Nektar++
Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Member Functions | Private Attributes | Static Private Attributes | Friends | List of all members
Nektar::SolverUtils::DriverSteadyState Class Reference

#include <DriverSteadyState.h>

Inheritance diagram for Nektar::SolverUtils::DriverSteadyState:
[legend]

Static Public Member Functions

static DriverSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 
- Static Public Member Functions inherited from Nektar::SolverUtils::DriverModifiedArnoldi
static DriverSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of the class. More...
 
- Static Public Attributes inherited from Nektar::SolverUtils::DriverModifiedArnoldi
static std::string className
 Name of the class. More...
 

Protected Member Functions

SOLVER_UTILS_EXPORT DriverSteadyState (const LibUtilities::SessionReaderSharedPtr pSession, const SpatialDomains::MeshGraphSharedPtr pGraph)
 Constructor. More...
 
SOLVER_UTILS_EXPORT ~DriverSteadyState () override=default
 Destructor. More...
 
SOLVER_UTILS_EXPORT void v_InitObject (std::ostream &out=std::cout) override
 Initialises EquationSystem class members. More...
 
SOLVER_UTILS_EXPORT void v_Execute (std::ostream &out=std::cout) override
 Virtual function for solve implementation. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::DriverModifiedArnoldi
 DriverModifiedArnoldi (const LibUtilities::SessionReaderSharedPtr pSession, const SpatialDomains::MeshGraphSharedPtr pGraph)
 Constructor. More...
 
 ~DriverModifiedArnoldi () override=default
 Destructor. More...
 
void v_InitObject (std::ostream &out=std::cout) override
 Virtual function for initialisation implementation. More...
 
void v_Execute (std::ostream &out=std::cout) override
 Virtual function for solve implementation. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::DriverArnoldi
 DriverArnoldi (const LibUtilities::SessionReaderSharedPtr pSession, const SpatialDomains::MeshGraphSharedPtr pGraph)
 Constructor. More...
 
 ~DriverArnoldi () override=default
 Destructor. More...
 
void v_InitObject (std::ostream &out=std::cout) override
 Virtual function for initialisation implementation. More...
 
void v_Execute (std::ostream &out=std::cout) override
 Virtual function for solve implementation. More...
 
void CopyArnoldiArrayToField (Array< OneD, NekDouble > &array)
 Copy Arnoldi storage to fields. More...
 
void CopyFieldToArnoldiArray (Array< OneD, NekDouble > &array)
 Copy fields to Arnoldi storage. More...
 
void CopyFwdToAdj ()
 Copy the forward field to the adjoint system in transient growth calculations. More...
 
void WriteFld (std::string file, std::vector< Array< OneD, NekDouble > > coeffs)
 Write coefficients to file. More...
 
void WriteFld (std::string file, Array< OneD, NekDouble > coeffs)
 
void WriteEvs (std::ostream &evlout, const int k, const NekDouble real, const NekDouble imag, NekDouble resid=NekConstants::kNekUnsetDouble, bool DumpInverse=true)
 
void MaskInit ()
 Init mask. More...
 
void GetMaskInfo (std::vector< std::vector< LibUtilities::EquationSharedPtr > > &selectedDomains, std::set< int > &unselectedVariables)
 
SOLVER_UTILS_EXPORT void ArnoldiSummary (std::ostream &out)
 
- Protected Member Functions inherited from Nektar::SolverUtils::Driver
 Driver (const LibUtilities::SessionReaderSharedPtr pSession, const SpatialDomains::MeshGraphSharedPtr pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_InitObject (std::ostream &out=std::cout)
 Virtual function for initialisation implementation. More...
 
virtual SOLVER_UTILS_EXPORT void v_Execute (std::ostream &out=std::cout)=0
 Virtual function for solve implementation. More...
 

Private Member Functions

void PrintSummarySFD ()
 
void ConvergenceHistory (const Array< OneD, const Array< OneD, NekDouble > > &qBar1, const Array< OneD, const Array< OneD, NekDouble > > &q0, NekDouble &MaxNormDiff_q_qBar, NekDouble &MaxNormDiff_q1_q0)
 
void ComputeSFD (const int i, const Array< OneD, const Array< OneD, NekDouble > > &q0, const Array< OneD, const Array< OneD, NekDouble > > &qBar0, Array< OneD, Array< OneD, NekDouble > > &q1, Array< OneD, Array< OneD, NekDouble > > &qBar1)
 
void EvalEV_ScalarSFD (const NekDouble &X_input, const NekDouble &Delta_input, const std::complex< NekDouble > &alpha, NekDouble &MaxEV)
 
void GradientDescentMethod (const std::complex< NekDouble > &alpha, NekDouble &X_output, NekDouble &Delta_output)
 
void ReadEVfile (int &KrylovSubspaceDim, NekDouble &growthEV, NekDouble &frequencyEV)
 
void ComputeOptimization ()
 
void SetSFDOperator (const NekDouble X_input, const NekDouble Delta_input)
 

Private Attributes

int m_stepCounter
 
int m_Check
 
int m_Check_BaseFlow
 
NekDouble TOL
 
int m_infosteps
 
int m_checksteps
 
int NumVar_SFD
 
LibUtilities::Timer timer
 
NekDouble cpuTime
 
NekDouble totalTime
 
NekDouble elapsed
 
std::ofstream m_file
 
NekDouble m_Delta
 Definition of the SFD parameters: More...
 
NekDouble m_X
 
NekDouble m_dt
 
NekDouble M11
 Definition of the SFD operator. More...
 
NekDouble M12
 
NekDouble M21
 
NekDouble M22
 
NekDouble Diff_q_qBar
 
NekDouble Diff_q1_q0
 
bool FlowPartiallyConverged
 For adaptive SFD method. More...
 
NekDouble AdaptiveTOL
 
NekDouble AdaptiveTime
 
int m_NonConvergingStepsCounter
 
NekDouble GrowthRateEV
 
NekDouble FrequencyEV
 

Static Private Attributes

static std::string driverLookupId
 

Friends

class MemoryManager< DriverSteadyState >
 

Additional Inherited Members

- Public Member Functions inherited from Nektar::SolverUtils::DriverArnoldi
Array< OneD, NekDoubleGetRealEvl (void)
 
Array< OneD, NekDoubleGetImagEvl (void)
 
- Public Member Functions inherited from Nektar::SolverUtils::Driver
virtual ~Driver ()=default
 Destructor. More...
 
SOLVER_UTILS_EXPORT void InitObject (std::ostream &out=std::cout)
 Initialise Object. More...
 
SOLVER_UTILS_EXPORT void Execute (std::ostream &out=std::cout)
 Execute driver. More...
 
SOLVER_UTILS_EXPORT Array< OneD, EquationSystemSharedPtrGetEqu ()
 
- Protected Attributes inherited from Nektar::SolverUtils::DriverArnoldi
int m_kdim
 
int m_nvec
 Dimension of Krylov subspace. More...
 
int m_nits
 Number of vectors to test. More...
 
NekDouble m_evtol
 Maxmum number of iterations. More...
 
NekDouble m_period
 Tolerance of iterations. More...
 
bool m_timeSteppingAlgorithm
 Period of time stepping algorithm. More...
 
int m_infosteps
 underlying operator is time stepping More...
 
int m_nfields
 interval to dump information if required. More...
 
NekDouble m_realShift
 
NekDouble m_imagShift
 
int m_negatedOp
 
Array< OneD, NekDoublem_real_evl
 Operator in solve call is negated. More...
 
Array< OneD, NekDoublem_imag_evl
 
bool m_useMask
 
Array< OneD, NekDoublem_maskCoeffs
 
Array< OneD, NekDoublem_maskPhys
 
- Protected Attributes inherited from Nektar::SolverUtils::Driver
LibUtilities::CommSharedPtr m_comm
 Communication object. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 Session reader object. More...
 
LibUtilities::SessionReaderSharedPtr session_LinNS
 Coupling between SFD and arnoldi. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 MeshGraph object. More...
 
Array< OneD, EquationSystemSharedPtrm_equ
 Equation system to solve. More...
 
int m_nequ
 number of equations More...
 
enum EvolutionOperatorType m_EvolutionOperator
 Evolution Operator. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::DriverModifiedArnoldi
static std::string driverLookupId
 
- Static Protected Attributes inherited from Nektar::SolverUtils::Driver
static std::string evolutionOperatorLookupIds []
 
static std::string evolutionOperatorDef
 
static std::string driverDefault
 

Detailed Description

Definition at line 44 of file DriverSteadyState.h.

Constructor & Destructor Documentation

◆ DriverSteadyState()

Nektar::SolverUtils::DriverSteadyState::DriverSteadyState ( const LibUtilities::SessionReaderSharedPtr  pSession,
const SpatialDomains::MeshGraphSharedPtr  pGraph 
)
protected

Constructor.

Definition at line 56 of file DriverSteadyState.cpp.

59 : DriverModifiedArnoldi(pSession, pGraph)
60{
61}
DriverModifiedArnoldi(const LibUtilities::SessionReaderSharedPtr pSession, const SpatialDomains::MeshGraphSharedPtr pGraph)
Constructor.

◆ ~DriverSteadyState()

SOLVER_UTILS_EXPORT Nektar::SolverUtils::DriverSteadyState::~DriverSteadyState ( )
overrideprotecteddefault

Destructor.

Member Function Documentation

◆ ComputeOptimization()

void Nektar::SolverUtils::DriverSteadyState::ComputeOptimization ( )
private

Definition at line 368 of file DriverSteadyState.cpp.

369{
370 NekDouble growthEV(0.0);
371 NekDouble frequencyEV(0.0);
372
373 // m_kdim is the dimension of Krylov subspace (defined in the xml file and
374 // used in DriverArnoldi.cpp)
375 ReadEVfile(m_kdim, growthEV, frequencyEV);
376
377 cout << "\n\tgrowthEV = " << growthEV << endl;
378 cout << "\tfrequencyEV = " << frequencyEV << endl;
379
380 complex<NekDouble> ApproxEV = polar(exp(growthEV), frequencyEV);
381
382 NekDouble X_new = m_X;
383 NekDouble Delta_new = m_Delta;
384
385 GradientDescentMethod(ApproxEV, X_new, Delta_new);
386
387 m_X = X_new;
388 m_Delta = Delta_new;
389
391}
NekDouble m_Delta
Definition of the SFD parameters:
void SetSFDOperator(const NekDouble X_input, const NekDouble Delta_input)
void GradientDescentMethod(const std::complex< NekDouble > &alpha, NekDouble &X_output, NekDouble &Delta_output)
void ReadEVfile(int &KrylovSubspaceDim, NekDouble &growthEV, NekDouble &frequencyEV)
double NekDouble

References GradientDescentMethod(), m_Delta, Nektar::SolverUtils::DriverArnoldi::m_kdim, m_X, ReadEVfile(), and SetSFDOperator().

Referenced by v_Execute().

◆ ComputeSFD()

void Nektar::SolverUtils::DriverSteadyState::ComputeSFD ( const int  i,
const Array< OneD, const Array< OneD, NekDouble > > &  q0,
const Array< OneD, const Array< OneD, NekDouble > > &  qBar0,
Array< OneD, Array< OneD, NekDouble > > &  q1,
Array< OneD, Array< OneD, NekDouble > > &  qBar1 
)
private

Encapsulated SFD method

Definition at line 348 of file DriverSteadyState.cpp.

353{
354 q1[i] = Array<OneD, NekDouble>(m_equ[m_nequ - 1]->GetTotPoints(), 0.0);
355 qBar1[i] = Array<OneD, NekDouble>(m_equ[m_nequ - 1]->GetTotPoints(), 0.0);
356
357 /// Encapsulated SFD method
358 Vmath::Svtvp(q1[i].size(), M11, q0[i], 1, q1[i], 1, q1[i], 1);
359 Vmath::Svtvp(q1[i].size(), M12, qBar0[i], 1, q1[i], 1, q1[i], 1);
360
361 Vmath::Svtvp(qBar1[i].size(), M21, q0[i], 1, qBar1[i], 1, qBar1[i], 1);
362 Vmath::Svtvp(qBar1[i].size(), M22, qBar0[i], 1, qBar1[i], 1, qBar1[i], 1);
363}
Array< OneD, EquationSystemSharedPtr > m_equ
Equation system to solve.
Definition: Driver.h:92
int m_nequ
number of equations
Definition: Driver.h:95
NekDouble M11
Definition of the SFD operator.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396

References M11, M12, M21, M22, Nektar::SolverUtils::Driver::m_equ, Nektar::SolverUtils::Driver::m_nequ, and Vmath::Svtvp().

Referenced by v_Execute().

◆ ConvergenceHistory()

void Nektar::SolverUtils::DriverSteadyState::ConvergenceHistory ( const Array< OneD, const Array< OneD, NekDouble > > &  qBar1,
const Array< OneD, const Array< OneD, NekDouble > > &  q0,
NekDouble MaxNormDiff_q_qBar,
NekDouble MaxNormDiff_q1_q0 
)
private

This routine evaluates |q-qBar|_inf (and |q1-q0|_inf) and writes the values in "ConvergenceHistory.txt"

Definition at line 592 of file DriverSteadyState.cpp.

596{
597 Array<OneD, NekDouble> NormDiff_q_qBar(NumVar_SFD, 1.0);
598 Array<OneD, NekDouble> NormDiff_q1_q0(NumVar_SFD, 1.0);
599 MaxNormDiff_q_qBar = 0.0;
600 MaxNormDiff_q1_q0 = 0.0;
601
602 for (int i = 0; i < NumVar_SFD; ++i)
603 {
604 NormDiff_q_qBar[i] = m_equ[m_nequ - 1]->LinfError(i, qBar1[i]);
605 NormDiff_q1_q0[i] = m_equ[m_nequ - 1]->LinfError(i, q0[i]);
606
607 if (MaxNormDiff_q_qBar < NormDiff_q_qBar[i])
608 {
609 MaxNormDiff_q_qBar = NormDiff_q_qBar[i];
610 }
611 if (MaxNormDiff_q1_q0 < NormDiff_q1_q0[i])
612 {
613 MaxNormDiff_q1_q0 = NormDiff_q1_q0[i];
614 }
615 }
616
617 timer.Stop();
619 cpuTime += elapsed;
621
622 if (m_comm->GetRank() == 0)
623 {
624 cout << "SFD - Step: " << left << m_stepCounter + 1
625 << ";\tTime: " << left << m_equ[m_nequ - 1]->GetTime()
626 << ";\tCPU time = " << left << cpuTime << " s"
627 << ";\tTot time = " << left << totalTime << " s"
628 << ";\tX = " << left << m_X << ";\tDelta = " << left << m_Delta
629 << ";\t|q-qBar|inf = " << left << MaxNormDiff_q_qBar << endl;
630 std::ofstream m_file("ConvergenceHistory.txt", std::ios_base::app);
631 m_file << m_stepCounter + 1 << "\t" << m_equ[m_nequ - 1]->GetTime()
632 << "\t" << totalTime << "\t" << MaxNormDiff_q_qBar << "\t"
633 << MaxNormDiff_q1_q0 << endl;
634 m_file.close();
635 }
636
637 cpuTime = 0.0;
638 timer.Start();
639}
NekDouble TimePerTest(unsigned int n)
Returns amount of seconds per iteration in a test with n iterations.
Definition: Timer.cpp:65
LibUtilities::CommSharedPtr m_comm
Communication object.
Definition: Driver.h:80

References cpuTime, elapsed, Nektar::SolverUtils::Driver::m_comm, m_Delta, Nektar::SolverUtils::Driver::m_equ, m_file, Nektar::SolverUtils::Driver::m_nequ, m_stepCounter, m_X, NumVar_SFD, Nektar::LibUtilities::Timer::Start(), Nektar::LibUtilities::Timer::Stop(), Nektar::LibUtilities::Timer::TimePerTest(), timer, and totalTime.

Referenced by v_Execute().

◆ create()

static DriverSharedPtr Nektar::SolverUtils::DriverSteadyState::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 50 of file DriverSteadyState.h.

53 {
55 pSession, pGraph);
56 p->InitObject();
57 return p;
58 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< Driver > DriverSharedPtr
A shared pointer to a Driver object.
Definition: Driver.h:52

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ EvalEV_ScalarSFD()

void Nektar::SolverUtils::DriverSteadyState::EvalEV_ScalarSFD ( const NekDouble X_input,
const NekDouble Delta_input,
const std::complex< NekDouble > &  alpha,
NekDouble MaxEV 
)
private

This routine evaluates the maximum eigenvalue of the SFD system when applied to the 1D model u(n+1) = alpha*u(n)

Definition at line 481 of file DriverSteadyState.cpp.

485{
486 NekDouble A11 =
487 (1.0 + X_input * Delta_input * exp(-(X_input + 1.0 / Delta_input))) /
488 (1.0 + X_input * Delta_input);
489 NekDouble A12 =
490 (X_input * Delta_input -
491 X_input * Delta_input * exp(-(X_input + 1.0 / Delta_input))) /
492 (1.0 + X_input * Delta_input);
493 NekDouble A21 = (1.0 - 1.0 * exp(-(X_input + 1.0 / Delta_input))) /
494 (1 + X_input * Delta_input);
495 NekDouble A22 =
496 (X_input * Delta_input + 1.0 * exp(-(X_input + 1.0 / Delta_input))) /
497 (1.0 + X_input * Delta_input);
498
499 complex<NekDouble> B11 = alpha;
500 NekDouble B12 = 0.0;
501 NekDouble B21 = 0.0;
502 NekDouble B22 = 1.0;
503
504 complex<NekDouble> a = A11 * B11 + A12 * B21;
505 NekDouble b = A11 * B12 + A12 * B22;
506 complex<NekDouble> c = A21 * B11 + A22 * B21;
507 NekDouble d = A21 * B12 + A22 * B22;
508
509 complex<NekDouble> delt = sqrt((a - d) * (a - d) + 4.0 * b * c);
510 complex<NekDouble> lambda_1 = 0.5 * (a + d + delt);
511 complex<NekDouble> lambda_2 = 0.5 * (a + d - delt);
512
513 NekDouble NORM_1 = abs(lambda_1);
514 NekDouble NORM_2 = abs(lambda_2);
515
516 MaxEV = max(NORM_1, NORM_2);
517}
std::vector< double > d(NPUPPER *NPUPPER)
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:298
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References tinysimd::abs(), Nektar::UnitTests::d(), and tinysimd::sqrt().

Referenced by GradientDescentMethod().

◆ GradientDescentMethod()

void Nektar::SolverUtils::DriverSteadyState::GradientDescentMethod ( const std::complex< NekDouble > &  alpha,
NekDouble X_output,
NekDouble Delta_output 
)
private

This routine implements a gradient descent method to find the parameters X end Delta which give the minimum eigenlavue of the SFD problem applied to the scalar case u(n+1) = \alpha*u(n).

Definition at line 398 of file DriverSteadyState.cpp.

401{
402 cout << "\n\tWe enter the Gradient Descent Method [...]" << endl;
403 bool OptParmFound = false;
404 bool Descending = true;
405 NekDouble X_input = X_output;
406 NekDouble Delta_input = Delta_output;
407
408 NekDouble X_init = X_output;
409 NekDouble Delta_init = Delta_output;
410 int stepCounter(0);
411
412 NekDouble F0(0.0);
413 NekDouble F0x(0.0);
414 NekDouble F0y(0.0);
415 NekDouble F1(0.0);
416 NekDouble dx = 0.00000001;
417 NekDouble dirx(0.0);
418 NekDouble diry(0.0);
419 NekDouble s(0.0);
420 NekDouble CurrentMin = 1.0;
421
422 while (OptParmFound == false)
423 {
424 Descending = true;
425 EvalEV_ScalarSFD(X_input, Delta_input, alpha, F0);
426 EvalEV_ScalarSFD(X_input + dx, Delta_input, alpha, F0x);
427 EvalEV_ScalarSFD(X_input, Delta_input + dx, alpha, F0y);
428 dirx = (F0 - F0x);
429 diry = (F0 - F0y);
430 s = abs(0.000001 / dirx);
431 X_output = X_input + s * dirx;
432 Delta_output = Delta_input + s * diry;
433 F1 = F0;
434
435 while (Descending == true)
436 {
437 CurrentMin = F1;
438 X_input = X_output;
439 Delta_input = Delta_output;
440 EvalEV_ScalarSFD(X_output, Delta_output, alpha, F1);
441
442 if (F1 > CurrentMin)
443 {
444 Descending = false;
445 }
446 else
447 {
448 s = s + s * 0.01;
449 X_output = X_input + s * dirx;
450 Delta_output = Delta_input + s * diry;
451 }
452
453 if (stepCounter > 9999999)
454 {
455 // We are stuck in this loop..
456 // Then we restart it with different initail conditions
457 Descending = false;
458 X_input = X_init;
459 Delta_init = Delta_init + Delta_init * 0.1;
460 Delta_input = Delta_init;
461 stepCounter = 0;
462 }
463 stepCounter++;
464 }
465
466 if (abs(F0 - F1) < dx)
467 {
468 cout << "\tThe Gradient Descent Method has converged!" << endl;
469 EvalEV_ScalarSFD(X_output, Delta_output, alpha, F1);
470 cout << "\n\tThe updated parameters are: X_tilde = " << X_output
471 << " and Delta_tilde = " << Delta_output << endl;
472 OptParmFound = true;
473 }
474 }
475}
void EvalEV_ScalarSFD(const NekDouble &X_input, const NekDouble &Delta_input, const std::complex< NekDouble > &alpha, NekDouble &MaxEV)

References tinysimd::abs(), and EvalEV_ScalarSFD().

Referenced by ComputeOptimization(), and v_Execute().

◆ PrintSummarySFD()

void Nektar::SolverUtils::DriverSteadyState::PrintSummarySFD ( )
private

Definition at line 644 of file DriverSteadyState.cpp.

645{
646 cout << "\n====================================="
647 "=================================="
648 << endl;
649 cout << "Parameters for the SFD method:" << endl;
650 cout << "\tControl Coefficient: X = " << m_X << endl;
651 cout << "\tFilter Width: Delta = " << m_Delta << endl;
652 cout << "The simulation is stopped when |q-qBar|inf < " << TOL << endl;
654 {
655 cout << "\nWe use the adaptive SFD method:" << endl;
656 cout << " The parameters are updated every " << AdaptiveTime
657 << " time units;" << endl;
658 cout << " until |q-qBar|inf becomes smaller than " << AdaptiveTOL
659 << endl;
660 }
661 cout << "====================================="
662 "==================================\n"
663 << endl;
664}
enum EvolutionOperatorType m_EvolutionOperator
Evolution Operator.
Definition: Driver.h:98

References AdaptiveTime, AdaptiveTOL, Nektar::SolverUtils::eAdaptiveSFD, m_Delta, Nektar::SolverUtils::Driver::m_EvolutionOperator, m_X, and TOL.

Referenced by v_Execute().

◆ ReadEVfile()

void Nektar::SolverUtils::DriverSteadyState::ReadEVfile ( int &  KrylovSubspaceDim,
NekDouble growthEV,
NekDouble frequencyEV 
)
private

Definition at line 522 of file DriverSteadyState.cpp.

524{
525 // This routine reads the .evl file written by the Arnoldi algorithm
526 // (written in September 2014)
527 std::string line;
528 int NumLinesInFile = 0;
529 std::string EVfileName = m_session->GetSessionName() + ".evl";
530 std::ifstream EVfile(EVfileName.c_str());
531 ASSERTL0(EVfile.good(), "Cannot open .evl file.");
532
533 if (EVfile)
534 {
535 // This block counts the total number of lines of the .evl file
536 // We keep going util we reach the end of the file
537 while (getline(EVfile, line))
538 {
539 ++NumLinesInFile;
540 }
541
542 // It may happen that the Stability method that have produced the .elv
543 // file converges in less than m_kdim iterations. In this case,
544 // KrylovSubspaceDim has to be changed here
545 if (NumLinesInFile <
546 KrylovSubspaceDim * 2.0 +
547 KrylovSubspaceDim * (KrylovSubspaceDim + 1.0) / 2.0)
548 {
549 for (int i = 1; i <= KrylovSubspaceDim; ++i)
550 {
551 if (NumLinesInFile == i * 2.0 + i * (i + 1.0) / 2.0)
552 {
553 KrylovSubspaceDim = i;
554 }
555 }
556 }
557
558 // go back to the beginning of the file
559 EVfile.clear();
560 EVfile.seekg(0, ios::beg);
561
562 // We now want to go to the line where the most unstable eigenlavue was
563 // written
564 for (int i = 0; i < (NumLinesInFile - KrylovSubspaceDim); ++i)
565 {
566 std::getline(EVfile, line);
567 cout << "Discard line: " << line << endl;
568 }
569
570 std::vector<std::string> tokens;
571 std::getline(EVfile, line);
572 boost::algorithm::split(tokens, line, boost::is_any_of("\t "),
573 boost::token_compress_on);
574
575 ASSERTL0(tokens.size() >= 5,
576 "Unexpected formatting of .evl file while reading line:\n" +
577 line);
578 growthEV = std::stod(tokens[4]);
579 frequencyEV = std::stod(tokens[5]);
580 }
581 else
582 {
583 cout << "An error occurred when opening the .evl file" << endl;
584 }
585 EVfile.close();
586}
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
LibUtilities::SessionReaderSharedPtr m_session
Session reader object.
Definition: Driver.h:83

References ASSERTL0, and Nektar::SolverUtils::Driver::m_session.

Referenced by ComputeOptimization().

◆ SetSFDOperator()

void Nektar::SolverUtils::DriverSteadyState::SetSFDOperator ( const NekDouble  X_input,
const NekDouble  Delta_input 
)
private

This routine defines the encapsulated SFD operator with first-order splitting and exact resolution of the second subproblem. (See http://scitation.aip.org/content/aip/journal/pof2/26/3/10.1063/1.4867482 for details)

Definition at line 333 of file DriverSteadyState.cpp.

335{
336 NekDouble X = X_input * m_dt;
337 NekDouble Delta = Delta_input / m_dt;
338 NekDouble coeff = 1.0 / (1.0 + X * Delta);
339 M11 = coeff * (1.0 + X * Delta * exp(-(X + 1.0 / Delta)));
340 M12 = coeff * (X * Delta * (1.0 - exp(-(X + 1.0 / Delta))));
341 M21 = coeff * (1.0 - exp(-(X + 1.0 / Delta)));
342 M22 = coeff * (X * Delta + exp(-(X + 1.0 / Delta)));
343}

References M11, M12, M21, M22, and m_dt.

Referenced by ComputeOptimization(), and v_Execute().

◆ v_Execute()

void Nektar::SolverUtils::DriverSteadyState::v_Execute ( std::ostream &  out = std::cout)
overrideprotectedvirtual

Virtual function for solve implementation.

Definition of variables used in this algorithm

Call the Navier-Stokes solver for one time step

Copy the current flow field into q0

Apply the linear operator to the outcome of the solver

Update qBar

Copy the output of the SFD method into the current flow field

Loop for the adaptive SFD method

We save the final solution into a .fld file

Reimplemented from Nektar::SolverUtils::DriverModifiedArnoldi.

Definition at line 74 of file DriverSteadyState.cpp.

76{
77 // With a loop over "DoSolve", this Driver implements the
78 // "encapsulated" Selective Frequency Damping method(SFD)
79 // to find the steady state of a flow above the critical Reynolds
80 // number.
81 m_equ[m_nequ - 1]->PrintSummary(out);
82
83 m_session->LoadParameter("IO_InfoSteps", m_infosteps, 1000);
84 m_session->LoadParameter("IO_CheckSteps", m_checksteps, 100000);
85 m_session->LoadParameter("ControlCoeff", m_X, 1);
86 m_session->LoadParameter("FilterWidth", m_Delta, 2);
87
88 // To evaluate optimum SFD parameters if growth rate provided in the
89 // xml file
90 m_session->LoadParameter("GrowthRateEV", GrowthRateEV, 0.0);
91
92 // To evaluate optimum SFD parameters if frequency provided in the xml
93 // file
94 m_session->LoadParameter("FrequencyEV", FrequencyEV, 0.0);
95
96 // Determine when SFD method is converged
97 m_session->LoadParameter("TOL", TOL, 1.0e-08);
98
99 // Used only for the Adaptive SFD method
100 m_session->LoadParameter("AdaptiveTOL", AdaptiveTOL, 1.0e-02);
101
102 // Used only for the Adaptive SFD method
103 m_session->LoadParameter("AdaptiveTime", AdaptiveTime, 50.0 * m_Delta);
104
105 if (m_comm->GetRank() == 0)
106 {
108 }
109
110 timer.Start();
111
112 // Definition of shared pointer (used only for the Adaptive SFD method)
113 AdvectionSystemSharedPtr A = m_equ[0]->as<AdvectionSystem>();
114
115 NumVar_SFD = m_equ[m_nequ - 1]->UpdateFields()[0]->GetCoordim(0);
116 // SFD to run for incompressible case with scalar field
117 if (m_session->GetSolverInfo("EqType") == "UnsteadyNavierStokes" ||
118 m_session->GetSolverInfo("EqType") == "SteadyNavierStokes")
119 {
120 int nConvectiveFields = m_session->GetVariables().size();
121 if (boost::iequals(m_session->GetVariable(nConvectiveFields - 1), "p"))
122 {
123 nConvectiveFields -= 1;
124 }
125 NumVar_SFD = nConvectiveFields;
126 }
127 // Condition necessary to run SFD for the compressible case
128 if (m_session->GetSolverInfo("EqType") == "EulerCFE" ||
129 m_session->GetSolverInfo("EqType") == "NavierStokesCFE" ||
130 m_session->GetSolverInfo("EqType") == "NavierStokesImplicitCFE")
131 {
132 // Number of variables for the compressible equations
133 NumVar_SFD += 2;
134 }
135 if (m_session->DefinesSolverInfo("HOMOGENEOUS"))
136 {
137 if (m_session->GetSolverInfo("HOMOGENEOUS") == "1D")
138 {
139 NumVar_SFD += 1;
140 }
141 }
142
143 // We store the time step
144 m_dt = m_equ[m_nequ - 1]->GetTimeStep();
145
146 // Evaluate optimum SFD parameters if dominent EV given by xml file
147 if (GrowthRateEV != 0.0 && FrequencyEV != 0.0)
148 {
149 cout << "Besed on the dominant EV given in the xml file,"
150 << "a 1D model is used to evaluate the optumum parameters"
151 << "of the SFD method:" << endl;
152 complex<NekDouble> EV = polar(exp(GrowthRateEV), FrequencyEV);
154 }
155
156 // We set up the elements of the operator of the encapsulated
157 // formulation of the selective frequencive damping method
159
160 // m_steps is set to 1. Then "m_equ[m_nequ - 1]->DoSolve()" will run
161 // for only one time step
162 m_equ[m_nequ - 1]->SetSteps(1);
163 ofstream m_file("ConvergenceHistory.txt", ios::out | ios::trunc);
164
165 Array<OneD, Array<OneD, NekDouble>> q0(NumVar_SFD);
166 Array<OneD, Array<OneD, NekDouble>> q1(NumVar_SFD);
167 Array<OneD, Array<OneD, NekDouble>> qBar0(NumVar_SFD);
168 Array<OneD, Array<OneD, NekDouble>> qBar1(NumVar_SFD);
169
170 for (int i = 0; i < NumVar_SFD; ++i)
171 {
172 q0[i] = Array<OneD, NekDouble>(m_equ[m_nequ - 1]->GetTotPoints(),
173 0.0); // q0 is initialised
174 qBar0[i] =
175 Array<OneD, NekDouble>(m_equ[m_nequ - 1]->GetTotPoints(), 0.0);
176 m_equ[m_nequ - 1]->CopyFromPhysField(i, qBar0[i]);
177 }
178
179 /// Definition of variables used in this algorithm
180 m_stepCounter = 0;
181 m_Check = 0;
184 Diff_q_qBar = 1.0;
185 Diff_q1_q0 = 1.0;
186 cpuTime = 0.0;
187 elapsed = 0.0;
188 totalTime = 0.0;
190
191 while (max(Diff_q_qBar, Diff_q1_q0) > TOL)
192 {
193 /// Call the Navier-Stokes solver for one time step
194 m_equ[m_nequ - 1]->DoSolve();
195
196 for (int i = 0; i < NumVar_SFD; ++i)
197 {
198 /// Copy the current flow field into q0
199 m_equ[m_nequ - 1]->CopyFromPhysField(i, q0[i]);
200
201 /// Apply the linear operator to the outcome of the solver
202 ComputeSFD(i, q0, qBar0, q1, qBar1);
203
204 /// Update qBar
205 qBar0[i] = qBar1[i];
206
207 /// Copy the output of the SFD method into the current flow field
208 m_equ[m_nequ - 1]->CopyToPhysField(i, q1[i]);
209 }
210
211 if (m_infosteps && !((m_stepCounter + 1) % m_infosteps))
212 {
214
215 /// Loop for the adaptive SFD method
217 FlowPartiallyConverged == false)
218 {
219
221
223 {
224 if (m_comm->GetRank() == 0)
225 {
226 cout << "\n\t The SFD method is converging: we compute "
227 << "stability analysis using the 'partially "
228 << "converged' steady state as base flow:\n"
229 << endl;
230 }
231
232 m_equ[m_nequ - 1]->Checkpoint_BaseFlow(m_Check_BaseFlow);
234
235 A->GetAdvObject()->SetBaseFlow(q0,
236 m_equ[0]->UpdateFields());
238
239 if (m_comm->GetRank() == 0)
240 {
241 // Compute the update of the SFD parameters only on
242 // one processor
244 }
245 else
246 {
247 // On all the other processors, the parameters are set
248 // to 0
249 m_X = 0;
250 m_Delta = 0;
251 }
252 // The we give to all the processors the value of X and
253 // Delta of the first processor
256
258 }
261 {
262 if (m_comm->GetRank() == 0)
263 {
264 cout << "\n\t We compute stability analysis using"
265 << " the current flow field as base flow:\n"
266 << endl;
267 }
268
269 m_equ[m_nequ - 1]->Checkpoint_BaseFlow(m_Check_BaseFlow);
271
272 A->GetAdvObject()->SetBaseFlow(q0,
273 m_equ[0]->UpdateFields());
275
276 if (m_comm->GetRank() == 0)
277 {
278 // Compute the update of the SFD parameters only on
279 // one processor
281 }
282 else
283 {
284 // On all the other processors, the parameters are set
285 // to 0
286 m_X = 0;
287 m_Delta = 0;
288 }
289 // The we give to all the processors the value of X and
290 // Delta of the first processor
293
295 }
296 }
297 }
298
300 (!((m_stepCounter + 1) % m_checksteps)))
301 {
302 m_Check++;
303 m_equ[m_nequ - 1]->Checkpoint_Output(m_Check);
304 }
306 }
307
308 m_file.close();
309
310 /// We save the final solution into a .fld file
311 m_equ[m_nequ - 1]->Output();
312
313 for (int j = 0; j < m_equ[m_nequ - 1]->GetNvariables(); ++j)
314 {
315 NekDouble vL2Error = m_equ[m_nequ - 1]->L2Error(j, false);
316 NekDouble vLinfError = m_equ[m_nequ - 1]->LinfError(j);
317 if (m_comm->GetRank() == 0)
318 {
319 out << "L 2 error (variable " << m_equ[m_nequ - 1]->GetVariable(j)
320 << ") : " << vL2Error << endl;
321 out << "L inf error (variable " << m_equ[m_nequ - 1]->GetVariable(j)
322 << ") : " << vLinfError << endl;
323 }
324 }
325}
void v_Execute(std::ostream &out=std::cout) override
Virtual function for solve implementation.
void ComputeSFD(const int i, const Array< OneD, const Array< OneD, NekDouble > > &q0, const Array< OneD, const Array< OneD, NekDouble > > &qBar0, Array< OneD, Array< OneD, NekDouble > > &q1, Array< OneD, Array< OneD, NekDouble > > &qBar1)
void ConvergenceHistory(const Array< OneD, const Array< OneD, NekDouble > > &qBar1, const Array< OneD, const Array< OneD, NekDouble > > &q0, NekDouble &MaxNormDiff_q_qBar, NekDouble &MaxNormDiff_q1_q0)
bool FlowPartiallyConverged
For adaptive SFD method.
std::shared_ptr< AdvectionSystem > AdvectionSystemSharedPtr
Shared pointer to an AdvectionSystem class.

References AdaptiveTime, AdaptiveTOL, ComputeOptimization(), ComputeSFD(), ConvergenceHistory(), cpuTime, Diff_q1_q0, Diff_q_qBar, Nektar::SolverUtils::eAdaptiveSFD, elapsed, FlowPartiallyConverged, FrequencyEV, GradientDescentMethod(), GrowthRateEV, m_Check, m_Check_BaseFlow, m_checksteps, Nektar::SolverUtils::Driver::m_comm, m_Delta, m_dt, Nektar::SolverUtils::Driver::m_equ, Nektar::SolverUtils::Driver::m_EvolutionOperator, m_file, m_infosteps, Nektar::SolverUtils::Driver::m_nequ, m_NonConvergingStepsCounter, Nektar::SolverUtils::Driver::m_session, m_stepCounter, m_X, NumVar_SFD, PrintSummarySFD(), Nektar::LibUtilities::ReduceSum, SetSFDOperator(), Nektar::LibUtilities::Timer::Start(), timer, TOL, totalTime, and Nektar::SolverUtils::DriverModifiedArnoldi::v_Execute().

◆ v_InitObject()

void Nektar::SolverUtils::DriverSteadyState::v_InitObject ( std::ostream &  out = std::cout)
overrideprotectedvirtual

Initialises EquationSystem class members.

Reimplemented from Nektar::SolverUtils::DriverModifiedArnoldi.

Definition at line 66 of file DriverSteadyState.cpp.

67{
69}
void v_InitObject(std::ostream &out=std::cout) override
Virtual function for initialisation implementation.

References Nektar::SolverUtils::DriverModifiedArnoldi::v_InitObject().

Friends And Related Function Documentation

◆ MemoryManager< DriverSteadyState >

friend class MemoryManager< DriverSteadyState >
friend

Definition at line 1 of file DriverSteadyState.h.

Member Data Documentation

◆ AdaptiveTime

NekDouble Nektar::SolverUtils::DriverSteadyState::AdaptiveTime
private

Definition at line 111 of file DriverSteadyState.h.

Referenced by PrintSummarySFD(), and v_Execute().

◆ AdaptiveTOL

NekDouble Nektar::SolverUtils::DriverSteadyState::AdaptiveTOL
private

Definition at line 110 of file DriverSteadyState.h.

Referenced by PrintSummarySFD(), and v_Execute().

◆ className

string Nektar::SolverUtils::DriverSteadyState::className
static
Initial value:
=
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static DriverSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
DriverFactory & GetDriverFactory()
Definition: Driver.cpp:66

Name of the class.

Definition at line 61 of file DriverSteadyState.h.

◆ cpuTime

NekDouble Nektar::SolverUtils::DriverSteadyState::cpuTime
private

Definition at line 89 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().

◆ Diff_q1_q0

NekDouble Nektar::SolverUtils::DriverSteadyState::Diff_q1_q0
private

Definition at line 106 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ Diff_q_qBar

NekDouble Nektar::SolverUtils::DriverSteadyState::Diff_q_qBar
private

Definition at line 105 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ driverLookupId

string Nektar::SolverUtils::DriverSteadyState::driverLookupId
staticprivate
Initial value:
=
static std::string RegisterEnumValue(std::string pEnum, std::string pString, int pEnumValue)
Registers an enumeration value.

Definition at line 144 of file DriverSteadyState.h.

◆ elapsed

NekDouble Nektar::SolverUtils::DriverSteadyState::elapsed
private

Definition at line 91 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().

◆ FlowPartiallyConverged

bool Nektar::SolverUtils::DriverSteadyState::FlowPartiallyConverged
private

For adaptive SFD method.

Definition at line 109 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ FrequencyEV

NekDouble Nektar::SolverUtils::DriverSteadyState::FrequencyEV
private

Definition at line 114 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ GrowthRateEV

NekDouble Nektar::SolverUtils::DriverSteadyState::GrowthRateEV
private

Definition at line 113 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ M11

NekDouble Nektar::SolverUtils::DriverSteadyState::M11
private

Definition of the SFD operator.

Definition at line 100 of file DriverSteadyState.h.

Referenced by ComputeSFD(), and SetSFDOperator().

◆ M12

NekDouble Nektar::SolverUtils::DriverSteadyState::M12
private

Definition at line 101 of file DriverSteadyState.h.

Referenced by ComputeSFD(), and SetSFDOperator().

◆ M21

NekDouble Nektar::SolverUtils::DriverSteadyState::M21
private

Definition at line 102 of file DriverSteadyState.h.

Referenced by ComputeSFD(), and SetSFDOperator().

◆ M22

NekDouble Nektar::SolverUtils::DriverSteadyState::M22
private

Definition at line 103 of file DriverSteadyState.h.

Referenced by ComputeSFD(), and SetSFDOperator().

◆ m_Check

int Nektar::SolverUtils::DriverSteadyState::m_Check
private

Definition at line 81 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ m_Check_BaseFlow

int Nektar::SolverUtils::DriverSteadyState::m_Check_BaseFlow
private

Definition at line 82 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ m_checksteps

int Nektar::SolverUtils::DriverSteadyState::m_checksteps
private

Definition at line 85 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ m_Delta

NekDouble Nektar::SolverUtils::DriverSteadyState::m_Delta
private

Definition of the SFD parameters:

Definition at line 95 of file DriverSteadyState.h.

Referenced by ComputeOptimization(), ConvergenceHistory(), PrintSummarySFD(), and v_Execute().

◆ m_dt

NekDouble Nektar::SolverUtils::DriverSteadyState::m_dt
private

Definition at line 97 of file DriverSteadyState.h.

Referenced by SetSFDOperator(), and v_Execute().

◆ m_file

std::ofstream Nektar::SolverUtils::DriverSteadyState::m_file
private

Definition at line 92 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().

◆ m_infosteps

int Nektar::SolverUtils::DriverSteadyState::m_infosteps
private

Definition at line 84 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ m_NonConvergingStepsCounter

int Nektar::SolverUtils::DriverSteadyState::m_NonConvergingStepsCounter
private

Definition at line 112 of file DriverSteadyState.h.

Referenced by v_Execute().

◆ m_stepCounter

int Nektar::SolverUtils::DriverSteadyState::m_stepCounter
private

Definition at line 80 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().

◆ m_X

NekDouble Nektar::SolverUtils::DriverSteadyState::m_X
private

◆ NumVar_SFD

int Nektar::SolverUtils::DriverSteadyState::NumVar_SFD
private

Definition at line 86 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().

◆ timer

LibUtilities::Timer Nektar::SolverUtils::DriverSteadyState::timer
private

Definition at line 88 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().

◆ TOL

NekDouble Nektar::SolverUtils::DriverSteadyState::TOL
private

Definition at line 83 of file DriverSteadyState.h.

Referenced by PrintSummarySFD(), and v_Execute().

◆ totalTime

NekDouble Nektar::SolverUtils::DriverSteadyState::totalTime
private

Definition at line 90 of file DriverSteadyState.h.

Referenced by ConvergenceHistory(), and v_Execute().