Nektar++
Loading...
Searching...
No Matches
Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | Friends | List of all members
Nektar::LinearSWE Class Reference

#include <LinearSWE.h>

Inheritance diagram for Nektar::LinearSWE:
[legend]

Static Public Member Functions

static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class.
 
- Static Public Member Functions inherited from Nektar::ShallowWaterSystem
static SolverUtils::EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class.
 

Static Public Attributes

static std::string className
 Name of class.
 
- Static Public Attributes inherited from Nektar::ShallowWaterSystem
static std::string className
 Name of class.
 
- Static Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
static std::string cmdSetStartTime
 
static std::string cmdSetStartChkNum
 

Protected Member Functions

 LinearSWE (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
 ~LinearSWE () override=default
 
void v_InitObject (bool DeclareFields=true) override
 Initialisation object for EquationSystem.
 
void v_DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time) override
 
void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Virtual function for generating summary information.
 
void GetFluxVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 
void GetVelocityVector (const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
 Compute the velocity field \( \mathbf{v} \) given the momentum \( h\mathbf{v} \).
 
void CopyBoundaryTrace (const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
 
const Array< OneD, NekDouble > & GetDepthFwd ()
 
const Array< OneD, NekDouble > & GetDepthBwd ()
 
- Protected Member Functions inherited from Nektar::ShallowWaterSystem
 ShallowWaterSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
 ~ShallowWaterSystem () override=default
 
void v_InitObject (bool DeclareFields=true) override
 Initialisation object for EquationSystem.
 
void v_GenerateSummary (SolverUtils::SummaryList &s) override
 Virtual function for generating summary information.
 
void InitialiseNonlinSysSolver (void)
 
void DoImplicitSolve (const Array< OneD, const Array< OneD, NekDouble > > &inpnts, Array< OneD, Array< OneD, NekDouble > > &outpnt, const NekDouble time, const NekDouble lambda)
 
void DoImplicitSolve1D (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out)
 
void CalcRefValues (const Array< OneD, const NekDouble > &inarray)
 
void NonlinSysEvaluator1D (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const bool &flag)
 
void NonlinSysEvaluator (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &out)
 
void MatrixMultiplyMatrixFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out, const bool &flag)
 
void DoNullPrecon (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const bool &flag)
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 
void SetBoundaryConditions (const Array< OneD, const Array< OneD, NekDouble > > &physarray, NekDouble time)
 
void WallBoundary2D (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd)
 
void AddCoriolis (const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
void PrimitiveToConservative ()
 
void ConservativeToPrimitive ()
 
NekDouble GetGravity ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals ()
 
const Array< OneD, NekDouble > & GetDepth ()
 
bool IsConstantDepth ()
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members.
 
SOLVER_UTILS_EXPORT void v_InitObject (bool DeclareField=true) override
 Init object for UnsteadySystem class.
 
SOLVER_UTILS_EXPORT void v_DoSolve () override
 Solves an unsteady problem.
 
virtual SOLVER_UTILS_EXPORT void v_PrintStatusInformation (const int step, const NekDouble cpuTime)
 Print Status Information.
 
virtual SOLVER_UTILS_EXPORT void v_PrintSummaryStatistics (const NekDouble intTime)
 Print Summary Statistics.
 
SOLVER_UTILS_EXPORT void v_DoInitialise (bool dumpInitialConditions=true) override
 Sets up initial conditions.
 
SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s) override
 Print a summary of time stepping parameters.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop.
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
virtual SOLVER_UTILS_EXPORT bool v_UpdateTimeStepCheck ()
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control.
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity.
 
SOLVER_UTILS_EXPORT void DoDummyProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Perform dummy projection.
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution.
 
virtual SOLVER_UTILS_EXPORT NekDouble v_H1Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the H_1 error computation between fields and a given exact solution.
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space.
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space.
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp (void)
 Virtual function to identify if operator is negated in DoSolve.
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Private Attributes

Array< OneD, NekDoublem_dFwd
 Still water depth traces.
 
Array< OneD, NekDoublem_dBwd
 

Friends

class MemoryManager< LinearSWE >
 

Additional Inherited Members

- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT ~UnsteadySystem () override=default
 Destructor.
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable.
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeSharedPtrGetTimeIntegrationScheme ()
 Returns the time integration scheme.
 
SOLVER_UTILS_EXPORT LibUtilities::TimeIntegrationSchemeOperatorsGetTimeIntegrationSchemeOperators ()
 Returns the time integration scheme operators.
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor.
 
SOLVER_UTILS_EXPORT void InitObject (bool DeclareField=true)
 Initialises the members of this object.
 
SOLVER_UTILS_EXPORT void DoInitialise (bool dumpInitialConditions=true)
 Perform any initialisation necessary before solving the problem.
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem.
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space.
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space.
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve.
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name.
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name.
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name.
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available.
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics.
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda.
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name.
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields.
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution.
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution.
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields.
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation.
 
SOLVER_UTILS_EXPORT NekDouble H1Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the H1 error between fields and a given exact solution.
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf].
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields.
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields.
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields.
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename.
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename.
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file.
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains.
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file.
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file.
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary.
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated.
 
SOLVER_UTILS_EXPORT NekDouble GetTime ()
 Return final time.
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, const Array< OneD, const NekDouble > &input)
 
SOLVER_UTILS_EXPORT Array< OneD, NekDouble > & UpdatePhysField (const int i)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT int GetInfoSteps ()
 
SOLVER_UTILS_EXPORT void SetInfoSteps (int num)
 
SOLVER_UTILS_EXPORT void SetIterationNumberPIT (int num)
 
SOLVER_UTILS_EXPORT void SetWindowNumberPIT (int num)
 
SOLVER_UTILS_EXPORT Array< OneD, const Array< OneD, NekDouble > > GetTraceNormals ()
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetTimeStep (const NekDouble timestep)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time.
 
SOLVER_UTILS_EXPORT bool NegatedOp ()
 Identify if operator is negated in DoSolve.
 
- Public Member Functions inherited from Nektar::SolverUtils::ALEHelper
virtual ~ALEHelper ()=default
 
virtual SOLVER_UTILS_EXPORT void v_ALEInitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
SOLVER_UTILS_EXPORT void InitObject (int spaceDim, Array< OneD, MultiRegions::ExpListSharedPtr > &fields)
 
virtual SOLVER_UTILS_EXPORT void v_UpdateGridVelocity (const NekDouble &time)
 
virtual SOLVER_UTILS_EXPORT void v_ALEPreMultiplyMass (Array< OneD, Array< OneD, NekDouble > > &fields)
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMass (Array< OneD, Array< OneD, NekDouble > > &traceNormals, Array< OneD, Array< OneD, NekDouble > > &fields, NekDouble time)
 Update m_fields with u^n by multiplying by inverse mass matrix. That's then used in e.g. checkpoint output and L^2 error calculation.
 
SOLVER_UTILS_EXPORT void ALEDoElmtInvMassBwdTrans (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
 
SOLVER_UTILS_EXPORT void MoveMesh (const NekDouble &time, Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
SOLVER_UTILS_EXPORT void ResetMatricesNormal (Array< OneD, Array< OneD, NekDouble > > &traceNormals)
 
SOLVER_UTILS_EXPORT void UpdateNormalsFlag ()
 
const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocity ()
 
bool & GetUpdateNormalsFlag ()
 
SOLVER_UTILS_EXPORT const Array< OneD, const Array< OneD, NekDouble > > & GetGridVelocityTrace ()
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGridVelocity (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void ExtraFldOutputGrid (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Protected Attributes inherited from Nektar::ShallowWaterSystem
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
SolverUtils::AdvectionSharedPtr m_advection
 
SolverUtils::DiffusionSharedPtr m_diffusion
 
int m_TotNewtonIts = 0
 
int m_TotLinIts = 0
 
int m_TotImpStages = 0
 
NekDouble m_jacobiFreeEps = 5.0E-08
 
NekDouble m_bndEvaluateTime = 0.0
 
NekDouble m_TimeIntegLambda = 0.0
 
NekDouble m_inArrayNorm = -1.0
 
LibUtilities::NekNonlinSysIterSharedPtr m_nonlinsol
 
bool m_constantDepth
 Indicates if constant depth case.
 
NekDouble m_g
 Acceleration of gravity.
 
Array< OneD, NekDoublem_depth
 Still water depth.
 
Array< OneD, Array< OneD, NekDouble > > m_bottomSlope
 
Array< OneD, NekDoublem_coriolis
 Coriolis force.
 
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme.
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use.
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check.
 
std::vector< int > m_intVariables
 
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1).
 
NekDouble m_CFLGrowth
 CFL growth rate.
 
NekDouble m_CFLEnd
 Maximun cfl in cfl growth.
 
int m_abortSteps
 Number of steps between checks for abort conditions.
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used.
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used.
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used.
 
int m_steadyStateSteps
 Check for steady state at step interval.
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at.
 
int m_filtersInfosteps
 Number of time steps between outputting filters information.
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state.
 
std::ofstream m_errFile
 
NekDouble m_epsilon
 Diffusion coefficient.
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator.
 
bool m_verbose
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader.
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions.
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output.
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables.
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object.
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh.
 
std::string m_sessionName
 Name of the session.
 
NekDouble m_time
 Current time of simulation.
 
int m_initialStep
 Number of the step where the simulation should begin.
 
NekDouble m_fintime
 Finish time of the simulation.
 
NekDouble m_timestep
 Time step size.
 
NekDouble m_lambda
 Lambda constant in real system if one required.
 
NekDouble m_checktime
 Time between checkpoints.
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far.
 
int m_steps
 Number of steps to take.
 
int m_checksteps
 Number of steps between checkpoints.
 
int m_infosteps
 Number of time steps between outputting status information.
 
int m_iterPIT = 0
 Number of parallel-in-time time iteration.
 
int m_windowPIT = 0
 Index of windows for parallel-in-time time iteration.
 
int m_spacedim
 Spatial dimension (>= expansion dim).
 
int m_expdim
 Expansion dimension.
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used.
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used.
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used.
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform.
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations.
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous.
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction.
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity.
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields.
 
Array< OneD, NekDoublem_movingFrameData
 Moving reference frame status in the inertial frame X, Y, Z, Theta_x, Theta_y, Theta_z, U, V, W, Omega_x, Omega_y, Omega_z, A_x, A_y, A_z, DOmega_x, DOmega_y, DOmega_z, pivot_x, pivot_y, pivot_z.
 
std::vector< std::string > m_strFrameData
 variable name in m_movingFrameData
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error.
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous)
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous)
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous)
 
int m_npointsX
 number of points in X direction (if homogeneous)
 
int m_npointsY
 number of points in Y direction (if homogeneous)
 
int m_npointsZ
 number of points in Z direction (if homogeneous)
 
int m_HomoDirec
 number of homogenous directions
 
- Protected Attributes inherited from Nektar::SolverUtils::ALEHelper
Array< OneD, MultiRegions::ExpListSharedPtrm_fieldsALE
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocity
 
Array< OneD, Array< OneD, NekDouble > > m_gridVelocityTrace
 
std::vector< ALEBaseShPtrm_ALEs
 
bool m_ALESolver = false
 
bool m_meshDistorted = false
 
bool m_implicitALESolver = false
 
bool m_updateNormals = false
 
NekDouble m_prevStageTime = 0.0
 
int m_spaceDim
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 
static std::string projectionTypeLookupIds []
 

Detailed Description

Definition at line 43 of file LinearSWE.h.

Constructor & Destructor Documentation

◆ LinearSWE()

Nektar::LinearSWE::LinearSWE ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Definition at line 49 of file LinearSWE.cpp.

51 : ShallowWaterSystem(pSession, pGraph)
52{
53}
ShallowWaterSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)

◆ ~LinearSWE()

Nektar::LinearSWE::~LinearSWE ( )
overrideprotecteddefault

Member Function Documentation

◆ CopyBoundaryTrace()

void Nektar::LinearSWE::CopyBoundaryTrace ( const Array< OneD, const NekDouble > &  Fwd,
Array< OneD, NekDouble > &  Bwd 
)
protected

Definition at line 287 of file LinearSWE.cpp.

289{
290 int cnt = 0;
291
292 // loop over Boundary Regions
293 for (int bcRegion = 0; bcRegion < m_fields[0]->GetBndConditions().size();
294 ++bcRegion)
295 {
296 if (m_fields[0]
297 ->GetBndConditions()[bcRegion]
298 ->GetBoundaryConditionType() == SpatialDomains::ePeriodic)
299 {
300 continue;
301 }
302
303 // Copy the forward trace of the field to the backward trace
304 int id2, npts;
305
306 for (int e = 0;
307 e < m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
308 ++e)
309 {
310 npts = m_fields[0]
311 ->GetBndCondExpansions()[bcRegion]
312 ->GetExp(e)
313 ->GetTotPoints();
314 id2 = m_fields[0]->GetTrace()->GetPhys_Offset(
315 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt +
316 e));
317
318 Vmath::Vcopy(npts, &Fwd[id2], 1, &Bwd[id2], 1);
319 }
320
321 cnt += m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
322 }
323}
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetExpSize()
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition Vmath.hpp:825

References Nektar::SpatialDomains::ePeriodic, Nektar::SolverUtils::EquationSystem::GetExpSize(), Nektar::SolverUtils::EquationSystem::m_fields, and Vmath::Vcopy().

Referenced by v_InitObject().

◆ create()

static SolverUtils::EquationSystemSharedPtr Nektar::LinearSWE::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 49 of file LinearSWE.h.

52 {
55 p->InitObject();
56 return p;
57 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
std::vector< double > p(NPUPPER)

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetDepthBwd()

const Array< OneD, NekDouble > & Nektar::LinearSWE::GetDepthBwd ( )
inlineprotected

Definition at line 92 of file LinearSWE.h.

93 {
94 return m_dBwd;
95 }
Array< OneD, NekDouble > m_dBwd
Definition LinearSWE.h:100

References m_dBwd.

Referenced by v_InitObject().

◆ GetDepthFwd()

const Array< OneD, NekDouble > & Nektar::LinearSWE::GetDepthFwd ( )
inlineprotected

Definition at line 87 of file LinearSWE.h.

88 {
89 return m_dFwd;
90 }
Array< OneD, NekDouble > m_dFwd
Still water depth traces.
Definition LinearSWE.h:99

References m_dFwd.

Referenced by v_InitObject().

◆ GetFluxVector()

void Nektar::LinearSWE::GetFluxVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Definition at line 240 of file LinearSWE.cpp.

243{
244 int nq = m_fields[0]->GetTotPoints();
245
246 NekDouble g = m_g;
247
248 // Flux vector for the mass equation
249 for (int i = 0; i < m_spacedim; ++i)
250 {
251 Vmath::Vmul(nq, m_depth, 1, physfield[i + 1], 1, flux[0][i], 1);
252 }
253
254 // Flux vector for the momentum equations
255 for (int i = 0; i < m_spacedim; ++i)
256 {
257 for (int j = 0; j < m_spacedim; ++j)
258 {
259 // must zero fluxes as not initialised to zero in AdvectionWeakDG
260 Vmath::Zero(nq, flux[i + 1][j], 1);
261 }
262
263 // Add (g eta) to appropriate field
264 Vmath::Smul(nq, g, physfield[0], 1, flux[i + 1][i], 1);
265 }
266}
NekDouble m_g
Acceleration of gravity.
Array< OneD, NekDouble > m_depth
Still water depth.
int m_spacedim
Spatial dimension (>= expansion dim).
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition Vmath.hpp:72
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition Vmath.hpp:100
void Zero(int n, T *x, const int incx)
Zero vector.
Definition Vmath.hpp:273

References Nektar::ShallowWaterSystem::m_depth, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::ShallowWaterSystem::m_g, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vmul(), and Vmath::Zero().

Referenced by v_DoOdeRhs(), and v_InitObject().

◆ GetVelocityVector()

void Nektar::LinearSWE::GetVelocityVector ( const Array< OneD, const Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, NekDouble > > &  velocity 
)
protected

Compute the velocity field \( \mathbf{v} \) given the momentum \( h\mathbf{v} \).

Parameters
physfieldVelocity field.
velocityVelocity field.

Definition at line 275 of file LinearSWE.cpp.

278{
279 const int npts = physfield[0].size();
280
281 for (int i = 0; i < m_spacedim; ++i)
282 {
283 Vmath::Vcopy(npts, physfield[1 + i], 1, velocity[i], 1);
284 }
285}

References Nektar::SolverUtils::EquationSystem::m_spacedim, and Vmath::Vcopy().

◆ v_DoOdeRhs()

void Nektar::LinearSWE::v_DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
overrideprotectedvirtual

Reimplemented from Nektar::ShallowWaterSystem.

Definition at line 125 of file LinearSWE.cpp.

128{
129 int ndim = m_spacedim;
130 int nvariables = inarray.size();
131 int nq = GetTotPoints();
132
133 switch (m_projectionType)
134 {
136 {
137 //-------------------------------------------------------
138 // Compute the DG advection including the numerical flux
139 // by using SolverUtils/Advection
140 // Input and output in physical space
142 inarray, outarray, time);
143 //-------------------------------------------------------
144
145 //-------------------------------------------------------
146 // negate the outarray since moving terms to the rhs
147 for (int i = 0; i < nvariables; ++i)
148 {
149 Vmath::Neg(nq, outarray[i], 1);
150 }
151 //-------------------------------------------------------
152
153 //-------------------------------------------------
154 // Add "source terms"
155 // Input and output in physical space
156
157 // Coriolis forcing
158 if (m_coriolis.size() != 0)
159 {
160 AddCoriolis(inarray, outarray);
161 }
162 //-------------------------------------------------
163 }
164 break;
166 {
167 //-------------------------------------------------------
168 // Compute the fluxvector in physical space
169 Array<OneD, Array<OneD, Array<OneD, NekDouble>>> fluxvector(
170 nvariables);
171
172 for (int i = 0; i < nvariables; ++i)
173 {
174 fluxvector[i] = Array<OneD, Array<OneD, NekDouble>>(ndim);
175 for (int j = 0; j < ndim; ++j)
176 {
177 fluxvector[i][j] = Array<OneD, NekDouble>(nq);
178 }
179 }
180
181 LinearSWE::GetFluxVector(inarray, fluxvector);
182 //-------------------------------------------------------
183
184 //-------------------------------------------------------
185 // Take the derivative of the flux terms
186 // and negate the outarray since moving terms to the rhs
187 Array<OneD, NekDouble> tmp0(nq);
188 Array<OneD, NekDouble> tmp1(nq);
189
190 for (int i = 0; i < nvariables; ++i)
191 {
193 fluxvector[i][0], tmp0);
195 fluxvector[i][1], tmp1);
196 Vmath::Vadd(nq, tmp0, 1, tmp1, 1, outarray[i], 1);
197 Vmath::Neg(nq, outarray[i], 1);
198 }
199
200 //-------------------------------------------------
201 // Add "source terms"
202 // Input and output in physical space
203
204 // Coriolis forcing
205 if (m_coriolis.size() != 0)
206 {
207 AddCoriolis(inarray, outarray);
208 }
209 //-------------------------------------------------
210 }
211 break;
212 default:
213 ASSERTL0(false, "Unknown projection scheme for the LinearSWE");
214 break;
215 }
216}
#define ASSERTL0(condition, msg)
void GetFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
void AddCoriolis(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
SolverUtils::AdvectionSharedPtr m_advection
Array< OneD, NekDouble > m_coriolis
Coriolis force.
SOLVER_UTILS_EXPORT int GetTotPoints()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
MultiRegions::Direction const DirCartesianMap[]
Definition ExpList.h:87
static Array< OneD, Array< OneD, NekDouble > > NullNekDoubleArrayOfArray
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition Vmath.hpp:292
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition Vmath.hpp:180

References Nektar::ShallowWaterSystem::AddCoriolis(), ASSERTL0, Nektar::MultiRegions::DirCartesianMap, Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, GetFluxVector(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::ShallowWaterSystem::m_advection, Nektar::ShallowWaterSystem::m_coriolis, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Neg(), Nektar::NullNekDoubleArrayOfArray, and Vmath::Vadd().

Referenced by v_InitObject().

◆ v_GenerateSummary()

void Nektar::LinearSWE::v_GenerateSummary ( SolverUtils::SummaryList l)
overrideprotectedvirtual

Virtual function for generating summary information.

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 218 of file LinearSWE.cpp.

219{
221 if (m_session->DefinesSolverInfo("UpwindType"))
222 {
223 std::string UpwindType;
224 UpwindType = m_session->GetSolverInfo("UpwindType");
225 if (UpwindType == "LinearAverage")
226 {
227 SolverUtils::AddSummaryItem(s, "Riemann Solver", "Linear Average");
228 }
229 else if (UpwindType == "LinearHLL")
230 {
231 SolverUtils::AddSummaryItem(s, "Riemann Solver", "Linear HLL");
232 }
233 }
234 SolverUtils::AddSummaryItem(s, "Variables", "eta should be in field[0]");
235 SolverUtils::AddSummaryItem(s, "", "u should be in field[1]");
236 SolverUtils::AddSummaryItem(s, "", "v should be in field[2]");
237}
void v_GenerateSummary(SolverUtils::SummaryList &s) override
Virtual function for generating summary information.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition Misc.cpp:47

References Nektar::SolverUtils::AddSummaryItem(), Nektar::SolverUtils::EquationSystem::m_session, and Nektar::ShallowWaterSystem::v_GenerateSummary().

◆ v_InitObject()

void Nektar::LinearSWE::v_InitObject ( bool  DeclareFeld = true)
overrideprotectedvirtual

Initialisation object for EquationSystem.

Continuous field

Setting up the normals

Setting up the normals

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 55 of file LinearSWE.cpp.

56{
58
59 // Type of advection class to be used
60 switch (m_projectionType)
61 {
62 // Continuous field
64 {
65 // Do nothing
66 break;
67 }
68 // Discontinuous field
70 {
71 std::string advName;
72 std::string diffName;
73 std::string riemName;
74
75 //---------------------------------------------------------------
76 // Setting up advection and diffusion operators
77 m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
79 advName, advName);
80 m_advection->SetFluxVector(&LinearSWE::GetFluxVector, this);
81
82 // Setting up Riemann solver for advection operator
83 m_session->LoadSolverInfo("UpwindType", riemName, "NoSolver");
84 if ((riemName == "LinearHLL") && (m_constantDepth != true))
85 {
86 ASSERTL0(false, "LinearHLL only valid for constant depth");
87 }
90 riemName, m_session);
91
92 // Setting up parameters for advection operator Riemann solver
93 m_riemannSolver->SetParam("gravity", &LinearSWE::GetGravity, this);
94 m_riemannSolver->SetAuxVec("vecLocs", &LinearSWE::GetVecLocs, this);
95 m_riemannSolver->SetVector("N", &LinearSWE::GetNormals, this);
96
97 // The numerical flux for linear SWE requires depth information
98 int nTracePointsTot = m_fields[0]->GetTrace()->GetTotPoints();
99 m_dFwd = Array<OneD, NekDouble>(nTracePointsTot);
100 m_dBwd = Array<OneD, NekDouble>(nTracePointsTot);
101 m_fields[0]->GetFwdBwdTracePhys(m_depth, m_dFwd, m_dBwd);
103 m_riemannSolver->SetScalar("depthFwd", &LinearSWE::GetDepthFwd,
104 this);
105 m_riemannSolver->SetScalar("depthBwd", &LinearSWE::GetDepthBwd,
106 this);
107
108 // Concluding initialisation of advection operators
109 m_advection->SetRiemannSolver(m_riemannSolver);
110 m_advection->InitObject(m_session, m_fields);
111 break;
112 }
113 default:
114 {
115 ASSERTL0(false, "Unsupported projection type.");
116 break;
117 }
118 }
119
123}
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
const Array< OneD, NekDouble > & GetDepthBwd()
Definition LinearSWE.h:92
const Array< OneD, NekDouble > & GetDepthFwd()
Definition LinearSWE.h:87
void v_DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time) override
void CopyBoundaryTrace(const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
bool m_constantDepth
Indicates if constant depth case.
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inpnts, Array< OneD, Array< OneD, NekDouble > > &outpnt, const NekDouble time, const NekDouble lambda)
void v_InitObject(bool DeclareFields=true) override
Initialisation object for EquationSystem.
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition Advection.cpp:43
RiemannSolverFactory & GetRiemannSolverFactory()

References ASSERTL0, CopyBoundaryTrace(), Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineImplicitSolve(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), Nektar::ShallowWaterSystem::DoImplicitSolve(), Nektar::ShallowWaterSystem::DoOdeProjection(), Nektar::MultiRegions::eDiscontinuous, Nektar::MultiRegions::eGalerkin, Nektar::SolverUtils::GetAdvectionFactory(), GetDepthBwd(), GetDepthFwd(), GetFluxVector(), Nektar::ShallowWaterSystem::GetGravity(), Nektar::ShallowWaterSystem::GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::ShallowWaterSystem::GetVecLocs(), Nektar::ShallowWaterSystem::m_advection, Nektar::ShallowWaterSystem::m_constantDepth, m_dBwd, Nektar::ShallowWaterSystem::m_depth, m_dFwd, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, Nektar::ShallowWaterSystem::m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, v_DoOdeRhs(), and Nektar::ShallowWaterSystem::v_InitObject().

Friends And Related Symbol Documentation

◆ MemoryManager< LinearSWE >

friend class MemoryManager< LinearSWE >
friend

Definition at line 1 of file LinearSWE.h.

Member Data Documentation

◆ className

std::string Nektar::LinearSWE::className
static
Initial value:
=
"LinearSWE", LinearSWE::create,
"Linear shallow water equation in primitive variables.")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
Definition LinearSWE.h:49
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 60 of file LinearSWE.h.

◆ m_dBwd

Array<OneD, NekDouble> Nektar::LinearSWE::m_dBwd
private

Definition at line 100 of file LinearSWE.h.

Referenced by GetDepthBwd(), and v_InitObject().

◆ m_dFwd

Array<OneD, NekDouble> Nektar::LinearSWE::m_dFwd
private

Still water depth traces.

Definition at line 99 of file LinearSWE.h.

Referenced by GetDepthFwd(), and v_InitObject().