[i] / gamma;
1294 E[i] = P / (gamma - 1.0) +
1295 0.5 * (rhou[i] * rhou[i] / rho[i] + rhov[i] * rhov[i] / rho[i]);
1296
1297 // Resetting the guess value
1298 errV = 1.0;
1299 errTheta = 1.0;
1300 theta = M_PI / 4.0;
1301 V = kExt * sin(theta);
1302 }
1303
1304 switch (field)
1305 {
1306 case 0:
1307 outarray = rho;
1308 break;
1309 case 1:
1310 outarray = rhou;
1311 break;
1312 case 2:
1313 outarray = rhov;
1314 break;
1315 case 3:
1316 outarray = E;
1317 break;
1318 default:
1319 ASSERTL0(false, "Error in variable number!");
1320 break;
1321 }
1322}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
@ P
Monomial polynomials .
Definition: BasisType.h:62
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298
scalarT< T > log(scalarT< T > in)
Definition: scalar.hpp:303

References tinysimd::abs(), ASSERTL0, FilterPython_Function::field, Nektar::SolverUtils::EquationSystem::GetTotPoints(), tinysimd::log(), Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::LibUtilities::P, tinysimd::sqrt(), and Nektar::UnitTests::z().

Referenced by v_EvaluateExactSolution().

◆ GetFluxVector()

void Nektar::CompressibleFlowSystem::GetFluxVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
TensorOfArray3D< NekDouble > &  flux 
)
protected

Return the flux vector for the compressible Euler equations.

Parameters
physfieldFields.
fluxResulting flux.

Definition at line 446 of file CompressibleFlowSystem.cpp.

449{
450 size_t nVariables = physfield.size();
451 size_t nPts = physfield[0].size();
452
453 constexpr unsigned short maxVel = 3;
454 constexpr unsigned short maxFld = 5;
455
456 // hardcoding done for performance reasons
457 ASSERTL1(nVariables <= maxFld, "GetFluxVector, hard coded max fields");
458
459 for (size_t p = 0; p < nPts; ++p)
460 {
461 // local storage
462 std::array<NekDouble, maxFld> fieldTmp;
463 std::array<NekDouble, maxVel> velocity;
464
465 // rearrenge and load data
466 for (size_t f = 0; f < nVariables; ++f)
467 {
468 fieldTmp[f] = physfield[f][p]; // load
469 }
470
471 // 1 / rho
472 NekDouble oneOrho = 1.0 / fieldTmp[0];
473
474 for (size_t d = 0; d < m_spacedim; ++d)
475 {
476 // Flux vector for the rho equation
477 flux[0][d][p] = fieldTmp[d + 1]; // store
478 // compute velocity
479 velocity[d] = fieldTmp[d + 1] * oneOrho;
480 }
481
482 NekDouble pressure = m_varConv->GetPressure(fieldTmp.data());
483 NekDouble ePlusP = fieldTmp[m_spacedim + 1] + pressure;
484 for (size_t f = 0; f < m_spacedim; ++f)
485 {
486 // Flux vector for the velocity fields
487 for (size_t d = 0; d < m_spacedim; ++d)
488 {
489 flux[f + 1][d][p] = velocity[d] * fieldTmp[f + 1]; // store
490 }
491
492 // Add pressure to appropriate field
493 flux[f + 1][f][p] += pressure;
494
495 // Flux vector for energy
496 flux[m_spacedim + 1][f][p] = ePlusP * velocity[f]; // store
497 }
498 }
499
500 // @TODO : for each row (3 columns) negative grid velocity component (d * d
501 // + 2 (4 rows)) rho, rhou, rhov, rhow, E,
502 // @TODO : top row is flux for rho etc... each row subtract v_g * conserved
503 // variable for that row... For grid velocity subtract v_g * conserved
504 // variable
505 if (m_ALESolver)
506 {
507 for (int i = 0; i < m_spacedim + 2; ++i)
508 {
509 for (int j = 0; j < m_spacedim; ++j)
510 {
511 for (int k = 0; k < nPts; ++k)
512 {
513 flux[i][j][k] -= physfield[i][k] * m_gridVelocity[j][k];
514 }
515 }
516 }
517 }
518}
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
VariableConverterSharedPtr m_varConv
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
Definition: ALEHelper.h:90
std::vector< double > d(NPUPPER *NPUPPER)

References ASSERTL1, Nektar::UnitTests::d(), Nektar::SolverUtils::ALEHelper::m_ALESolver, Nektar::SolverUtils::ALEHelper::m_gridVelocity, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, CellMLToNektar.cellml_metadata::p, and CG_Iterations::pressure.

Referenced by InitAdvection().

◆ GetFluxVectorDeAlias()

void Nektar::CompressibleFlowSystem::GetFluxVectorDeAlias ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
TensorOfArray3D< NekDouble > &  flux 
)
protected

Return the flux vector for the compressible Euler equations by using the de-aliasing technique.

Parameters
physfieldFields.
fluxResulting flux.

Definition at line 527 of file CompressibleFlowSystem.cpp.

530{
531 int i, j;
532 size_t nq = physfield[0].size();
533 size_t nVariables = m_fields.size();
534
535 // Factor to rescale 1d points in dealiasing
536 NekDouble OneDptscale = 2;
537 nq = m_fields[0]->Get1DScaledTotPoints(OneDptscale);
538
539 Array<OneD, NekDouble> pressure(nq);
540 Array<OneD, Array<OneD, NekDouble>> velocity(m_spacedim);
541
542 Array<OneD, Array<OneD, NekDouble>> physfield_interp(nVariables);
543 TensorOfArray3D<NekDouble> flux_interp(nVariables);
544
545 for (size_t i = 0; i < nVariables; ++i)
546 {
547 physfield_interp[i] = Array<OneD, NekDouble>(nq);
548 flux_interp[i] = Array<OneD, Array<OneD, NekDouble>>(m_spacedim);
549 m_fields[0]->PhysInterp1DScaled(OneDptscale, physfield[i],
550 physfield_interp[i]);
551
552 for (j = 0; j < m_spacedim; ++j)
553 {
554 flux_interp[i][j] = Array<OneD, NekDouble>(nq);
555 }
556 }
557
558 // Flux vector for the rho equation
559 for (i = 0; i < m_spacedim; ++i)
560 {
561 velocity[i] = Array<OneD, NekDouble>(nq);
562
563 // Galerkin project solution back to original space
564 m_fields[0]->PhysGalerkinProjection1DScaled(
565 OneDptscale, physfield_interp[i + 1], flux[0][i]);
566 }
567
568 m_varConv->GetVelocityVector(physfield_interp, velocity);
569 m_varConv->GetPressure(physfield_interp, pressure);
570
571 // Evaluation of flux vector for the velocity fields
572 for (i = 0; i < m_spacedim; ++i)
573 {
574 for (j = 0; j < m_spacedim; ++j)
575 {
576 Vmath::Vmul(nq, velocity[j], 1, physfield_interp[i + 1], 1,
577 flux_interp[i + 1][j], 1);
578 }
579
580 // Add pressure to appropriate field
581 Vmath::Vadd(nq, flux_interp[i + 1][i], 1, pressure, 1,
582 flux_interp[i + 1][i], 1);
583 }
584
585 // Galerkin project solution back to original space
586 for (i = 0; i < m_spacedim; ++i)
587 {
588 for (j = 0; j < m_spacedim; ++j)
589 {
590 m_fields[0]->PhysGalerkinProjection1DScaled(
591 OneDptscale, flux_interp[i + 1][j], flux[i + 1][j]);
592 }
593 }
594
595 // Evaluation of flux vector for energy
596 Vmath::Vadd(nq, physfield_interp[m_spacedim + 1], 1, pressure, 1, pressure,
597 1);
598
599 for (j = 0; j < m_spacedim; ++j)
600 {
601 Vmath::Vmul(nq, velocity[j], 1, pressure, 1,
602 flux_interp[m_spacedim + 1][j], 1);
603
604 // Galerkin project solution back to original space
605 m_fields[0]->PhysGalerkinProjection1DScaled(
606 OneDptscale, flux_interp[m_spacedim + 1][j],
607 flux[m_spacedim + 1][j]);
608 }
609}
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, CG_Iterations::pressure, Vmath::Vadd(), and Vmath::Vmul().

Referenced by InitAdvection().

◆ GetGamma()

NekDouble Nektar::CompressibleFlowSystem::GetGamma ( )
inlineprotected

Definition at line 182 of file CompressibleFlowSystem.h.

183 {
184 return m_gamma;
185 }

References m_gamma.

Referenced by InitAdvection().

◆ GetNormals()

const Array< OneD, const Array< OneD, NekDouble > > & Nektar::CompressibleFlowSystem::GetNormals ( )
inlineprotected

Definition at line 192 of file CompressibleFlowSystem.h.

193 {
194 return m_traceNormals;
195 }

References Nektar::SolverUtils::EquationSystem::m_traceNormals.

Referenced by InitAdvection().

◆ GetStabilityLimit()

NekDouble Nektar::CompressibleFlowSystem::GetStabilityLimit ( int  n)

Function to calculate the stability limit for DG/CG.

Set the denominator to compute the time step when a cfl control is employed. This function is no longer used but is still here for being utilised in the future.

Parameters
nOrder of expansion element by element.

Definition at line 909 of file CompressibleFlowSystem.cpp.

910{
911 ASSERTL0(n <= 20, "Illegal modes dimension for CFL calculation "
912 "(P has to be less then 20)");
913
914 NekDouble CFLDG[21] = {2.0000, 6.0000, 11.8424, 19.1569, 27.8419,
915 37.8247, 49.0518, 61.4815, 75.0797, 89.8181,
916 105.6700, 122.6200, 140.6400, 159.7300, 179.8500,
917 201.0100, 223.1800, 246.3600, 270.5300, 295.6900,
918 321.8300}; // CFLDG 1D [0-20]
919 NekDouble CFL = 0.0;
920
922 {
923 CFL = CFLDG[n];
924 }
925 else
926 {
927 NEKERROR(ErrorUtil::efatal, "Continuous Galerkin stability "
928 "coefficients not introduced yet.");
929 }
930
931 return CFL;
932}

References ASSERTL0, Nektar::MultiRegions::eDiscontinuous, Nektar::ErrorUtil::efatal, Nektar::SolverUtils::EquationSystem::m_projectionType, and NEKERROR.

Referenced by GetStabilityLimitVector().

◆ GetStabilityLimitVector()

Array< OneD, NekDouble > Nektar::CompressibleFlowSystem::GetStabilityLimitVector ( const Array< OneD, int > &  ExpOrder)

Function to calculate the stability limit for DG/CG (a vector of them).

Compute the vector of denominators to compute the time step when a cfl control is employed. This function is no longer used but is still here for being utilised in the future.

Parameters
ExpOrderOrder of expansion element by element.

Definition at line 941 of file CompressibleFlowSystem.cpp.

943{
944 int i;
945 Array<OneD, NekDouble> returnval(m_fields[0]->GetExpSize(), 0.0);
946 for (i = 0; i < m_fields[0]->GetExpSize(); i++)
947 {
948 returnval[i] = GetStabilityLimit(ExpOrder[i]);
949 }
950 return returnval;
951}
NekDouble GetStabilityLimit(int n)
Function to calculate the stability limit for DG/CG.
SOLVER_UTILS_EXPORT int GetExpSize()

References Nektar::SolverUtils::EquationSystem::GetExpSize(), GetStabilityLimit(), and Nektar::SolverUtils::EquationSystem::m_fields.

◆ GetVecLocs()

const Array< OneD, const Array< OneD, NekDouble > > & Nektar::CompressibleFlowSystem::GetVecLocs ( )
inlineprotected

Definition at line 187 of file CompressibleFlowSystem.h.

188 {
189 return m_vecLocs;
190 }
Array< OneD, Array< OneD, NekDouble > > m_vecLocs

References m_vecLocs.

Referenced by InitAdvection().

◆ InitAdvection()

void Nektar::CompressibleFlowSystem::InitAdvection ( )
protected

Create advection and diffusion objects for CFS.

Definition at line 165 of file CompressibleFlowSystem.cpp.

166{
167 // Check if projection type is correct
169 "Unsupported projection type.");
170
171 string advName, riemName;
172 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
173
176
178 {
179 m_advObject->SetFluxVector(
181 }
182 else
183 {
185 this);
186 }
187
188 // Setting up Riemann solver for advection operator
189 m_session->LoadSolverInfo("UpwindType", riemName, "Average");
190
193 riemName, m_session);
194
195 // Tell Riemann Solver if doing ALE and provide trace grid velocity
196 riemannSolver->SetALEFlag(m_ALESolver);
197 riemannSolver->SetVector("vgt", &ALEHelper::GetGridVelocityTrace, this);
198
199 // Setting up parameters for advection operator Riemann solver
200 riemannSolver->SetParam("gamma", &CompressibleFlowSystem::GetGamma, this);
201 riemannSolver->SetAuxVec("vecLocs", &CompressibleFlowSystem::GetVecLocs,
202 this);
203 riemannSolver->SetVector("N", &CompressibleFlowSystem::GetNormals, this);
204
205 // Concluding initialisation of advection / diffusion operators
206 m_advObject->SetRiemannSolver(riemannSolver);
207 m_advObject->InitObject(m_session, m_fields);
208}
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
Return the flux vector for the compressible Euler equations.
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
void GetFluxVectorDeAlias(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &flux)
Return the flux vector for the compressible Euler equations by using the de-aliasing technique.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace()
Definition: ALEHelper.cpp:290
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
std::shared_ptr< RiemannSolver > RiemannSolverSharedPtr
A shared pointer to an EquationSystem object.
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
RiemannSolverFactory & GetRiemannSolverFactory()

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::MultiRegions::eDiscontinuous, Nektar::SolverUtils::GetAdvectionFactory(), GetFluxVector(), GetFluxVectorDeAlias(), GetGamma(), Nektar::SolverUtils::ALEHelper::GetGridVelocityTrace(), GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), GetVecLocs(), Nektar::SolverUtils::AdvectionSystem::m_advObject, Nektar::SolverUtils::ALEHelper::m_ALESolver, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::m_specHP_dealiasing.

Referenced by v_InitObject().

◆ InitialiseParameters()

void Nektar::CompressibleFlowSystem::InitialiseParameters ( )
protected

Load CFS parameters from the session file.

Definition at line 129 of file CompressibleFlowSystem.cpp.

130{
131 // Get gamma parameter from session file.
132 m_session->LoadParameter("Gamma", m_gamma, 1.4);
133
134 // Shock capture
135 m_session->LoadSolverInfo("ShockCaptureType", m_shockCaptureType, "Off");
136
137 // Check if the shock capture type is supported
138 std::string err_msg = "Warning, ShockCaptureType = " + m_shockCaptureType +
139 " is not supported by this solver";
141
142 // Load parameters for exponential filtering
143 m_session->MatchSolverInfo("ExponentialFiltering", "True", m_useFiltering,
144 false);
145 if (m_useFiltering)
146 {
147 m_session->LoadParameter("FilterAlpha", m_filterAlpha, 36);
148 m_session->LoadParameter("FilterExponent", m_filterExponent, 16);
149 m_session->LoadParameter("FilterCutoff", m_filterCutoff, 0);
150 }
151
152 // Load CFL for local time-stepping (for steady state)
153 m_session->MatchSolverInfo("LocalTimeStep", "True", m_useLocalTimeStep,
154 false);
156 {
158 "Local time stepping requires CFL parameter.");
159 }
160}
virtual bool v_SupportsShockCaptType(const std::string type) const =0

References ASSERTL0, Nektar::SolverUtils::UnsteadySystem::m_cflSafetyFactor, m_filterAlpha, m_filterCutoff, m_filterExponent, m_gamma, Nektar::SolverUtils::EquationSystem::m_session, m_shockCaptureType, m_useFiltering, m_useLocalTimeStep, and v_SupportsShockCaptType().

Referenced by v_InitObject().

◆ SetBoundaryConditions()

void Nektar::CompressibleFlowSystem::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
protected

Definition at line 390 of file CompressibleFlowSystem.cpp.

392{
393 size_t nTracePts = GetTraceTotPoints();
394 size_t nvariables = physarray.size();
395
396 // This converts our Mu in coefficient space to u in physical space for ALE
397 Array<OneD, Array<OneD, NekDouble>> tmpIn(nvariables);
398
400 {
401 ALEHelper::ALEDoElmtInvMassBwdTrans(physarray, tmpIn);
402 }
403 else
404 {
405 tmpIn = physarray;
406 }
407
408 Array<OneD, Array<OneD, NekDouble>> Fwd(nvariables);
409 for (size_t i = 0; i < nvariables; ++i)
410 {
411 Fwd[i] = Array<OneD, NekDouble>(nTracePts);
412 m_fields[i]->ExtractTracePhys(tmpIn[i], Fwd[i]);
413 }
414
415 if (!m_bndConds.empty())
416 {
417 // Loop over user-defined boundary conditions
418 for (auto &x : m_bndConds)
419 {
420 x->Apply(Fwd, tmpIn, time);
421 }
422 }
423}
std::vector< CFSBndCondSharedPtr > m_bndConds

References Nektar::SolverUtils::ALEHelper::ALEDoElmtInvMassBwdTrans(), Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::ALEHelper::m_ALESolver, m_bndConds, Nektar::SolverUtils::EquationSystem::m_fields, and Nektar::SolverUtils::ALEHelper::m_ImplicitALESolver.

Referenced by DoOdeProjection().

◆ SetBoundaryConditionsBwdWeight()

void Nektar::CompressibleFlowSystem::SetBoundaryConditionsBwdWeight ( )
protected

Set up a weight on physical boundaries for boundary condition applications.

Definition at line 428 of file CompressibleFlowSystem.cpp.

429{
430 if (m_bndConds.size())
431 {
432 // Loop over user-defined boundary conditions
433 for (auto &x : m_bndConds)
434 {
435 x->ApplyBwdWeight();
436 }
437 }
438}

References m_bndConds.

Referenced by Nektar::NavierStokesCFE::InitObject_Explicit(), and v_InitObject().

◆ v_ALEInitObject()

void Nektar::CompressibleFlowSystem::v_ALEInitObject ( int  spaceDim,
Array< OneD, MultiRegions::ExpListSharedPtr > &  fields 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::ALEHelper.

Reimplemented in Nektar::CFSImplicit.

Definition at line 1324 of file CompressibleFlowSystem.cpp.

1326{
1327 m_spaceDim = spaceDim;
1328 m_fieldsALE = fields;
1329
1330 // Initialise grid velocities as 0s
1331 m_gridVelocity = Array<OneD, Array<OneD, NekDouble>>(m_spaceDim);
1332 m_gridVelocityTrace = Array<OneD, Array<OneD, NekDouble>>(m_spaceDim);
1333 for (int i = 0; i < spaceDim; ++i)
1334 {
1335 m_gridVelocity[i] =
1336 Array<OneD, NekDouble>(fields[0]->GetTotPoints(), 0.0);
1338 Array<OneD, NekDouble>(fields[0]->GetTrace()->GetTotPoints(), 0.0);
1339 }
1340
1341 ALEHelper::InitObject(spaceDim, fields);
1342}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fieldsALE
Definition: ALEHelper.h:89
SOLVER_UTILS_EXPORT void InitObject(int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
Definition: ALEHelper.cpp:48
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
Definition: ALEHelper.h:91

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::ALEHelper::InitObject(), Nektar::SolverUtils::ALEHelper::m_fieldsALE, Nektar::SolverUtils::ALEHelper::m_gridVelocity, Nektar::SolverUtils::ALEHelper::m_gridVelocityTrace, and Nektar::SolverUtils::ALEHelper::m_spaceDim.

◆ v_DoDiffusion()

virtual void Nektar::CompressibleFlowSystem::v_DoDiffusion ( const Array< OneD, Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const Array< OneD, Array< OneD, NekDouble > > &  pFwd,
const Array< OneD, Array< OneD, NekDouble > > &  pBwd 
)
protectedpure virtual

◆ v_EvaluateExactSolution()

void Nektar::CompressibleFlowSystem::v_EvaluateExactSolution ( unsigned int  field,
Array< OneD, NekDouble > &  outfield,
const NekDouble  time = 0.0 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 748 of file CompressibleFlowSystem.cpp.

750{
751
752 if (!m_session->DefinesFunction("ExactSolution") &&
753 m_session->DefinesSolverInfo("ICTYPE"))
754 {
755 if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
756 "IsentropicVortex"))
757 {
758 EvaluateIsentropicVortex(field, outfield, time);
759 }
760 else if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
761 "RinglebFlow"))
762 {
763 GetExactRinglebFlow(field, outfield);
764 }
765 }
766 else
767 {
769 }
770}
void GetExactRinglebFlow(int field, Array< OneD, NekDouble > &outarray)
Ringleb Flow Test Case.
void EvaluateIsentropicVortex(unsigned int field, Array< OneD, NekDouble > &outfield, NekDouble time, const int o=0)
Isentropic Vortex Test Case.
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)

References EvaluateIsentropicVortex(), FilterPython_Function::field, GetExactRinglebFlow(), Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::v_EvaluateExactSolution().

◆ v_ExtraFldOutput()

void Nektar::CompressibleFlowSystem::v_ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Reimplemented in Nektar::NavierStokesCFE.

Definition at line 953 of file CompressibleFlowSystem.cpp.

956{
957 bool extraFields;
958 m_session->MatchSolverInfo("OutputExtraFields", "True", extraFields, true);
959 if (extraFields)
960 {
961 const int nPhys = m_fields[0]->GetNpoints();
962 const int nCoeffs = m_fields[0]->GetNcoeffs();
963 Array<OneD, Array<OneD, NekDouble>> tmp(m_fields.size());
964
965 for (int i = 0; i < m_fields.size(); ++i)
966 {
967 tmp[i] = m_fields[i]->GetPhys();
968 }
969
970 Array<OneD, Array<OneD, NekDouble>> velocity(m_spacedim);
971 Array<OneD, Array<OneD, NekDouble>> velFwd(m_spacedim);
972 for (int i = 0; i < m_spacedim; ++i)
973 {
974 velocity[i] = Array<OneD, NekDouble>(nPhys);
975 velFwd[i] = Array<OneD, NekDouble>(nCoeffs);
976 }
977
978 Array<OneD, NekDouble> pressure(nPhys), temperature(nPhys);
979 Array<OneD, NekDouble> entropy(nPhys);
980 Array<OneD, NekDouble> soundspeed(nPhys), mach(nPhys);
981 Array<OneD, NekDouble> sensor(nPhys), SensorKappa(nPhys);
982
983 m_varConv->GetVelocityVector(tmp, velocity);
984 m_varConv->GetPressure(tmp, pressure);
985 m_varConv->GetTemperature(tmp, temperature);
986 m_varConv->GetEntropy(tmp, entropy);
987 m_varConv->GetSoundSpeed(tmp, soundspeed);
988 m_varConv->GetMach(tmp, soundspeed, mach);
989
990 int sensorOffset;
991 m_session->LoadParameter("SensorOffset", sensorOffset, 1);
992 m_varConv->GetSensor(m_fields[0], tmp, sensor, SensorKappa,
993 sensorOffset);
994
995 Array<OneD, NekDouble> pFwd(nCoeffs), TFwd(nCoeffs);
996 Array<OneD, NekDouble> sFwd(nCoeffs);
997 Array<OneD, NekDouble> aFwd(nCoeffs), mFwd(nCoeffs);
998 Array<OneD, NekDouble> sensFwd(nCoeffs);
999
1000 string velNames[3] = {"u", "v", "w"};
1001 for (int i = 0; i < m_spacedim; ++i)
1002 {
1003 m_fields[0]->FwdTransLocalElmt(velocity[i], velFwd[i]);
1004 variables.push_back(velNames[i]);
1005 fieldcoeffs.push_back(velFwd[i]);
1006 }
1007
1008 m_fields[0]->FwdTransLocalElmt(pressure, pFwd);
1009 m_fields[0]->FwdTransLocalElmt(temperature, TFwd);
1010 m_fields[0]->FwdTransLocalElmt(entropy, sFwd);
1011 m_fields[0]->FwdTransLocalElmt(soundspeed, aFwd);
1012 m_fields[0]->FwdTransLocalElmt(mach, mFwd);
1013 m_fields[0]->FwdTransLocalElmt(sensor, sensFwd);
1014
1015 variables.push_back("p");
1016 variables.push_back("T");
1017 variables.push_back("s");
1018 variables.push_back("a");
1019 variables.push_back("Mach");
1020 variables.push_back("Sensor");
1021 fieldcoeffs.push_back(pFwd);
1022 fieldcoeffs.push_back(TFwd);
1023 fieldcoeffs.push_back(sFwd);
1024 fieldcoeffs.push_back(aFwd);
1025 fieldcoeffs.push_back(mFwd);
1026 fieldcoeffs.push_back(sensFwd);
1027
1029 {
1030 // reuse pressure
1031 Array<OneD, NekDouble> sensorFwd(nCoeffs);
1032 m_artificialDiffusion->GetArtificialViscosity(tmp, pressure);
1033 m_fields[0]->FwdTransLocalElmt(pressure, sensorFwd);
1034
1035 variables.push_back("ArtificialVisc");
1036 fieldcoeffs.push_back(sensorFwd);
1037 }
1038
1039 if (m_ALESolver)
1040 {
1041 ExtraFldOutputGridVelocity(fieldcoeffs, variables);
1042 }
1043 }
1044}
ArtificialDiffusionSharedPtr m_artificialDiffusion
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity(std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
Definition: ALEHelper.cpp:392

References Nektar::SolverUtils::ALEHelper::ExtraFldOutputGridVelocity(), Nektar::SolverUtils::ALEHelper::m_ALESolver, m_artificialDiffusion, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, and CG_Iterations::pressure.

◆ v_GenerateSummary()

void Nektar::CompressibleFlowSystem::v_GenerateSummary ( SolverUtils::SummaryList s)
overrideprotectedvirtual

Print a summary of time stepping parameters.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 659 of file CompressibleFlowSystem.cpp.

660{
662 if (m_session->DefinesSolverInfo("ICTYPE"))
663 {
664 if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
665 "IsentropicVortex"))
666 {
667 SolverUtils::AddSummaryItem(s, "Problem Type", "IsentropicVortex");
668 }
669 else if (boost::iequals(m_session->GetSolverInfo("ICTYPE"),
670 "RinglebFlow"))
671 {
672 SolverUtils::AddSummaryItem(s, "Problem Type", "RinglebFlow");
673 }
674 else
675 {
676 NEKERROR(ErrorUtil::efatal, "unknow initial condition");
677 }
678 }
679}
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::ErrorUtil::efatal, Nektar::SolverUtils::EquationSystem::m_session, NEKERROR, and Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

◆ v_GetDensity()

void Nektar::CompressibleFlowSystem::v_GetDensity ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, NekDouble > &  density 
)
overrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 1059 of file CompressibleFlowSystem.cpp.

1062{
1063 density = physfield[0];
1064}

◆ v_GetMaxStdVelocity()

Array< OneD, NekDouble > Nektar::CompressibleFlowSystem::v_GetMaxStdVelocity ( const NekDouble  SpeedSoundFactor)
overrideprotectedvirtual

Compute the advection velocity in the standard space for each element of the expansion.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Definition at line 776 of file CompressibleFlowSystem.cpp.

778{
779 size_t nTotQuadPoints = GetTotPoints();
780 size_t n_element = m_fields[0]->GetExpSize();
781 size_t expdim = m_fields[0]->GetGraph()->GetMeshDimension();
782 size_t nfields = m_fields.size();
783 int offset;
784 Array<OneD, NekDouble> tmp;
785
786 Array<OneD, Array<OneD, NekDouble>> physfields(nfields);
787 for (size_t i = 0; i < nfields; ++i)
788 {
789 physfields[i] = m_fields[i]->GetPhys();
790 }
791
792 Array<OneD, NekDouble> stdV(n_element, 0.0);
793
794 // Getting the velocity vector on the 2D normal space
795 Array<OneD, Array<OneD, NekDouble>> velocity(m_spacedim);
796 Array<OneD, Array<OneD, NekDouble>> stdVelocity(m_spacedim);
797 Array<OneD, Array<OneD, NekDouble>> stdSoundSpeed(m_spacedim);
798 Array<OneD, NekDouble> soundspeed(nTotQuadPoints);
800
801 for (int i = 0; i < m_spacedim; ++i)
802 {
803 velocity[i] = Array<OneD, NekDouble>(nTotQuadPoints);
804 stdVelocity[i] = Array<OneD, NekDouble>(nTotQuadPoints, 0.0);
805 stdSoundSpeed[i] = Array<OneD, NekDouble>(nTotQuadPoints, 0.0);
806 }
807
808 m_varConv->GetVelocityVector(physfields, velocity);
809 m_varConv->GetSoundSpeed(physfields, soundspeed);
810
811 // Subtract Ug from the velocity for the ALE formulation
812 for (size_t i = 0; i < m_spacedim; ++i)
813 {
814 Vmath::Vsub(nTotQuadPoints, velocity[i], 1, m_gridVelocity[i], 1,
815 velocity[i], 1);
816 }
817
818 for (int el = 0; el < n_element; ++el)
819 {
820 ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
821 offset = m_fields[0]->GetPhys_Offset(el);
822 int nq = m_fields[0]->GetExp(el)->GetTotPoints();
823
824 const SpatialDomains::GeomFactorsSharedPtr metricInfo =
825 m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo();
826 const Array<TwoD, const NekDouble> &gmat =
827 m_fields[0]
828 ->GetExp(el)
829 ->GetGeom()
830 ->GetMetricInfo()
831 ->GetDerivFactors(ptsKeys);
832
833 // Convert to standard element
834 // consider soundspeed in all directions
835 // (this might overestimate the cfl)
836 if (metricInfo->GetGtype() == SpatialDomains::eDeformed)
837 {
838 // d xi/ dx = gmat = 1/J * d x/d xi
839 for (size_t i = 0; i < expdim; ++i)
840 {
841 Vmath::Vmul(nq, gmat[i], 1, velocity[0] + offset, 1,
842 tmp = stdVelocity[i] + offset, 1);
843 Vmath::Vmul(nq, gmat[i], 1, soundspeed + offset, 1,
844 tmp = stdSoundSpeed[i] + offset, 1);
845 for (size_t j = 1; j < expdim; ++j)
846 {
847 Vmath::Vvtvp(nq, gmat[expdim * j + i], 1,
848 velocity[j] + offset, 1,
849 stdVelocity[i] + offset, 1,
850 tmp = stdVelocity[i] + offset, 1);
851 Vmath::Vvtvp(nq, gmat[expdim * j + i], 1,
852 soundspeed + offset, 1,
853 stdSoundSpeed[i] + offset, 1,
854 tmp = stdSoundSpeed[i] + offset, 1);
855 }
856 }
857 }
858 else
859 {
860 for (size_t i = 0; i < expdim; ++i)
861 {
862 Vmath::Smul(nq, gmat[i][0], velocity[0] + offset, 1,
863 tmp = stdVelocity[i] + offset, 1);
864 Vmath::Smul(nq, gmat[i][0], soundspeed + offset, 1,
865 tmp = stdSoundSpeed[i] + offset, 1);
866 for (size_t j = 1; j < expdim; ++j)
867 {
868 Vmath::Svtvp(nq, gmat[expdim * j + i][0],
869 velocity[j] + offset, 1,
870 stdVelocity[i] + offset, 1,
871 tmp = stdVelocity[i] + offset, 1);
872 Vmath::Svtvp(nq, gmat[expdim * j + i][0],
873 soundspeed + offset, 1,
874 stdSoundSpeed[i] + offset, 1,
875 tmp = stdSoundSpeed[i] + offset, 1);
876 }
877 }
878 }
879
880 NekDouble vel;
881 for (size_t i = 0; i < nq; ++i)
882 {
883 NekDouble pntVelocity = 0.0;
884 for (size_t j = 0; j < expdim; ++j)
885 {
886 // Add sound speed
887 vel = std::abs(stdVelocity[j][offset + i]) +
888 SpeedSoundFactor * std::abs(stdSoundSpeed[j][offset + i]);
889 pntVelocity += vel * vel;
890 }
891 pntVelocity = sqrt(pntVelocity);
892 if (pntVelocity > stdV[el])
893 {
894 stdV[el] = pntVelocity;
895 }
896 }
897 }
898
899 return stdV;
900}
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:231
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:60
@ eDeformed
Geometry is curved or has non-constant factors.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220

References tinysimd::abs(), Nektar::SpatialDomains::eDeformed, Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::ALEHelper::m_gridVelocity, Nektar::SolverUtils::EquationSystem::m_spacedim, m_varConv, Vmath::Smul(), tinysimd::sqrt(), Vmath::Svtvp(), Vmath::Vmul(), Vmath::Vsub(), and Vmath::Vvtvp().

◆ v_GetPressure() [1/2]

MultiRegions::ExpListSharedPtr Nektar::CompressibleFlowSystem::v_GetPressure ( void  )
inlineoverrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 197 of file CompressibleFlowSystem.h.

198 {
199 ASSERTL0(false, "This function is not valid for this class");
201 return null;
202 }
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.

References ASSERTL0.

◆ v_GetPressure() [2/2]

void Nektar::CompressibleFlowSystem::v_GetPressure ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, NekDouble > &  pressure 
)
overrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 1049 of file CompressibleFlowSystem.cpp.

1052{
1053 m_varConv->GetPressure(physfield, pressure);
1054}

References m_varConv, and CG_Iterations::pressure.

◆ v_GetTimeStep()

NekDouble Nektar::CompressibleFlowSystem::v_GetTimeStep ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray)
overrideprotectedvirtual

Calculate the maximum timestep subject to CFL restrictions.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 644 of file CompressibleFlowSystem.cpp.

646{
647 int nElements = m_fields[0]->GetExpSize();
648 Array<OneD, NekDouble> tstep(nElements, 0.0);
649
650 GetElmtTimeStep(inarray, tstep);
651
652 // Get the minimum time-step limit and return the time-step
653 NekDouble TimeStep = Vmath::Vmin(nElements, tstep, 1);
654 m_comm->GetSpaceComm()->AllReduce(TimeStep, LibUtilities::ReduceMin);
655
656 return TimeStep;
657}
LibUtilities::CommSharedPtr m_comm
Communicator.
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.hpp:725

References GetElmtTimeStep(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::LibUtilities::ReduceMin, and Vmath::Vmin().

◆ v_GetVelocity()

void Nektar::CompressibleFlowSystem::v_GetVelocity ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  velocity 
)
overrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 1069 of file CompressibleFlowSystem.cpp.

1072{
1073 m_varConv->GetVelocityVector(physfield, velocity);
1074}

References m_varConv.

◆ v_HasConstantDensity()

bool Nektar::CompressibleFlowSystem::v_HasConstantDensity ( )
inlineoverrideprotectedvirtual

Implements Nektar::SolverUtils::FluidInterface.

Definition at line 118 of file CompressibleFlowSystem.h.

119 {
120 return false;
121 }

◆ v_InitObject()

void Nektar::CompressibleFlowSystem::v_InitObject ( bool  DeclareFields = true)
overrideprotectedvirtual

Initialization object for CompressibleFlowSystem class.

Reimplemented from Nektar::SolverUtils::AdvectionSystem.

Reimplemented in Nektar::NavierStokesCFE, Nektar::CFSImplicit, Nektar::EulerCFE, Nektar::EulerImplicitCFE, Nektar::NavierStokesCFEAxisym, and Nektar::NavierStokesImplicitCFE.

Definition at line 54 of file CompressibleFlowSystem.cpp.

55{
56 AdvectionSystem::v_InitObject(DeclareFields);
57
58 for (size_t i = 0; i < m_fields.size(); i++)
59 {
60 // Use BwdTrans to make sure initial condition is in solution space
61 m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
62 m_fields[i]->UpdatePhys());
63 }
64
67
68 ASSERTL0(m_session->DefinesSolverInfo("UPWINDTYPE"),
69 "No UPWINDTYPE defined in session.");
70
71 // Do not forwards transform initial condition
72 m_homoInitialFwd = false;
73
74 // Set up locations of velocity vector.
75 m_vecLocs = Array<OneD, Array<OneD, NekDouble>>(1);
76 m_vecLocs[0] = Array<OneD, NekDouble>(m_spacedim);
77 for (int i = 0; i < m_spacedim; ++i)
78 {
79 m_vecLocs[0][i] = 1 + i;
80 }
81
82 // Loading parameters from session file
84
85 // Setting up advection and diffusion operators
87
88 // Create artificial diffusion with laplacian operator
89 if (m_shockCaptureType == "NonSmooth")
90 {
93 }
94
95 // Forcing terms for the sponge region
97 m_fields, m_fields.size());
98
99 // User-defined boundary conditions
100 size_t cnt = 0;
101 for (size_t n = 0; n < (size_t)m_fields[0]->GetBndConditions().size(); ++n)
102 {
103 std::string type = m_fields[0]->GetBndConditions()[n]->GetUserDefined();
104
105 if (m_fields[0]->GetBndConditions()[n]->GetBoundaryConditionType() ==
107 {
108 continue;
109 }
110
111 if (!type.empty())
112 {
115 m_spacedim, n, cnt));
116 }
117 cnt += m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
118 }
119
122
124}
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
void InitAdvection()
Create advection and diffusion objects for CFS.
void SetBoundaryConditionsBwdWeight()
Set up a weight on physical boundaries for boundary condition applications.
void InitialiseParameters()
Load CFS parameters from the session file.
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Initialisation object for EquationSystem.
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:118
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
ArtificialDiffusionFactory & GetArtificialDiffusionFactory()
Declaration of the artificial diffusion factory singleton.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::SpatialDomains::ePeriodic, Nektar::GetArtificialDiffusionFactory(), Nektar::GetCFSBndCondFactory(), InitAdvection(), InitialiseParameters(), Nektar::SolverUtils::Forcing::Load(), m_artificialDiffusion, m_bndConds, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, Nektar::SolverUtils::EquationSystem::m_graph, Nektar::SolverUtils::ALEHelper::m_gridVelocityTrace, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_session, m_shockCaptureType, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, m_varConv, m_vecLocs, SetBoundaryConditionsBwdWeight(), and Nektar::SolverUtils::AdvectionSystem::v_InitObject().

Referenced by Nektar::NavierStokesCFE::v_InitObject(), Nektar::CFSImplicit::v_InitObject(), and Nektar::EulerCFE::v_InitObject().

◆ v_SetInitialConditions()

void Nektar::CompressibleFlowSystem::v_SetInitialConditions ( NekDouble  initialtime = 0.0,
bool  dumpInitialConditions = true,
const int  domain = 0 
)
overrideprotectedvirtual

Set up logic for residual calculation.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 684 of file CompressibleFlowSystem.cpp.

687{
688 if (m_session->DefinesSolverInfo("ICTYPE") &&
689 boost::iequals(m_session->GetSolverInfo("ICTYPE"), "IsentropicVortex"))
690 {
691 // Forward transform to fill the coefficient space
692 for (int i = 0; i < m_fields.size(); ++i)
693 {
694 EvaluateIsentropicVortex(i, m_fields[i]->UpdatePhys(), initialtime);
695 m_fields[i]->SetPhysState(true);
696 m_fields[i]->FwdTrans(m_fields[i]->GetPhys(),
697 m_fields[i]->UpdateCoeffs());
698 }
699 }
700 else
701 {
702 EquationSystem::v_SetInitialConditions(initialtime, false);
703 m_nchk--; // Note: m_nchk has been incremented in EquationSystem.
704
705 // insert white noise in initial condition
706 NekDouble Noise;
707 int phystot = m_fields[0]->GetTotPoints();
708 Array<OneD, NekDouble> noise(phystot);
709
710 m_session->LoadParameter("Noise", Noise, 0.0);
711 int m_nConvectiveFields = m_fields.size();
712
713 if (Noise > 0.0)
714 {
715 int seed = -m_comm->GetSpaceComm()->GetRank() * m_nConvectiveFields;
716 for (int i = 0; i < m_nConvectiveFields; i++)
717 {
718 Vmath::FillWhiteNoise(phystot, Noise, noise, 1, seed);
719 --seed;
720 Vmath::Vadd(phystot, m_fields[i]->GetPhys(), 1, noise, 1,
721 m_fields[i]->UpdatePhys(), 1);
722 m_fields[i]->FwdTransLocalElmt(m_fields[i]->GetPhys(),
723 m_fields[i]->UpdateCoeffs());
724 }
725 }
726 }
727
728 if (dumpInitialConditions && m_nchk == 0 && m_checksteps &&
729 !m_comm->IsParallelInTime())
730 {
732 }
733 else if (dumpInitialConditions && m_nchk == 0 && m_comm->IsParallelInTime())
734 {
735 std::string newdir = m_sessionName + ".pit";
736 if (!fs::is_directory(newdir))
737 {
738 fs::create_directory(newdir);
739 }
740 if (m_comm->GetTimeComm()->GetRank() == 0)
741 {
742 WriteFld(newdir + "/" + m_sessionName + "_0.fld");
743 }
744 }
745 m_nchk++;
746}
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
SOLVER_UTILS_EXPORT void Checkpoint_Output(const int n)
Write checkpoint file of m_fields.
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
std::string m_sessionName
Name of the session.
int m_nchk
Number of checkpoints written so far.
int m_checksteps
Number of steps between checkpoints.
void FillWhiteNoise(int n, const T eps, T *x, const int incx, int outseed)
Fills a vector with white noise.
Definition: Vmath.cpp:154

References Nektar::SolverUtils::EquationSystem::Checkpoint_Output(), EvaluateIsentropicVortex(), Vmath::FillWhiteNoise(), Nektar::SolverUtils::EquationSystem::m_checksteps, Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_nchk, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_sessionName, Nektar::SolverUtils::EquationSystem::v_SetInitialConditions(), Vmath::Vadd(), and Nektar::SolverUtils::EquationSystem::WriteFld().

◆ v_SteadyStateResidual()

void Nektar::CompressibleFlowSystem::v_SteadyStateResidual ( int  step,
Array< OneD, NekDouble > &  L2 
)
overrideprotectedvirtual

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 1076 of file CompressibleFlowSystem.cpp.

1078{
1079 const size_t nPoints = GetTotPoints();
1080 const size_t nFields = m_fields.size();
1081 Array<OneD, Array<OneD, NekDouble>> rhs(nFields);
1082 Array<OneD, Array<OneD, NekDouble>> inarray(nFields);
1083 for (size_t i = 0; i < nFields; ++i)
1084 {
1085 rhs[i] = Array<OneD, NekDouble>(nPoints, 0.0);
1086 inarray[i] = m_fields[i]->UpdatePhys();
1087 }
1088
1089 DoOdeRhs(inarray, rhs, m_time);
1090
1091 // Holds L2 errors.
1092 Array<OneD, NekDouble> tmp;
1093 Array<OneD, NekDouble> RHSL2(nFields);
1094 Array<OneD, NekDouble> residual(nFields);
1095
1096 for (size_t i = 0; i < nFields; ++i)
1097 {
1098 tmp = rhs[i];
1099
1100 Vmath::Vmul(nPoints, tmp, 1, tmp, 1, tmp, 1);
1101 residual[i] = Vmath::Vsum(nPoints, tmp, 1);
1102 }
1103
1104 m_comm->GetSpaceComm()->AllReduce(residual, LibUtilities::ReduceSum);
1105
1106 NekDouble onPoints = 1.0 / NekDouble(nPoints);
1107 for (size_t i = 0; i < nFields; ++i)
1108 {
1109 L2[i] = sqrt(residual[i] * onPoints);
1110 }
1111}
NekDouble m_time
Current time of simulation.
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.hpp:608

References DoOdeRhs(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_time, Nektar::LibUtilities::ReduceSum, tinysimd::sqrt(), Vmath::Vmul(), and Vmath::Vsum().

◆ v_SupportsShockCaptType()

virtual bool Nektar::CompressibleFlowSystem::v_SupportsShockCaptType ( const std::string  type) const
protectedpure virtual

Friends And Related Function Documentation

◆ MemoryManager< CompressibleFlowSystem >

friend class MemoryManager< CompressibleFlowSystem >
friend

Definition at line 1 of file CompressibleFlowSystem.h.

Member Data Documentation

◆ m_artificialDiffusion

ArtificialDiffusionSharedPtr Nektar::CompressibleFlowSystem::m_artificialDiffusion
protected

◆ m_bndConds

std::vector<CFSBndCondSharedPtr> Nektar::CompressibleFlowSystem::m_bndConds
protected

◆ m_bndEvaluateTime

NekDouble Nektar::CompressibleFlowSystem::m_bndEvaluateTime
protected

◆ m_diffusion

SolverUtils::DiffusionSharedPtr Nektar::CompressibleFlowSystem::m_diffusion
protected

◆ m_filterAlpha

NekDouble Nektar::CompressibleFlowSystem::m_filterAlpha
protected

Definition at line 80 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_filterCutoff

NekDouble Nektar::CompressibleFlowSystem::m_filterCutoff
protected

Definition at line 82 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_filterExponent

NekDouble Nektar::CompressibleFlowSystem::m_filterExponent
protected

Definition at line 81 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_forcing

std::vector<SolverUtils::ForcingSharedPtr> Nektar::CompressibleFlowSystem::m_forcing
protected

◆ m_gamma

NekDouble Nektar::CompressibleFlowSystem::m_gamma
protected

◆ m_muav

Array<OneD, NekDouble> Nektar::CompressibleFlowSystem::m_muav
protected

Definition at line 89 of file CompressibleFlowSystem.h.

◆ m_muavTrace

Array<OneD, NekDouble> Nektar::CompressibleFlowSystem::m_muavTrace
protected

Definition at line 92 of file CompressibleFlowSystem.h.

◆ m_shockCaptureType

std::string Nektar::CompressibleFlowSystem::m_shockCaptureType
protected

◆ m_useFiltering

bool Nektar::CompressibleFlowSystem::m_useFiltering
protected

Definition at line 83 of file CompressibleFlowSystem.h.

Referenced by DoOdeProjection(), and InitialiseParameters().

◆ m_useLocalTimeStep

bool Nektar::CompressibleFlowSystem::m_useLocalTimeStep
protected

◆ m_varConv

VariableConverterSharedPtr Nektar::CompressibleFlowSystem::m_varConv
protected

◆ m_vecLocs

Array<OneD, Array<OneD, NekDouble> > Nektar::CompressibleFlowSystem::m_vecLocs
protected

Definition at line 75 of file CompressibleFlowSystem.h.

Referenced by GetVecLocs(), and v_InitObject().