Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
CompressibleFlowSystem.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File CompressibleFlowSystem.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // License for the specific language governing rights and limitations under
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Auxiliary functions for the compressible flow system
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 #include <iostream>
36 #include <iomanip>
37 
39 #include <LocalRegions/TriExp.h>
40 #include <LocalRegions/QuadExp.h>
41 #include <LocalRegions/HexExp.h>
42 #include <MultiRegions/ExpList.h>
45 
46 namespace Nektar
47 {
50  "CompressibleFlowSystem",
52  "Auxiliary functions for the compressible flow system.");
53 
56  : UnsteadySystem(pSession)
57  {
58  }
59 
60  /**
61  * @brief Initialization object for CompressibleFlowSystem class.
62  */
64  {
65  UnsteadySystem::v_InitObject();
66 
67  ASSERTL0(m_session->DefinesSolverInfo("UPWINDTYPE"),
68  "No UPWINDTYPE defined in session.");
69 
70  // Do not forwards transform initial condition
71  m_homoInitialFwd = false;
72 
73  // Set up locations of velocity vector.
76  for (int i = 0; i < m_spacedim; ++i)
77  {
78  m_vecLocs[0][i] = 1 + i;
79  }
80 
81  // Get gamma parameter from session file.
82  ASSERTL0(m_session->DefinesParameter("Gamma"),
83  "Compressible flow sessions must define a Gamma parameter.");
84  m_session->LoadParameter("Gamma", m_gamma, 1.4);
85 
86  // Get E0 parameter from session file.
87  ASSERTL0(m_session->DefinesParameter("pInf"),
88  "Compressible flow sessions must define a pInf parameter.");
89  m_session->LoadParameter("pInf", m_pInf, 101325);
90 
91  // Get rhoInf parameter from session file.
92  ASSERTL0(m_session->DefinesParameter("rhoInf"),
93  "Compressible flow sessions must define a rhoInf parameter.");
94  m_session->LoadParameter("rhoInf", m_rhoInf, 1.225);
95 
96  // Get uInf parameter from session file.
97  ASSERTL0(m_session->DefinesParameter("uInf"),
98  "Compressible flow sessions must define a uInf parameter.");
99  m_session->LoadParameter("uInf", m_uInf, 0.1);
100 
101  m_UInf = m_uInf;
102 
103  // Get vInf parameter from session file.
104  if (m_spacedim == 2 || m_spacedim == 3)
105  {
106  ASSERTL0(m_session->DefinesParameter("vInf"),
107  "Compressible flow sessions must define a vInf parameter"
108  "for 2D/3D problems.");
109  m_session->LoadParameter("vInf", m_vInf, 0.0);
110  m_UInf = sqrt(m_uInf*m_uInf + m_vInf*m_vInf);
111  }
112 
113  // Get wInf parameter from session file.
114  if (m_spacedim == 3)
115  {
116  ASSERTL0(m_session->DefinesParameter("wInf"),
117  "Compressible flow sessions must define a wInf parameter"
118  "for 3D problems.");
119  m_session->LoadParameter("wInf", m_wInf, 0.0);
121  }
122 
123  m_session->LoadParameter ("GasConstant", m_gasConstant, 287.058);
124  m_session->LoadParameter ("Twall", m_Twall, 300.15);
125  m_session->LoadSolverInfo("ViscosityType", m_ViscosityType, "Constant");
126  m_session->LoadParameter ("mu", m_mu, 1.78e-05);
127  m_session->LoadParameter ("Skappa", m_Skappa, -2.048);
128  m_session->LoadParameter ("Kappa", m_Kappa, 0.0);
129  m_session->LoadParameter ("mu0", m_mu0, 1.0);
130  m_session->LoadParameter ("FL", m_FacL, 0.0);
131  m_session->LoadParameter ("FH", m_FacH, 0.0);
132  m_session->LoadParameter ("hFactor", m_hFactor, 1.0);
133  m_session->LoadParameter ("epsMax", m_eps_max, 1.0);
134  m_session->LoadParameter ("C1", m_C1, 3.0);
135  m_session->LoadParameter ("C2", m_C2, 5.0);
136  m_session->LoadSolverInfo("ShockCaptureType",
137  m_shockCaptureType, "Off");
138  m_session->LoadParameter ("thermalConductivity",
139  m_thermalConductivity, 0.0257);
140 
141  m_EqTypeStr = m_session->GetSolverInfo("EQTYPE");
142 
143  m_Cp = m_gamma / (m_gamma - 1.0) * m_gasConstant;
145 
146  m_session->LoadParameter("amplitude", m_amplitude, 0.001);
147  m_session->LoadParameter("omega", m_omega, 1.0);
148  m_session->LoadParameter("SteadyStateTol", m_steadyStateTol, 0.0);
149 
150  // Forcing terms for the sponge region
152  m_fields.num_elements());
153 
154  // Loop over Boundary Regions for PressureOutflowFileBC
155  int nvariables = m_fields.num_elements();
156  Array<OneD, Array<OneD, NekDouble> > tmpStorage(nvariables);
157  for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
158  {
159  // PressureOutflowFile Boundary Condition
160  if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
161  "PressureOutflowFile")
162  {
163  int numBCPts = m_fields[0]->
164  GetBndCondExpansions()[n]->GetNpoints();
165  m_pressureStorage = Array<OneD, NekDouble>(numBCPts, 0.0);
166  for (int i = 0; i < nvariables; ++i)
167  {
168  tmpStorage[i] = Array<OneD, NekDouble>(numBCPts, 0.0);
169 
170  Vmath::Vcopy(
171  numBCPts,
172  m_fields[i]->GetBndCondExpansions()[n]->GetPhys(), 1,
173  tmpStorage[i], 1);
174  }
175  GetPressure(tmpStorage, m_pressureStorage);
176  }
177  }
178 
179  // Loop over Boundary Regions for PressureInflowFileBC
181  for (int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
182  {
183  // PressureInflowFile Boundary Condition
184  if (m_fields[0]->GetBndConditions()[n]->GetUserDefined() ==
185  "PressureInflowFile")
186  {
187  int numBCPts = m_fields[0]->
188  GetBndCondExpansions()[n]->GetNpoints();
189  for (int i = 0; i < nvariables; ++i)
190  {
191  m_fieldStorage[i] = Array<OneD, NekDouble>(numBCPts, 0.0);
192  Vmath::Vcopy(
193  numBCPts,
194  m_fields[i]->GetBndCondExpansions()[n]->GetPhys(), 1,
195  m_fieldStorage[i], 1);
196  }
197  }
198  }
199 
200  // Type of advection class to be used
201  switch(m_projectionType)
202  {
203  // Continuous field
205  {
206  ASSERTL0(false, "Continuous field not supported.");
207  break;
208  }
209  // Discontinuous field
211  {
212  string advName, diffName, riemName;
213 
214  // Setting up advection and diffusion operators
215  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
216  m_session->LoadSolverInfo("DiffusionType", diffName, "LDGNS");
217 
219  .CreateInstance(advName, advName);
221  .CreateInstance(diffName, diffName);
222 
224  {
225  m_advection->SetFluxVector(&CompressibleFlowSystem::
226  GetFluxVectorDeAlias, this);
227  m_diffusion->SetFluxVectorNS(
229  this);
230  }
231  else
232  {
233  m_advection->SetFluxVector (&CompressibleFlowSystem::
234  GetFluxVector, this);
235  m_diffusion->SetFluxVectorNS(&CompressibleFlowSystem::
236  GetViscousFluxVector, this);
237  }
238 
239  if (m_shockCaptureType=="Smooth" && m_EqTypeStr=="EulerADCFE")
240  {
241  m_advection->SetFluxVector(&CompressibleFlowSystem::
242  GetFluxVector, this);
243 
244  m_diffusion->SetArtificialDiffusionVector(
246  }
247  if (m_shockCaptureType=="NonSmooth" && m_EqTypeStr=="EulerADCFE")
248  {
249  m_advection->SetFluxVector(&CompressibleFlowSystem::
250  GetFluxVector, this);
251 
252  m_diffusion->SetArtificialDiffusionVector(
254  }
255 
256  // Setting up Riemann solver for advection operator
257  m_session->LoadSolverInfo("UpwindType", riemName, "Average");
258 
260  .CreateInstance(riemName);
261 
262  // Setting up upwind solver for diffusion operator
264  .CreateInstance("UpwindLDG");
265 
266  // Setting up parameters for advection operator Riemann solver
267  m_riemannSolver->SetParam (
268  "gamma", &CompressibleFlowSystem::GetGamma, this);
269  m_riemannSolver->SetAuxVec(
270  "vecLocs", &CompressibleFlowSystem::GetVecLocs, this);
271  m_riemannSolver->SetVector(
273 
274  // Setting up parameters for diffusion operator Riemann solver
275  m_riemannSolverLDG->SetParam (
276  "gamma", &CompressibleFlowSystem::GetGamma, this);
277  m_riemannSolverLDG->SetVector(
278  "vecLocs", &CompressibleFlowSystem::GetVecLocs, this);
279  m_riemannSolverLDG->SetVector(
281 
282  // Concluding initialisation of advection / diffusion operators
283  m_advection->SetRiemannSolver (m_riemannSolver);
284  m_diffusion->SetRiemannSolver (m_riemannSolverLDG);
285  m_advection->InitObject (m_session, m_fields);
286  m_diffusion->InitObject (m_session, m_fields);
287  break;
288  }
289  default:
290  {
291  ASSERTL0(false, "Unsupported projection type.");
292  break;
293  }
294  }
295  }
296 
297  /**
298  * @brief Destructor for CompressibleFlowSystem class.
299  */
301  {
302 
303  }
304 
305  /**
306  * @brief Print out a summary with some relevant information.
307  */
309  {
310  UnsteadySystem::v_GenerateSummary(s);
311  }
312 
313  /**
314  * @brief Set boundary conditions which can be:
315  * a) Wall and Symmerty BCs implemented at CompressibleFlowSystem level
316  * since they are compressible solver specific;
317  * b) Time dependent BCs.
318  *
319  * @param inarray: fields array.
320  * @param time: time.
321  */
323  const std::string &userDefStr,
324  const int n,
325  const NekDouble time,
326  int &cnt,
327  Array<OneD, Array<OneD, NekDouble> > &inarray)
328  {
329  std::string varName;
330  int nvariables = m_fields.num_elements();
331 
332  if(!userDefStr.empty())
333  {
334  if(boost::iequals(userDefStr,"Wall"))
335  {
336  WallBC(n, cnt, inarray);
337  }
338  else if(boost::iequals(userDefStr,"WallViscous") ||
339  boost::iequals(userDefStr,"WallAdiabatic"))
340  {
341  // Wall Boundary Condition
342  WallViscousBC(n, cnt, inarray);
343  }
344  else if(boost::iequals(userDefStr,"Symmetry"))
345  {
346  // Symmetric Boundary Condition
347  SymmetryBC(n, cnt, inarray);
348  }
349  else if(boost::iequals(userDefStr,"RiemannInvariant"))
350  {
351  // Riemann invariant characteristic Boundary Condition
352  RiemannInvariantBC(n, cnt, inarray);
353  }
354  else if(boost::iequals(userDefStr,"PressureOutflowNonReflective"))
355  {
356  // Pressure outflow non-reflective Boundary Condition
357  PressureOutflowNonReflectiveBC(n, cnt, inarray);
358  }
359  else if(boost::iequals(userDefStr,"PressureOutflow"))
360  {
361  // Pressure outflow Boundary Condition
362  PressureOutflowBC(n, cnt, inarray);
363  }
364  else if(boost::iequals(userDefStr,"PressureOutflowFile"))
365  {
366  // Pressure outflow Boundary Condition from file
367  PressureOutflowFileBC(n, cnt, inarray);
368  }
369  else if(boost::iequals(userDefStr,"PressureInflowFile"))
370  {
371  // Pressure inflow Boundary Condition from file
372  PressureInflowFileBC(n, cnt, inarray);
373  }
374  else if(boost::iequals(userDefStr,"ExtrapOrder0"))
375  {
376  // Extrapolation of the data at the boundaries
377  ExtrapOrder0BC(n, cnt, inarray);
378  }
379  else if(boost::iequals(userDefStr,"TimeDependent"))
380  {
381  for (int i = 0; i < nvariables; ++i)
382  {
383  varName = m_session->GetVariable(i);
384  m_fields[i]->EvaluateBoundaryConditions(time, varName);
385  }
386  }
387  else
388  {
389  string errmsg = "Unrecognised boundary condition: ";
390  errmsg += userDefStr;
391  ASSERTL0(false,errmsg.c_str());
392  }
393  }
394  }
395 
396  /**
397  * @brief Wall boundary conditions for compressible flow problems.
398  */
400  int bcRegion,
401  int cnt,
402  Array<OneD, Array<OneD, NekDouble> > &physarray)
403  {
404  int i;
405  int nTracePts = GetTraceTotPoints();
406  int nVariables = physarray.num_elements();
407 
408  const Array<OneD, const int> &traceBndMap
409  = m_fields[0]->GetTraceBndMap();
410 
411  // Get physical values of the forward trace
412  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
413  for (i = 0; i < nVariables; ++i)
414  {
415  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
416  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
417  }
418 
419  // Adjust the physical values of the trace to take
420  // user defined boundaries into account
421  int e, id1, id2, nBCEdgePts, eMax;
422 
423  eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
424 
425  for (e = 0; e < eMax; ++e)
426  {
427  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
428  GetExp(e)->GetTotPoints();
429  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
430  GetPhys_Offset(e);
431  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
432 
433  // Boundary condition for epsilon term.
434  if (nVariables == m_spacedim+3)
435  {
436  NekDouble factor = 1.0;
437  NekDouble factor2 = 1.0;
438 
439  Array<OneD, NekDouble > tmp2(nBCEdgePts, 0.0);
440  Vmath::Smul(nBCEdgePts,
441  factor,
442  &Fwd[nVariables-1][id2], 1,
443  &tmp2[0], 1);
444 
445  Vmath::Vsub(nBCEdgePts,
446  &Fwd[nVariables-1][id2], 1,
447  &tmp2[0], 1,
448  &Fwd[nVariables-1][id2], 1);
449 
450  Vmath::Smul(nBCEdgePts,
451  factor2,
452  &Fwd[nVariables-1][id2], 1,
453  &Fwd[nVariables-1][id2], 1);
454 
455  }
456 
457  // For 2D/3D, define: v* = v - 2(v.n)n
458  Array<OneD, NekDouble> tmp(nBCEdgePts, 0.0);
459 
460  // Calculate (v.n)
461  for (i = 0; i < m_spacedim; ++i)
462  {
463  Vmath::Vvtvp(nBCEdgePts,
464  &Fwd[1+i][id2], 1,
465  &m_traceNormals[i][id2], 1,
466  &tmp[0], 1,
467  &tmp[0], 1);
468  }
469 
470  // Calculate 2.0(v.n)
471  Vmath::Smul(nBCEdgePts, -2.0, &tmp[0], 1, &tmp[0], 1);
472 
473  // Calculate v* = v - 2.0(v.n)n
474  for (i = 0; i < m_spacedim; ++i)
475  {
476  Vmath::Vvtvp(nBCEdgePts,
477  &tmp[0], 1,
478  &m_traceNormals[i][id2], 1,
479  &Fwd[1+i][id2], 1,
480  &Fwd[1+i][id2], 1);
481  }
482 
483  // Copy boundary adjusted values into the boundary expansion
484  for (i = 0; i < nVariables; ++i)
485  {
486  Vmath::Vcopy(nBCEdgePts, &Fwd[i][id2], 1,
487  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->
488  UpdatePhys())[id1], 1);
489  }
490  }
491  }
492 
493  /**
494  * @brief Wall boundary conditions for viscous compressible flow problems.
495  */
497  int bcRegion,
498  int cnt,
499  Array<OneD, Array<OneD, NekDouble> > &physarray)
500  {
501  int i;
502  int nTracePts = GetTraceTotPoints();
503  int nVariables = physarray.num_elements();
504 
505  const Array<OneD, const int> &traceBndMap
506  = m_fields[0]->GetTraceBndMap();
507 
508  // Get physical values of the forward trace
509  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
510  for (i = 0; i < nVariables; ++i)
511  {
512  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
513  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
514  }
515 
516  // Take into account that for PDE based shock capturing, eps = 0 at the
517  // wall. Adjust the physical values of the trace to take user defined
518  // boundaries into account
519  int e, id1, id2, nBCEdgePts, eMax;
520 
521  eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
522 
523  for (e = 0; e < eMax; ++e)
524  {
525  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
526  GetExp(e)->GetTotPoints();
527  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
528  GetPhys_Offset(e);
529  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
530 
531  if (nVariables == m_spacedim+3)
532  {
533  NekDouble factor = 0.0;
534  NekDouble factor2 = 1.0;
535 
536  Array<OneD, NekDouble > tmp2(nBCEdgePts, 0.0);
537  Vmath::Smul(nBCEdgePts,
538  factor,
539  &Fwd[nVariables-1][id2], 1,
540  &tmp2[0], 1);
541 
542  Vmath::Vsub(nBCEdgePts,
543  &Fwd[nVariables-1][id2], 1,
544  &tmp2[0], 1,
545  &Fwd[nVariables-1][id2], 1);
546 
547  Vmath::Smul(nBCEdgePts,
548  factor2,
549  &Fwd[nVariables-1][id2], 1,
550  &Fwd[nVariables-1][id2], 1);
551  }
552 
553  for (i = 0; i < m_spacedim; i++)
554  {
555  Vmath::Neg(nBCEdgePts, &Fwd[i+1][id2], 1);
556  }
557 
558  // Copy boundary adjusted values into the boundary expansion
559  for (i = 0; i < nVariables; ++i)
560  {
561  Vmath::Vcopy(nBCEdgePts, &Fwd[i][id2], 1,
562  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->
563  UpdatePhys())[id1], 1);
564  }
565  }
566  }
567 
568  /**
569  * @brief Symmetry boundary conditions for compressible flow problems.
570  */
572  int bcRegion,
573  int cnt,
574  Array<OneD, Array<OneD, NekDouble> > &physarray)
575  {
576  int i;
577  int nTracePts = GetTraceTotPoints();
578  int nVariables = physarray.num_elements();
579 
580  const Array<OneD, const int> &traceBndMap
581  = m_fields[0]->GetTraceBndMap();
582 
583  // Get physical values of the forward trace (from exp to phys)
584  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
585  for (i = 0; i < nVariables; ++i)
586  {
587  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
588  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
589  }
590 
591  // Take into account that for PDE based shock capturing, eps = 0 at the
592  // wall.
593  int e, id1, id2, nBCEdgePts, eMax;
594 
595  eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
596 
597  for (e = 0; e < eMax; ++e)
598  {
599  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
600  GetExp(e)->GetTotPoints();
601  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
602  GetPhys_Offset(e);
603  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
604 
605  if (nVariables == m_spacedim+3)
606  {
607  NekDouble factor = 0.0;
608  NekDouble factor2 = 1.0;
609 
610  Array<OneD, NekDouble > tmp2(nBCEdgePts, 0.0);
611  Vmath::Smul(nBCEdgePts,
612  factor,
613  &Fwd[nVariables-1][id2], 1,
614  &tmp2[0], 1);
615 
616  Vmath::Vsub(nBCEdgePts,
617  &Fwd[nVariables-1][id2], 1,
618  &tmp2[0], 1,
619  &Fwd[nVariables-1][id2], 1);
620 
621  Vmath::Smul(nBCEdgePts,
622  factor2,
623  &Fwd[nVariables-1][id2], 1,
624  &Fwd[nVariables-1][id2], 1);
625  }
626 
627  // For 2D/3D, define: v* = v - 2(v.n)n
628  Array<OneD, NekDouble> tmp(nBCEdgePts, 0.0);
629 
630  // Calculate (v.n)
631  for (i = 0; i < m_spacedim; ++i)
632  {
633  Vmath::Vvtvp(nBCEdgePts,
634  &Fwd[1+i][id2], 1,
635  &m_traceNormals[i][id2], 1,
636  &tmp[0], 1,
637  &tmp[0], 1);
638  }
639 
640  // Calculate 2.0(v.n)
641  Vmath::Smul(nBCEdgePts, -2.0, &tmp[0], 1, &tmp[0], 1);
642 
643  // Calculate v* = v - 2.0(v.n)n
644  for (i = 0; i < m_spacedim; ++i)
645  {
646  Vmath::Vvtvp(nBCEdgePts,
647  &tmp[0], 1,
648  &m_traceNormals[i][id2], 1,
649  &Fwd[1+i][id2], 1,
650  &Fwd[1+i][id2], 1);
651  }
652 
653  // Copy boundary adjusted values into the boundary expansion
654  for (i = 0; i < nVariables; ++i)
655  {
656  Vmath::Vcopy(nBCEdgePts, &Fwd[i][id2], 1,
657  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->
658  UpdatePhys())[id1], 1);
659  }
660  }
661  }
662 
663  /**
664  * @brief Outflow characteristic boundary conditions for compressible
665  * flow problems.
666  */
668  int bcRegion,
669  int cnt,
670  Array<OneD, Array<OneD, NekDouble> > &physarray)
671  {
672  int i, j;
673  int nTracePts = GetTraceTotPoints();
674  int nVariables = physarray.num_elements();
675  int nDimensions = m_spacedim;
676 
677  const Array<OneD, const int> &traceBndMap
678  = m_fields[0]->GetTraceBndMap();
679 
680  NekDouble gamma = m_gamma;
681  NekDouble gammaInv = 1.0 / gamma;
682  NekDouble gammaMinusOne = gamma - 1.0;
683  NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
684 
685  Array<OneD, NekDouble> tmp1 (nTracePts, 0.0);
686  Array<OneD, NekDouble> tmp2 (nTracePts, 0.0);
687  Array<OneD, NekDouble> VnInf(nTracePts, 0.0);
688  Array<OneD, NekDouble> velInf(nDimensions, 0.0);
689 
690  // Computing the normal velocity for characteristics coming
691  // from outside the computational domain
692  velInf[0] = m_uInf;
693  Vmath::Smul(nTracePts, m_uInf, m_traceNormals[0], 1, VnInf, 1);
694  if (nDimensions == 2 || nDimensions == 3)
695  {
696  velInf[1] = m_vInf;
697  Vmath::Smul(nTracePts, m_vInf, m_traceNormals[1], 1, tmp1, 1);
698  Vmath::Vadd(nTracePts, VnInf, 1, tmp1, 1, VnInf, 1);
699  }
700  if (nDimensions == 3)
701  {
702  velInf[2] = m_wInf;
703  Vmath::Smul(nTracePts, m_wInf, m_traceNormals[2], 1, tmp2, 1);
704  Vmath::Vadd(nTracePts, VnInf, 1, tmp2, 1, VnInf, 1);
705  }
706 
707  // Get physical values of the forward trace
708  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
709  for (i = 0; i < nVariables; ++i)
710  {
711  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
712  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
713  }
714 
715  // Computing the normal velocity for characteristics coming
716  // from inside the computational domain
717  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
718  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
719  for (i = 0; i < nDimensions; ++i)
720  {
721  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
722  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
723  }
724 
725  // Computing the absolute value of the velocity in order to compute the
726  // Mach number to decide whether supersonic or subsonic
727  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
728  for (i = 0; i < nDimensions; ++i)
729  {
730  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, tmp1, 1);
731  Vmath::Vmul(nTracePts, tmp1, 1, tmp1, 1, tmp1, 1);
732  Vmath::Vadd(nTracePts, tmp1, 1, absVel, 1, absVel, 1);
733  }
734  Vmath::Vsqrt(nTracePts, absVel, 1, absVel, 1);
735 
736  // Get speed of sound
737  Array<OneD, NekDouble > soundSpeed(nTracePts);
738  Array<OneD, NekDouble > pressure (nTracePts);
739 
740  for (i = 0; i < nTracePts; i++)
741  {
742  if (m_spacedim == 1)
743  {
744  pressure[i] = (gammaMinusOne) * (Fwd[2][i] -
745  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i]));
746  }
747  else if (m_spacedim == 2)
748  {
749  pressure[i] = (gammaMinusOne) * (Fwd[3][i] -
750  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
751  Fwd[2][i] * Fwd[2][i] / Fwd[0][i]));
752  }
753  else
754  {
755  pressure[i] = (gammaMinusOne) * (Fwd[4][i] -
756  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
757  Fwd[2][i] * Fwd[2][i] / Fwd[0][i] +
758  Fwd[3][i] * Fwd[3][i] / Fwd[0][i]));
759  }
760 
761  soundSpeed[i] = sqrt(gamma * pressure[i] / Fwd[0][i]);
762  }
763 
764  // Get Mach
765  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
766  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
767  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
768 
769  // Auxiliary variables
770  int eMax;
771  int e, id1, id2, nBCEdgePts, pnt;
772  NekDouble cPlus, rPlus, cMinus, rMinus, VDBC, VNBC;
773  Array<OneD, NekDouble> velBC(nDimensions, 0.0);
774  Array<OneD, NekDouble> rhoVelBC(nDimensions, 0.0);
775  NekDouble rhoBC, EBC, cBC, sBC, pBC;
776 
777  eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
778 
779  // Loop on bcRegions
780  for (e = 0; e < eMax; ++e)
781  {
782  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
783  GetExp(e)->GetTotPoints();
784 
785  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
786  GetPhys_Offset(e);
787  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
788 
789  // Loop on the points of the bcRegion
790  for (i = 0; i < nBCEdgePts; i++)
791  {
792  pnt = id2+i;
793 
794  // Impose inflow Riemann invariant
795  if (Vn[pnt] <= 0.0)
796  {
797  // Subsonic flows
798  if (Mach[pnt] < 1.00)
799  {
800  // + Characteristic from inside
801  cPlus = sqrt(gamma * pressure[pnt] / Fwd[0][pnt]);
802  rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
803 
804  // - Characteristic from boundary
805  cMinus = sqrt(gamma * m_pInf / m_rhoInf);
806  rMinus = VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
807  }
808  else
809  {
810  // + Characteristic from inside
811  cPlus = sqrt(gamma * m_pInf / m_rhoInf);
812  rPlus = VnInf[pnt] + 2.0 * cPlus * gammaMinusOneInv;
813 
814  // + Characteristic from inside
815  cMinus = sqrt(gamma * m_pInf / m_rhoInf);
816  rMinus = VnInf[pnt] - 2.0 * cPlus * gammaMinusOneInv;
817  }
818 
819  // Riemann boundary variables
820  VNBC = 0.5 * (rPlus + rMinus);
821  cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
822  VDBC = VNBC - VnInf[pnt];
823 
824  // Thermodynamic boundary variables
825  sBC = m_pInf / (pow(m_rhoInf, gamma));
826  rhoBC = pow((cBC * cBC) / (gamma * sBC), gammaMinusOneInv);
827  pBC = rhoBC * cBC * cBC * gammaInv;
828 
829  // Kinetic energy initialiasation
830  NekDouble EkBC = 0.0;
831 
832  // Boundary velocities
833  for ( j = 0; j < nDimensions; ++j)
834  {
835  velBC[j] = velInf[j] + VDBC * m_traceNormals[j][pnt];
836  rhoVelBC[j] = rhoBC * velBC[j];
837  EkBC += 0.5 * rhoBC * velBC[j]*velBC[j];
838  }
839 
840  // Boundary energy
841  EBC = pBC * gammaMinusOneInv + EkBC;
842 
843  // Imposing Riemann Invariant boundary conditions
844  (m_fields[0]->GetBndCondExpansions()[bcRegion]->
845  UpdatePhys())[id1+i] = rhoBC;
846  for (j = 0; j < nDimensions; ++j)
847  {
848  (m_fields[j+1]->GetBndCondExpansions()[bcRegion]->
849  UpdatePhys())[id1+i] = rhoVelBC[j];
850  }
851  (m_fields[nDimensions+1]->GetBndCondExpansions()[bcRegion]->
852  UpdatePhys())[id1+i] = EBC;
853 
854  }
855  else // Impose outflow Riemann invariant
856  {
857  // Subsonic flows
858  if (Mach[pnt] < 1.00)
859  {
860  // + Characteristic from inside
861  cPlus = sqrt(gamma * pressure[pnt] / Fwd[0][pnt]);
862  rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
863 
864  // - Characteristic from boundary
865  cMinus = sqrt(gamma * m_pInf / m_rhoInf);
866  rMinus = VnInf[pnt] - 2.0 * cMinus * gammaMinusOneInv;
867  }
868  else
869  {
870  // + Characteristic from inside
871  cPlus = sqrt(gamma * pressure[pnt] / Fwd[0][pnt]);
872  rPlus = Vn[pnt] + 2.0 * cPlus * gammaMinusOneInv;
873 
874  // + Characteristic from inside
875  cMinus = sqrt(gamma * pressure[pnt] / Fwd[0][pnt]);
876  rMinus = Vn[pnt] - 2.0 * cPlus * gammaMinusOneInv;
877  }
878 
879  // Riemann boundary variables
880  VNBC = 0.5 * (rPlus + rMinus);
881  cBC = 0.25 * gammaMinusOne * (rPlus - rMinus);
882  VDBC = VNBC - Vn[pnt];
883 
884  // Thermodynamic boundary variables
885  sBC = pressure[pnt] / (pow(Fwd[0][pnt], gamma));
886  rhoBC = pow((cBC * cBC) / (gamma * sBC), gammaMinusOneInv);
887  pBC = rhoBC * cBC * cBC * gammaInv;
888 
889  // Kinetic energy initialiasation
890  NekDouble EkBC = 0.0;
891 
892  // Boundary velocities
893  for ( j = 0; j < nDimensions; ++j)
894  {
895  velBC[j] = Fwd[j+1][pnt] / Fwd[0][pnt] +
896  VDBC * m_traceNormals[j][pnt];
897  rhoVelBC[j] = rhoBC * velBC[j];
898  EkBC += 0.5 * rhoBC * velBC[j]*velBC[j];
899  }
900 
901  // Boundary energy
902  EBC = pBC * gammaMinusOneInv + EkBC;
903 
904  // Imposing Riemann Invariant boundary conditions
905  (m_fields[0]->GetBndCondExpansions()[bcRegion]->
906  UpdatePhys())[id1+i] = rhoBC;
907  for (j = 0; j < nDimensions; ++j)
908  {
909  (m_fields[j+1]->GetBndCondExpansions()[bcRegion]->
910  UpdatePhys())[id1+i] = rhoVelBC[j];
911  }
912  (m_fields[nDimensions+1]->GetBndCondExpansions()[bcRegion]->
913  UpdatePhys())[id1+i] = EBC;
914  }
915  }
916  }
917  }
918 
919  /**
920  * @brief Pressure outflow non-reflective
921  * boundary conditions for compressible flow
922  * problems.
923  */
925  int bcRegion,
926  int cnt,
927  Array<OneD, Array<OneD, NekDouble> > &physarray)
928  {
929  int i, j;
930  int nTracePts = GetTraceTotPoints();
931  int nVariables = physarray.num_elements();
932  int nDimensions = m_spacedim;
933 
934  const Array<OneD, const int> &traceBndMap
935  = m_fields[0]->GetTraceBndMap();
936 
937  NekDouble gamma = m_gamma;
938  NekDouble gammaMinusOne = gamma - 1.0;
939  NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
940 
941  Array<OneD, NekDouble> tmp1 (nTracePts, 0.0);
942  Array<OneD, NekDouble> tmp2 (nTracePts, 0.0);
943  Array<OneD, NekDouble> VnInf(nTracePts, 0.0);
944  Array<OneD, NekDouble> velInf(nDimensions, 0.0);
945 
946  // Computing the normal velocity for characteristics coming
947  // from outside the computational domain
948  velInf[0] = m_uInf;
949  Vmath::Smul(nTracePts, m_uInf, m_traceNormals[0], 1, VnInf, 1);
950  if (nDimensions == 2 || nDimensions == 3)
951  {
952  velInf[1] = m_vInf;
953  Vmath::Smul(nTracePts, m_vInf, m_traceNormals[1], 1, tmp1, 1);
954  Vmath::Vadd(nTracePts, VnInf, 1, tmp1, 1, VnInf, 1);
955  }
956  if (nDimensions == 3)
957  {
958  velInf[2] = m_wInf;
959  Vmath::Smul(nTracePts, m_wInf, m_traceNormals[2], 1, tmp2, 1);
960  Vmath::Vadd(nTracePts, VnInf, 1, tmp2, 1, VnInf, 1);
961  }
962 
963  // Get physical values of the forward trace
964  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
965  for (i = 0; i < nVariables; ++i)
966  {
967  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
968  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
969  }
970 
971  // Computing the normal velocity for characteristics coming
972  // from inside the computational domain
973  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
974  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
975  for (i = 0; i < nDimensions; ++i)
976  {
977  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
978  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
979  }
980 
981  // Computing the absolute value of the velocity in order to compute the
982  // Mach number to decide whether supersonic or subsonic
983  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
984  for (i = 0; i < nDimensions; ++i)
985  {
986  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, tmp1, 1);
987  Vmath::Vmul(nTracePts, tmp1, 1, tmp1, 1, tmp1, 1);
988  Vmath::Vadd(nTracePts, tmp1, 1, absVel, 1, absVel, 1);
989  }
990  Vmath::Vsqrt(nTracePts, absVel, 1, absVel, 1);
991 
992  // Get speed of sound
993  Array<OneD, NekDouble > soundSpeed(nTracePts);
994  Array<OneD, NekDouble > pressure (nTracePts);
995 
996  for (i = 0; i < nTracePts; i++)
997  {
998  if (m_spacedim == 1)
999  {
1000  pressure[i] = (gammaMinusOne) * (Fwd[2][i] -
1001  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i]));
1002  }
1003  else if (m_spacedim == 2)
1004  {
1005  pressure[i] = (gammaMinusOne) * (Fwd[3][i] -
1006  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1007  Fwd[2][i] * Fwd[2][i] / Fwd[0][i]));
1008  }
1009  else
1010  {
1011  pressure[i] = (gammaMinusOne) * (Fwd[4][i] -
1012  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1013  Fwd[2][i] * Fwd[2][i] / Fwd[0][i] +
1014  Fwd[3][i] * Fwd[3][i] / Fwd[0][i]));
1015  }
1016 
1017  soundSpeed[i] = sqrt(gamma * pressure[i] / Fwd[0][i]);
1018  }
1019 
1020  // Get Mach
1021  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
1022  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
1023  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
1024 
1025  // Auxiliary variables
1026  int e, id1, id2, npts, pnt;
1027  NekDouble rhoeb;
1028 
1029  // Loop on the bcRegions
1030  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]->
1031  GetExpSize(); ++e)
1032  {
1033  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1034  GetExp(e)->GetTotPoints();
1035  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1036  GetPhys_Offset(e) ;
1037  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
1038 
1039  // Loop on points of bcRegion 'e'
1040  for (i = 0; i < npts; i++)
1041  {
1042  pnt = id2+i;
1043 
1044  // Subsonic flows
1045  if (Mach[pnt] < 0.99)
1046  {
1047  // Kinetic energy calculation
1048  NekDouble Ek = 0.0;
1049  for (j = 1; j < nVariables-1; ++j)
1050  {
1051  Ek += 0.5 * (Fwd[j][pnt] * Fwd[j][pnt]) / Fwd[0][pnt];
1052  }
1053 
1054  rhoeb = m_pInf * gammaMinusOneInv + Ek;
1055 
1056  // Partial extrapolation for subsonic cases
1057  for (j = 0; j < nVariables-1; ++j)
1058  {
1059  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1060  UpdatePhys())[id1+i] = Fwd[j][pnt];
1061  }
1062 
1063  (m_fields[nVariables-1]->GetBndCondExpansions()[bcRegion]->
1064  UpdatePhys())[id1+i] = 2.0 * rhoeb - Fwd[nVariables-1][pnt];
1065  }
1066  // Supersonic flows
1067  else
1068  {
1069  for (j = 0; j < nVariables; ++j)
1070  {
1071  // Extrapolation for supersonic cases
1072  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1073  UpdatePhys())[id1+i] = Fwd[j][pnt];
1074  }
1075  }
1076  }
1077  }
1078  }
1079 
1080  /**
1081  * @brief Pressure outflow boundary conditions for compressible flow
1082  * problems.
1083  */
1085  int bcRegion,
1086  int cnt,
1087  Array<OneD, Array<OneD, NekDouble> > &physarray)
1088  {
1089  int i, j;
1090  int nTracePts = GetTraceTotPoints();
1091  int nVariables = physarray.num_elements();
1092  int nDimensions = m_spacedim;
1093 
1094  const Array<OneD, const int> &traceBndMap
1095  = m_fields[0]->GetTraceBndMap();
1096 
1097  NekDouble gamma = m_gamma;
1098  NekDouble gammaMinusOne = gamma - 1.0;
1099  NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
1100 
1101  Array<OneD, NekDouble> tmp1 (nTracePts, 0.0);
1102  Array<OneD, NekDouble> tmp2 (nTracePts, 0.0);
1103  Array<OneD, NekDouble> VnInf(nTracePts, 0.0);
1104  Array<OneD, NekDouble> velInf(nDimensions, 0.0);
1105 
1106  // Computing the normal velocity for characteristics coming
1107  // from outside the computational domain
1108  velInf[0] = m_uInf;
1109  Vmath::Smul(nTracePts, m_uInf, m_traceNormals[0], 1, VnInf, 1);
1110  if (nDimensions == 2 || nDimensions == 3)
1111  {
1112  velInf[1] = m_vInf;
1113  Vmath::Smul(nTracePts, m_vInf, m_traceNormals[1], 1, tmp1, 1);
1114  Vmath::Vadd(nTracePts, VnInf, 1, tmp1, 1, VnInf, 1);
1115  }
1116  if (nDimensions == 3)
1117  {
1118  velInf[2] = m_wInf;
1119  Vmath::Smul(nTracePts, m_wInf, m_traceNormals[2], 1, tmp2, 1);
1120  Vmath::Vadd(nTracePts, VnInf, 1, tmp2, 1, VnInf, 1);
1121  }
1122 
1123  // Get physical values of the forward trace
1124  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
1125  for (i = 0; i < nVariables; ++i)
1126  {
1127  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
1128  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
1129  }
1130 
1131  // Computing the normal velocity for characteristics coming
1132  // from inside the computational domain
1133  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
1134  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
1135  for (i = 0; i < nDimensions; ++i)
1136  {
1137  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
1138  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
1139  }
1140 
1141  // Computing the absolute value of the velocity in order to compute the
1142  // Mach number to decide whether supersonic or subsonic
1143  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
1144  for (i = 0; i < nDimensions; ++i)
1145  {
1146  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, tmp1, 1);
1147  Vmath::Vmul(nTracePts, tmp1, 1, tmp1, 1, tmp1, 1);
1148  Vmath::Vadd(nTracePts, tmp1, 1, absVel, 1, absVel, 1);
1149  }
1150  Vmath::Vsqrt(nTracePts, absVel, 1, absVel, 1);
1151 
1152  // Get speed of sound
1153  Array<OneD, NekDouble > soundSpeed(nTracePts);
1154  Array<OneD, NekDouble > pressure (nTracePts);
1155 
1156  for (i = 0; i < nTracePts; i++)
1157  {
1158  if (m_spacedim == 1)
1159  {
1160  pressure[i] = (gammaMinusOne) * (Fwd[2][i] -
1161  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i]));
1162  }
1163  else if (m_spacedim == 2)
1164  {
1165  pressure[i] = (gammaMinusOne) * (Fwd[3][i] -
1166  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1167  Fwd[2][i] * Fwd[2][i] / Fwd[0][i]));
1168  }
1169  else
1170  {
1171  pressure[i] = (gammaMinusOne) * (Fwd[4][i] -
1172  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1173  Fwd[2][i] * Fwd[2][i] / Fwd[0][i] +
1174  Fwd[3][i] * Fwd[3][i] / Fwd[0][i]));
1175  }
1176 
1177  soundSpeed[i] = sqrt(gamma * pressure[i] / Fwd[0][i]);
1178  }
1179 
1180  // Get Mach
1181  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
1182  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
1183  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
1184 
1185  // Auxiliary variables
1186  int e, id1, id2, npts, pnt;
1187  NekDouble rhoeb;
1188 
1189  // Loop on the bcRegions
1190  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]->
1191  GetExpSize(); ++e)
1192  {
1193  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1194  GetExp(e)->GetTotPoints();
1195  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1196  GetPhys_Offset(e) ;
1197  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
1198 
1199  // Loop on points of bcRegion 'e'
1200  for (i = 0; i < npts; i++)
1201  {
1202  pnt = id2+i;
1203 
1204  // Subsonic flows
1205  if (Mach[pnt] < 0.99)
1206  {
1207  // Kinetic energy calculation
1208  NekDouble Ek = 0.0;
1209  for (j = 1; j < nVariables-1; ++j)
1210  {
1211  Ek += 0.5 * (Fwd[j][pnt] * Fwd[j][pnt]) / Fwd[0][pnt];
1212  }
1213 
1214  rhoeb = m_pInf * gammaMinusOneInv + Ek;
1215 
1216  // Partial extrapolation for subsonic cases
1217  for (j = 0; j < nVariables-1; ++j)
1218  {
1219  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1220  UpdatePhys())[id1+i] = Fwd[j][pnt];
1221  }
1222 
1223  (m_fields[nVariables-1]->GetBndCondExpansions()[bcRegion]->
1224  UpdatePhys())[id1+i] = rhoeb;
1225  }
1226  // Supersonic flows
1227  else
1228  {
1229  for (j = 0; j < nVariables; ++j)
1230  {
1231  // Extrapolation for supersonic cases
1232  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1233  UpdatePhys())[id1+i] = Fwd[j][pnt];
1234  }
1235  }
1236  }
1237  }
1238  }
1239 
1240 
1241  /**
1242  * @brief Pressure outflow boundary conditions for compressible flow
1243  * problems.
1244  */
1246  int bcRegion,
1247  int cnt,
1248  Array<OneD, Array<OneD, NekDouble> > &physarray)
1249  {
1250  int i, j;
1251  int nTracePts = GetTraceTotPoints();
1252  int nVariables = physarray.num_elements();
1253  int nDimensions = m_spacedim;
1254 
1255  const Array<OneD, const int> &traceBndMap
1256  = m_fields[0]->GetTraceBndMap();
1257 
1258  NekDouble gamma = m_gamma;
1259  NekDouble gammaMinusOne = gamma - 1.0;
1260  NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
1261 
1262  Array<OneD, NekDouble> tmp1 (nTracePts, 0.0);
1263  Array<OneD, NekDouble> tmp2 (nTracePts, 0.0);
1264  Array<OneD, NekDouble> VnInf(nTracePts, 0.0);
1265  Array<OneD, NekDouble> velInf(nDimensions, 0.0);
1266 
1267  // Computing the normal velocity for characteristics coming
1268  // from outside the computational domain
1269  velInf[0] = m_uInf;
1270  Vmath::Smul(nTracePts, m_uInf, m_traceNormals[0], 1, VnInf, 1);
1271  if (nDimensions == 2 || nDimensions == 3)
1272  {
1273  velInf[1] = m_vInf;
1274  Vmath::Smul(nTracePts, m_vInf, m_traceNormals[1], 1, tmp1, 1);
1275  Vmath::Vadd(nTracePts, VnInf, 1, tmp1, 1, VnInf, 1);
1276  }
1277  if (nDimensions == 3)
1278  {
1279  velInf[2] = m_wInf;
1280  Vmath::Smul(nTracePts, m_wInf, m_traceNormals[2], 1, tmp2, 1);
1281  Vmath::Vadd(nTracePts, VnInf, 1, tmp2, 1, VnInf, 1);
1282  }
1283 
1284  // Get physical values of the forward trace
1285  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
1286 
1287  for (i = 0; i < nVariables; ++i)
1288  {
1289  Fwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1290  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
1291  }
1292 
1293  // Computing the normal velocity for characteristics coming
1294  // from inside the computational domain
1295  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
1296  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
1297  for (i = 0; i < nDimensions; ++i)
1298  {
1299  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
1300  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
1301  }
1302 
1303  // Computing the absolute value of the velocity in order to compute the
1304  // Mach number to decide whether supersonic or subsonic
1305  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
1306  for (i = 0; i < nDimensions; ++i)
1307  {
1308  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, tmp1, 1);
1309  Vmath::Vmul(nTracePts, tmp1, 1, tmp1, 1, tmp1, 1);
1310  Vmath::Vadd(nTracePts, tmp1, 1, absVel, 1, absVel, 1);
1311  }
1312  Vmath::Vsqrt(nTracePts, absVel, 1, absVel, 1);
1313 
1314  // Get speed of sound
1315  Array<OneD, NekDouble > soundSpeed (nTracePts, 0.0);
1316  Array<OneD, NekDouble > pressure (nTracePts, 0.0);
1317 
1318  for (i = 0; i < nTracePts; i++)
1319  {
1320  if (m_spacedim == 1)
1321  {
1322  pressure[i] = (gammaMinusOne) * (Fwd[2][i] -
1323  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i]));
1324  }
1325  else if (m_spacedim == 2)
1326  {
1327  pressure[i] = (gammaMinusOne) * (Fwd[3][i] -
1328  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1329  Fwd[2][i] * Fwd[2][i] / Fwd[0][i]));
1330  }
1331  else
1332  {
1333  pressure[i] = (gammaMinusOne) * (Fwd[4][i] -
1334  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1335  Fwd[2][i] * Fwd[2][i] / Fwd[0][i] +
1336  Fwd[3][i] * Fwd[3][i] / Fwd[0][i]));
1337  }
1338 
1339  soundSpeed[i] = sqrt(gamma * pressure[i] / Fwd[0][i]);
1340  }
1341 
1342  // Get Mach
1343  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
1344  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
1345  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
1346 
1347  // Auxiliary variables
1348  int e, id1, id2, npts, pnt;
1349  NekDouble rhoeb;
1350 
1351  // Loop on the bcRegions
1352  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]->
1353  GetExpSize(); ++e)
1354  {
1355  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1356  GetExp(e)->GetTotPoints();
1357  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1358  GetPhys_Offset(e);
1359  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
1360 
1361  // Loop on points of bcRegion 'e'
1362  for (i = 0; i < npts; i++)
1363  {
1364  pnt = id2+i;
1365 
1366  // Subsonic flows
1367  if (Mach[pnt] < 0.99)
1368  {
1369  // Kinetic energy calculation
1370  NekDouble Ek = 0.0;
1371  for (j = 1; j < nVariables-1; ++j)
1372  {
1373  Ek += 0.5 * (Fwd[j][pnt] * Fwd[j][pnt]) / Fwd[0][pnt];
1374  }
1375 
1376  rhoeb = m_pressureStorage[id1+i] * gammaMinusOneInv + Ek;
1377 
1378  // Partial extrapolation for subsonic cases
1379  for (j = 0; j < nVariables-1; ++j)
1380  {
1381  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1382  UpdatePhys())[id1+i] = Fwd[j][pnt];
1383  }
1384 
1385  (m_fields[nVariables-1]->GetBndCondExpansions()[bcRegion]->
1386  UpdatePhys())[id1+i] = rhoeb;
1387  }
1388  // Supersonic flows
1389  else
1390  {
1391  for (j = 0; j < nVariables; ++j)
1392  {
1393  // Extrapolation for supersonic cases
1394  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1395  UpdatePhys())[id1+i] = Fwd[j][pnt];
1396  }
1397  }
1398  }
1399  }
1400  }
1401 
1402 
1403  /**
1404  * @brief Pressure inflow boundary conditions for compressible flow
1405  * problems where either the density and the velocities are assigned from a
1406  * file or the full state is assigned from a file (depending on the problem
1407  * type, either subsonic or supersonic).
1408  */
1410  int bcRegion,
1411  int cnt,
1412  Array<OneD, Array<OneD, NekDouble> > &physarray)
1413  {
1414  int i, j;
1415  int nTracePts = GetTraceTotPoints();
1416  int nVariables = physarray.num_elements();
1417  int nDimensions = m_spacedim;
1418 
1419  const Array<OneD, const int> &traceBndMap
1420  = m_fields[0]->GetTraceBndMap();
1421 
1422  NekDouble gamma = m_gamma;
1423  NekDouble gammaMinusOne = gamma - 1.0;
1424  NekDouble gammaMinusOneInv = 1.0 / gammaMinusOne;
1425 
1426  Array<OneD, NekDouble> tmp1 (nTracePts, 0.0);
1427  Array<OneD, NekDouble> tmp2 (nTracePts, 0.0);
1428  Array<OneD, NekDouble> VnInf(nTracePts, 0.0);
1429  Array<OneD, NekDouble> velInf(nDimensions, 0.0);
1430 
1431  // Computing the normal velocity for characteristics coming
1432  // from outside the computational domain
1433  velInf[0] = m_uInf;
1434  Vmath::Smul(nTracePts, m_uInf, m_traceNormals[0], 1, VnInf, 1);
1435  if (nDimensions == 2 || nDimensions == 3)
1436  {
1437  velInf[1] = m_vInf;
1438  Vmath::Smul(nTracePts, m_vInf, m_traceNormals[1], 1, tmp1, 1);
1439  Vmath::Vadd(nTracePts, VnInf, 1, tmp1, 1, VnInf, 1);
1440  }
1441  if (nDimensions == 3)
1442  {
1443  velInf[2] = m_wInf;
1444  Vmath::Smul(nTracePts, m_wInf, m_traceNormals[2], 1, tmp2, 1);
1445  Vmath::Vadd(nTracePts, VnInf, 1, tmp2, 1, VnInf, 1);
1446  }
1447 
1448  // Get physical values of the forward trace
1449  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
1450 
1451  for (i = 0; i < nVariables; ++i)
1452  {
1453  Fwd[i] = Array<OneD, NekDouble>(nTracePts, 0.0);
1454  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
1455  }
1456 
1457  // Computing the normal velocity for characteristics coming
1458  // from inside the computational domain
1459  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
1460  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
1461  for (i = 0; i < nDimensions; ++i)
1462  {
1463  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
1464  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
1465  }
1466 
1467  // Computing the absolute value of the velocity in order to compute the
1468  // Mach number to decide whether supersonic or subsonic
1469  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
1470  for (i = 0; i < nDimensions; ++i)
1471  {
1472  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, tmp1, 1);
1473  Vmath::Vmul(nTracePts, tmp1, 1, tmp1, 1, tmp1, 1);
1474  Vmath::Vadd(nTracePts, tmp1, 1, absVel, 1, absVel, 1);
1475  }
1476  Vmath::Vsqrt(nTracePts, absVel, 1, absVel, 1);
1477 
1478  // Get speed of sound
1479  Array<OneD, NekDouble > soundSpeed (nTracePts, 0.0);
1480  Array<OneD, NekDouble > pressure (nTracePts, 0.0);
1481 
1482  for (i = 0; i < nTracePts; i++)
1483  {
1484  if (m_spacedim == 1)
1485  {
1486  pressure[i] = (gammaMinusOne) * (Fwd[2][i] -
1487  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i]));
1488  }
1489  else if (m_spacedim == 2)
1490  {
1491  pressure[i] = (gammaMinusOne) * (Fwd[3][i] -
1492  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1493  Fwd[2][i] * Fwd[2][i] / Fwd[0][i]));
1494  }
1495  else
1496  {
1497  pressure[i] = (gammaMinusOne) * (Fwd[4][i] -
1498  0.5 * (Fwd[1][i] * Fwd[1][i] / Fwd[0][i] +
1499  Fwd[2][i] * Fwd[2][i] / Fwd[0][i] +
1500  Fwd[3][i] * Fwd[3][i] / Fwd[0][i]));
1501  }
1502 
1503  soundSpeed[i] = sqrt(gamma * pressure[i] / Fwd[0][i]);
1504  }
1505 
1506  // Get Mach
1507  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
1508  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
1509  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
1510 
1511  // Auxiliary variables
1512  int e, id1, id2, npts, pnt;
1513  NekDouble rhoeb;
1514 
1515  // Loop on the bcRegions
1516  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[bcRegion]->
1517  GetExpSize(); ++e)
1518  {
1519  npts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1520  GetExp(e)->GetTotPoints();
1521  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1522  GetPhys_Offset(e);
1523  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
1524 
1525  // Loop on points of bcRegion 'e'
1526  for (i = 0; i < npts; i++)
1527  {
1528  pnt = id2+i;
1529 
1530  // Subsonic flows
1531  if (Mach[pnt] < 0.99)
1532  {
1533  // Partial extrapolation for subsonic cases
1534  for (j = 0; j < nVariables-1; ++j)
1535  {
1536  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1537  UpdatePhys())[id1+i] = m_fieldStorage[j][id1+i];
1538  }
1539 
1540  // Kinetic energy calculation
1541  NekDouble Ek = 0.0;
1542  for (j = 1; j < nVariables-1; ++j)
1543  {
1544  Ek += 0.5 * (m_fieldStorage[j][id1+i] *
1545  m_fieldStorage[j][id1+i]) /
1546  m_fieldStorage[0][id1+i];
1547  }
1548  rhoeb = gammaMinusOneInv * pressure[pnt] + Ek;
1549 
1550  (m_fields[nVariables-1]->GetBndCondExpansions()[bcRegion]->
1551  UpdatePhys())[id1+i] = rhoeb;
1552  }
1553  // Supersonic flows
1554  else
1555  {
1556  for (j = 0; j < nVariables; ++j)
1557  {
1558  // Extrapolation for supersonic cases
1559  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1560  UpdatePhys())[id1+i] = Fwd[j][pnt];
1561  }
1562  }
1563  }
1564  }
1565  }
1566 
1567 
1568  /**
1569  * @brief Extrapolation of order 0 for all the variables such that,
1570  * at the boundaries, a trivial Riemann problem is solved.
1571  */
1573  int bcRegion,
1574  int cnt,
1575  Array<OneD, Array<OneD, NekDouble> > &physarray)
1576  {
1577  int i, j;
1578  int e, pnt;
1579  int id1, id2, nBCEdgePts;
1580  int nTracePts = GetTraceTotPoints();
1581  int nVariables = physarray.num_elements();
1582  int nDimensions = m_spacedim;
1583 
1584  const Array<OneD, const int> &traceBndMap
1585  = m_fields[0]->GetTraceBndMap();
1586 
1587  // Get physical values of the forward trace
1588  Array<OneD, Array<OneD, NekDouble> > Fwd(nVariables);
1589  for (i = 0; i < nVariables; ++i)
1590  {
1591  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
1592  m_fields[i]->ExtractTracePhys(physarray[i], Fwd[i]);
1593  }
1594 
1595  int eMax;
1596 
1597  eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
1598 
1599  // Loop on bcRegions
1600  for (e = 0; e < eMax; ++e)
1601  {
1602  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1603  GetExp(e)->GetTotPoints();
1604  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->
1605  GetPhys_Offset(e) ;
1606  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
1607 
1608  // Loop on points of bcRegion 'e'
1609  for (i = 0; i < nBCEdgePts; i++)
1610  {
1611  pnt = id2+i;
1612 
1613  // Setting up bcs for density
1614  (m_fields[0]->GetBndCondExpansions()[bcRegion]->
1615  UpdatePhys())[id1+i] = Fwd[0][pnt];
1616 
1617  // Setting up bcs for velocities
1618  for (j = 1; j <=nDimensions; ++j)
1619  {
1620  (m_fields[j]->GetBndCondExpansions()[bcRegion]->
1621  UpdatePhys())[id1+i] = Fwd[j][pnt];
1622  }
1623 
1624  // Setting up bcs for energy
1625  (m_fields[nVariables-1]->GetBndCondExpansions()[bcRegion]->
1626  UpdatePhys())[id1+i] = Fwd[nVariables-1][pnt];
1627  }
1628  }
1629  }
1630 
1631  /**
1632  * @brief Return the flux vector for the compressible Euler equations.
1633  *
1634  * @param i Component of the flux vector to calculate.
1635  * @param physfield Fields.
1636  * @param flux Resulting flux.
1637  */
1639  const Array<OneD, Array<OneD, NekDouble> > &physfield,
1641  {
1642  int i, j;
1643  int nq = physfield[0].num_elements();
1644  int nVariables = m_fields.num_elements();
1645 
1646  Array<OneD, NekDouble> pressure(nq);
1648 
1649  // Flux vector for the rho equation
1650  for (i = 0; i < m_spacedim; ++i)
1651  {
1652  velocity[i] = Array<OneD, NekDouble>(nq);
1653  Vmath::Vcopy(nq, physfield[i+1], 1, flux[0][i], 1);
1654  }
1655 
1656  GetVelocityVector(physfield, velocity);
1657  GetPressure (physfield, velocity, pressure);
1658 
1659  // Flux vector for the velocity fields
1660  for (i = 0; i < m_spacedim; ++i)
1661  {
1662  for (j = 0; j < m_spacedim; ++j)
1663  {
1664  Vmath::Vmul(nq, velocity[j], 1, physfield[i+1], 1,
1665  flux[i+1][j], 1);
1666  }
1667 
1668  // Add pressure to appropriate field
1669  Vmath::Vadd(nq, flux[i+1][i], 1, pressure, 1, flux[i+1][i], 1);
1670  }
1671 
1672  // Flux vector for energy.
1673  Vmath::Vadd(nq, physfield[m_spacedim+1], 1, pressure, 1,
1674  pressure, 1);
1675 
1676  for (j = 0; j < m_spacedim; ++j)
1677  {
1678  Vmath::Vmul(nq, velocity[j], 1, pressure, 1,
1679  flux[m_spacedim+1][j], 1);
1680  }
1681 
1682  // For the smooth viscosity model
1683  if (nVariables == m_spacedim+3)
1684  {
1685  // Add a zero row for the advective fluxes
1686  for (j = 0; j < m_spacedim; ++j)
1687  {
1688  Vmath::Zero(nq, flux[m_spacedim+2][j], 1);
1689  }
1690  }
1691  }
1692 
1693  /**
1694  * @brief Return the flux vector for the compressible Euler equations
1695  * by using the de-aliasing technique.
1696  *
1697  * @param i Component of the flux vector to calculate.
1698  * @param physfield Fields.
1699  * @param flux Resulting flux.
1700  */
1702  const Array<OneD, Array<OneD, NekDouble> > &physfield,
1704  {
1705  int i, j;
1706  int nq = physfield[0].num_elements();
1707  int nVariables = m_fields.num_elements();
1708 
1709  // Factor to rescale 1d points in dealiasing
1710  NekDouble OneDptscale = 2;
1711  nq = m_fields[0]->Get1DScaledTotPoints(OneDptscale);
1712 
1713  Array<OneD, NekDouble> pressure(nq);
1715 
1716  Array<OneD, Array<OneD, NekDouble> > physfield_interp(nVariables);
1718  nVariables);
1719 
1720  for (i = 0; i < nVariables; ++ i)
1721  {
1722  physfield_interp[i] = Array<OneD, NekDouble>(nq);
1723  flux_interp[i] = Array<OneD, Array<OneD, NekDouble> >(m_spacedim);
1724  m_fields[0]->PhysInterp1DScaled(
1725  OneDptscale, physfield[i], physfield_interp[i]);
1726 
1727  for (j = 0; j < m_spacedim; ++j)
1728  {
1729  flux_interp[i][j] = Array<OneD, NekDouble>(nq);
1730  }
1731  }
1732 
1733  // Flux vector for the rho equation
1734  for (i = 0; i < m_spacedim; ++i)
1735  {
1736  velocity[i] = Array<OneD, NekDouble>(nq);
1737 
1738  // Galerkin project solution back to original space
1739  m_fields[0]->PhysGalerkinProjection1DScaled(
1740  OneDptscale, physfield_interp[i+1], flux[0][i]);
1741  }
1742 
1743  GetVelocityVector(physfield_interp, velocity);
1744  GetPressure (physfield_interp, velocity, pressure);
1745 
1746  // Evaluation of flux vector for the velocity fields
1747  for (i = 0; i < m_spacedim; ++i)
1748  {
1749  for (j = 0; j < m_spacedim; ++j)
1750  {
1751  Vmath::Vmul(nq, velocity[j], 1, physfield_interp[i+1], 1,
1752  flux_interp[i+1][j], 1);
1753  }
1754 
1755  // Add pressure to appropriate field
1756  Vmath::Vadd(nq, flux_interp[i+1][i], 1, pressure,1,
1757  flux_interp[i+1][i], 1);
1758  }
1759 
1760  // Galerkin project solution back to origianl space
1761  for (i = 0; i < m_spacedim; ++i)
1762  {
1763  for (j = 0; j < m_spacedim; ++j)
1764  {
1765  m_fields[0]->PhysGalerkinProjection1DScaled(
1766  OneDptscale, flux_interp[i+1][j], flux[i+1][j]);
1767  }
1768  }
1769 
1770  // Evaluation of flux vector for energy
1771  Vmath::Vadd(nq, physfield_interp[m_spacedim+1], 1, pressure, 1,
1772  pressure, 1);
1773 
1774  for (j = 0; j < m_spacedim; ++j)
1775  {
1776  Vmath::Vmul(nq, velocity[j], 1, pressure, 1,
1777  flux_interp[m_spacedim+1][j], 1);
1778 
1779  // Galerkin project solution back to origianl space
1780  m_fields[0]->PhysGalerkinProjection1DScaled(
1781  OneDptscale,
1782  flux_interp[m_spacedim+1][j],
1783  flux[m_spacedim+1][j]);
1784  }
1785  }
1786 
1787 
1788  /**
1789  * @brief Return the flux vector for the LDG diffusion problem.
1790  * \todo Complete the viscous flux vector
1791  */
1793  const Array<OneD, Array<OneD, NekDouble> > &physfield,
1794  Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivativesO1,
1795  Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor)
1796  {
1797  int j, k;
1798  int nVariables = m_fields.num_elements();
1799  int nPts = physfield[0].num_elements();
1800 
1801  // Stokes hypotesis
1802  const NekDouble lambda = -2.0/3.0;
1803 
1804  // Auxiliary variables
1805  Array<OneD, NekDouble > mu (nPts, 0.0);
1806  Array<OneD, NekDouble > thermalConductivity(nPts, 0.0);
1807  Array<OneD, NekDouble > mu2 (nPts, 0.0);
1808  Array<OneD, NekDouble > divVel (nPts, 0.0);
1809 
1810  // Variable viscosity through the Sutherland's law
1811  if (m_ViscosityType == "Variable")
1812  {
1813  GetDynamicViscosity(physfield[nVariables-2], mu);
1814  NekDouble tRa = m_Cp / m_Prandtl;
1815  Vmath::Smul(nPts, tRa, &mu[0], 1, &thermalConductivity[0], 1);
1816  }
1817  else
1818  {
1819  Vmath::Fill(nPts, m_mu, &mu[0], 1);
1821  &thermalConductivity[0], 1);
1822  }
1823 
1824  // Computing diagonal terms of viscous stress tensor
1827 
1828  // mu2 = 2 * mu
1829  Vmath::Smul(nPts, 2.0, &mu[0], 1, &mu2[0], 1);
1830 
1831  // Velocity divergence
1832  for (j = 0; j < m_spacedim; ++j)
1833  {
1834  Vmath::Vadd(nPts, &divVel[0], 1, &derivativesO1[j][j][0], 1,
1835  &divVel[0], 1);
1836  }
1837 
1838  // Velocity divergence scaled by lambda * mu
1839  Vmath::Smul(nPts, lambda, &divVel[0], 1, &divVel[0], 1);
1840  Vmath::Vmul(nPts, &mu[0], 1, &divVel[0], 1, &divVel[0], 1);
1841 
1842  // Diagonal terms of viscous stress tensor (Sxx, Syy, Szz)
1843  // Sjj = 2 * mu * du_j/dx_j - (2 / 3) * mu * sum_j(du_j/dx_j)
1844  for (j = 0; j < m_spacedim; ++j)
1845  {
1846  tmp[j] = Array<OneD, NekDouble>(nPts, 0.0);
1847  Sgg[j] = Array<OneD, NekDouble>(nPts, 0.0);
1848 
1849  Vmath::Vmul(nPts, &mu2[0], 1, &derivativesO1[j][j][0], 1,
1850  &tmp[j][0], 1);
1851 
1852  Vmath::Vadd(nPts, &tmp[j][0], 1, &divVel[0], 1, &Sgg[j][0], 1);
1853  }
1854 
1855  // Extra diagonal terms of viscous stress tensor (Sxy, Sxz, Syz)
1856  // Note: they exist for 2D and 3D problems only
1857  Array<OneD, NekDouble > Sxy(nPts, 0.0);
1858  Array<OneD, NekDouble > Sxz(nPts, 0.0);
1859  Array<OneD, NekDouble > Syz(nPts, 0.0);
1860 
1861  if (m_spacedim == 2)
1862  {
1863  // Sxy = (du/dy + dv/dx)
1864  Vmath::Vadd(nPts, &derivativesO1[0][1][0], 1,
1865  &derivativesO1[1][0][0], 1, &Sxy[0], 1);
1866 
1867  // Sxy = mu * (du/dy + dv/dx)
1868  Vmath::Vmul(nPts, &mu[0], 1, &Sxy[0], 1, &Sxy[0], 1);
1869  }
1870  else if (m_spacedim == 3)
1871  {
1872  // Sxy = (du/dy + dv/dx)
1873  Vmath::Vadd(nPts, &derivativesO1[0][1][0], 1,
1874  &derivativesO1[1][0][0], 1, &Sxy[0], 1);
1875 
1876  // Sxz = (du/dz + dw/dx)
1877  Vmath::Vadd(nPts, &derivativesO1[0][2][0], 1,
1878  &derivativesO1[2][0][0], 1, &Sxz[0], 1);
1879 
1880  // Syz = (dv/dz + dw/dy)
1881  Vmath::Vadd(nPts, &derivativesO1[1][2][0], 1,
1882  &derivativesO1[2][1][0], 1, &Syz[0], 1);
1883 
1884  // Sxy = mu * (du/dy + dv/dx)
1885  Vmath::Vmul(nPts, &mu[0], 1, &Sxy[0], 1, &Sxy[0], 1);
1886 
1887  // Sxz = mu * (du/dy + dv/dx)
1888  Vmath::Vmul(nPts, &mu[0], 1, &Sxz[0], 1, &Sxz[0], 1);
1889 
1890  // Syz = mu * (du/dy + dv/dx)
1891  Vmath::Vmul(nPts, &mu[0], 1, &Syz[0], 1, &Syz[0], 1);
1892  }
1893 
1894  // Energy-related terms
1895  Array<OneD, NekDouble > STx(nPts, 0.0);
1896  Array<OneD, NekDouble > STy(nPts, 0.0);
1897  Array<OneD, NekDouble > STz(nPts, 0.0);
1898 
1899  // Building the viscous flux vector
1900 
1901  // Viscous flux vector for the rho equation
1902  for (k = 0; k < m_spacedim; ++k)
1903  {
1904  Vmath::Zero(nPts, viscousTensor[k][0], 1);
1905  }
1906 
1907  if (m_spacedim == 1)
1908  {
1909  Array<OneD, NekDouble > tmp1(nPts, 0.0);
1910 
1911  // u * Sxx
1912  Vmath::Vmul(nPts, &physfield[0][0], 1, &Sgg[0][0], 1, &STx[0], 1);
1913 
1914  // k * dT/dx
1915  Vmath::Vmul(nPts, &thermalConductivity[0], 1,
1916  &derivativesO1[0][1][0], 1, &tmp1[0], 1);
1917 
1918  // STx = u * Sxx + (K / mu) * dT/dx
1919  Vmath::Vadd(nPts, &STx[0], 1, &tmp1[0], 1, &STx[0], 1);
1920  }
1921  else if (m_spacedim == 2)
1922  {
1923  Array<OneD, NekDouble > tmp1(nPts, 0.0);
1924  Array<OneD, NekDouble > tmp2(nPts, 0.0);
1925 
1926  // Computation of STx
1927 
1928  // u * Sxx
1929  Vmath::Vmul(nPts, &physfield[0][0], 1, &Sgg[0][0], 1, &STx[0], 1);
1930 
1931  // v * Sxy
1932  Vmath::Vmul(nPts, &physfield[1][0], 1, &Sxy[0], 1, &tmp1[0], 1);
1933 
1934  // k * dT/dx
1935  Vmath::Vmul(nPts, &thermalConductivity[0], 1,
1936  &derivativesO1[0][2][0], 1, &tmp2[0], 1);
1937 
1938  // STx = u * Sxx + v * Sxy + K * dT/dx
1939  Vmath::Vadd(nPts, &STx[0], 1, &tmp1[0], 1, &STx[0], 1);
1940  Vmath::Vadd(nPts, &STx[0], 1, &tmp2[0], 1, &STx[0], 1);
1941 
1942  // Computation of STy
1943 
1944  // Re-initialise temporary arrays
1945  Vmath::Zero(nPts, &tmp1[0], 1);
1946  Vmath::Zero(nPts, &tmp2[0], 1);
1947 
1948  // v * Syy
1949  Vmath::Vmul(nPts, &physfield[1][0], 1, &Sgg[1][0], 1, &STy[0], 1);
1950 
1951  // u * Sxy
1952  Vmath::Vmul(nPts, &physfield[0][0], 1, &Sxy[0], 1, &tmp1[0], 1);
1953 
1954  // k * dT/dy
1955  Vmath::Vmul(nPts, &thermalConductivity[0], 1,
1956  &derivativesO1[1][2][0], 1, &tmp2[0], 1);
1957 
1958  // STy = v * Syy + u * Sxy + K * dT/dy
1959  Vmath::Vadd(nPts, &STy[0], 1, &tmp1[0], 1, &STy[0], 1);
1960  Vmath::Vadd(nPts, &STy[0], 1, &tmp2[0], 1, &STy[0], 1);
1961  }
1962  else if (m_spacedim == 3)
1963  {
1964  Array<OneD, NekDouble > tmp1(nPts, 0.0);
1965  Array<OneD, NekDouble > tmp2(nPts, 0.0);
1966  Array<OneD, NekDouble > tmp3(nPts, 0.0);
1967 
1968  // Computation of STx
1969 
1970  // u * Sxx
1971  Vmath::Vmul(nPts, &physfield[0][0], 1, &Sgg[0][0], 1, &STx[0], 1);
1972 
1973  // v * Sxy
1974  Vmath::Vmul(nPts, &physfield[1][0], 1, &Sxy[0], 1, &tmp1[0], 1);
1975 
1976  // v * Sxz
1977  Vmath::Vmul(nPts, &physfield[2][0], 1, &Sxz[0], 1, &tmp2[0], 1);
1978 
1979  // k * dT/dx
1980  Vmath::Vmul(nPts, &thermalConductivity[0], 1,
1981  &derivativesO1[0][3][0], 1, &tmp3[0], 1);
1982 
1983  // STx = u * Sxx + v * Sxy + w * Sxz + (K / mu) * dT/dx
1984  Vmath::Vadd(nPts, &STx[0], 1, &tmp1[0], 1, &STx[0], 1);
1985  Vmath::Vadd(nPts, &STx[0], 1, &tmp2[0], 1, &STx[0], 1);
1986  Vmath::Vadd(nPts, &STx[0], 1, &tmp3[0], 1, &STx[0], 1);
1987 
1988  // Computation of STy
1989 
1990  // Re-initialise temporary arrays
1991  Vmath::Zero(nPts, &tmp1[0], 1);
1992  Vmath::Zero(nPts, &tmp2[0], 1);
1993  Vmath::Zero(nPts, &tmp3[0], 1);
1994 
1995  // v * Syy
1996  Vmath::Vmul(nPts, &physfield[1][0], 1, &Sgg[1][0], 1, &STy[0], 1);
1997 
1998  // u * Sxy
1999  Vmath::Vmul(nPts, &physfield[0][0], 1, &Sxy[0], 1, &tmp1[0], 1);
2000 
2001  // w * Syz
2002  Vmath::Vmul(nPts, &physfield[2][0], 1, &Syz[0], 1, &tmp2[0], 1);
2003 
2004  // k * dT/dy
2005  Vmath::Vmul(nPts, &thermalConductivity[0], 1,
2006  &derivativesO1[1][3][0], 1, &tmp3[0], 1);
2007 
2008  // STy = v * Syy + u * Sxy + w * Syz + K * dT/dy
2009  Vmath::Vadd(nPts, &STy[0], 1, &tmp1[0], 1, &STy[0], 1);
2010  Vmath::Vadd(nPts, &STy[0], 1, &tmp2[0], 1, &STy[0], 1);
2011  Vmath::Vadd(nPts, &STy[0], 1, &tmp3[0], 1, &STy[0], 1);
2012 
2013  // Computation of STz
2014 
2015  // Re-initialise temporary arrays
2016  Vmath::Zero(nPts, &tmp1[0], 1);
2017  Vmath::Zero(nPts, &tmp2[0], 1);
2018  Vmath::Zero(nPts, &tmp3[0], 1);
2019 
2020  // w * Szz
2021  Vmath::Vmul(nPts, &physfield[2][0], 1, &Sgg[2][0], 1, &STz[0], 1);
2022 
2023  // u * Sxz
2024  Vmath::Vmul(nPts, &physfield[0][0], 1, &Sxz[0], 1, &tmp1[0], 1);
2025 
2026  // v * Syz
2027  Vmath::Vmul(nPts, &physfield[1][0], 1, &Syz[0], 1, &tmp2[0], 1);
2028 
2029  // k * dT/dz
2030  Vmath::Vmul(nPts, &thermalConductivity[0], 1,
2031  &derivativesO1[2][3][0], 1, &tmp3[0], 1);
2032 
2033  // STz = w * Szz + u * Sxz + v * Syz + K * dT/dz
2034  Vmath::Vadd(nPts, &STz[0], 1, &tmp1[0], 1, &STz[0], 1);
2035  Vmath::Vadd(nPts, &STz[0], 1, &tmp2[0], 1, &STz[0], 1);
2036  Vmath::Vadd(nPts, &STz[0], 1, &tmp3[0], 1, &STz[0], 1);
2037  }
2038 
2039  switch (m_spacedim)
2040  {
2041  case 1:
2042  {
2043  // f_11v = f_rho = 0
2044  Vmath::Zero(nPts, &viscousTensor[0][0][0], 1);
2045 
2046  // f_21v = f_rhou
2047  Vmath::Vcopy(nPts, &Sgg[0][0], 1, &viscousTensor[0][1][0], 1);
2048 
2049  // f_31v = f_E
2050  Vmath::Vcopy(nPts, &STx[0], 1, &viscousTensor[0][2][0], 1);
2051  break;
2052  }
2053  case 2:
2054  {
2055  // f_11v = f_rho1 = 0
2056  Vmath::Zero(nPts, &viscousTensor[0][0][0], 1);
2057  // f_12v = f_rho2 = 0
2058  Vmath::Zero(nPts, &viscousTensor[1][0][0], 1);
2059 
2060  // f_21v = f_rhou1
2061  Vmath::Vcopy(nPts, &Sgg[0][0], 1, &viscousTensor[0][1][0], 1);
2062  // f_22v = f_rhou2
2063  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor[1][1][0], 1);
2064 
2065  // f_31v = f_rhov1
2066  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor[0][2][0], 1);
2067  // f_32v = f_rhov2
2068  Vmath::Vcopy(nPts, &Sgg[1][0], 1, &viscousTensor[1][2][0], 1);
2069 
2070  // f_41v = f_E1
2071  Vmath::Vcopy(nPts, &STx[0], 1, &viscousTensor[0][3][0], 1);
2072  // f_42v = f_E2
2073  Vmath::Vcopy(nPts, &STy[0], 1, &viscousTensor[1][3][0], 1);
2074  break;
2075  }
2076  case 3:
2077  {
2078  // f_11v = f_rho1 = 0
2079  Vmath::Zero(nPts, &viscousTensor[0][0][0], 1);
2080  // f_12v = f_rho2 = 0
2081  Vmath::Zero(nPts, &viscousTensor[1][0][0], 1);
2082  // f_13v = f_rho3 = 0
2083  Vmath::Zero(nPts, &viscousTensor[2][0][0], 1);
2084 
2085  // f_21v = f_rhou1
2086  Vmath::Vcopy(nPts, &Sgg[0][0], 1, &viscousTensor[0][1][0], 1);
2087  // f_22v = f_rhou2
2088  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor[1][1][0], 1);
2089  // f_23v = f_rhou3
2090  Vmath::Vcopy(nPts, &Sxz[0], 1, &viscousTensor[2][1][0], 1);
2091 
2092  // f_31v = f_rhov1
2093  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor[0][2][0], 1);
2094  // f_32v = f_rhov2
2095  Vmath::Vcopy(nPts, &Sgg[1][0], 1, &viscousTensor[1][2][0], 1);
2096  // f_33v = f_rhov3
2097  Vmath::Vcopy(nPts, &Syz[0], 1, &viscousTensor[2][2][0], 1);
2098 
2099  // f_31v = f_rhow1
2100  Vmath::Vcopy(nPts, &Sxz[0], 1, &viscousTensor[0][3][0], 1);
2101  // f_32v = f_rhow2
2102  Vmath::Vcopy(nPts, &Syz[0], 1, &viscousTensor[1][3][0], 1);
2103  // f_33v = f_rhow3
2104  Vmath::Vcopy(nPts, &Sgg[2][0], 1, &viscousTensor[2][3][0], 1);
2105 
2106  // f_41v = f_E1
2107  Vmath::Vcopy(nPts, &STx[0], 1, &viscousTensor[0][4][0], 1);
2108  // f_42v = f_E2
2109  Vmath::Vcopy(nPts, &STy[0], 1, &viscousTensor[1][4][0], 1);
2110  // f_43v = f_E3
2111  Vmath::Vcopy(nPts, &STz[0], 1, &viscousTensor[2][4][0], 1);
2112  break;
2113  }
2114  default:
2115  {
2116  ASSERTL0(false, "Illegal expansion dimension");
2117  }
2118  }
2119  }
2120 
2121  /**
2122  * @brief Return the flux vector for the LDG diffusion problem.
2123  * \todo Complete the viscous flux vector
2124  */
2126  const Array<OneD, Array<OneD, NekDouble> > &physfield,
2127  Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivativesO1,
2128  Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor)
2129  {
2130 #if 0
2131  int i, j, k;
2132  int nVariables = m_fields.num_elements();
2133  int nPts = physfield[0].num_elements();
2134 
2135  int variables_phys = physfield.num_elements();
2136 
2137  // Factor to rescale 1d points in dealiasing.
2138  NekDouble OneDptscale = 2;
2139 
2140  // Get number of points to dealias a cubic non-linearity
2141  nPts = m_fields[0]->Get1DScaledTotPoints(OneDptscale);
2142 
2143  int nVariables_aux = derivativesO1[0].num_elements();
2144 
2145  Array<OneD, Array<OneD, NekDouble> > physfield_interp(variables_phys);
2146  Array<OneD, Array<OneD, Array<OneD, NekDouble> > > derivativesO1_interp(
2147  m_spacedim);
2148  Array<OneD, Array<OneD, Array<OneD, NekDouble> > >viscousTensor_interp(
2149  m_spacedim);
2150 
2151  for (i = 0; i < m_spacedim; ++ i)
2152  {
2153  viscousTensor_interp[i] = Array<OneD, Array<OneD, NekDouble> >(
2154  nVariables);
2155  for (j = 0; j < nVariables; ++j)
2156  {
2157  viscousTensor_interp[i][j] = Array<OneD, NekDouble>(nPts);
2158  }
2159  }
2160 
2161  // Stokes hypotesis
2162  NekDouble lambda = -2.0/3.0;
2163 
2164  // Auxiliary variables
2165  Array<OneD, NekDouble > mu (nPts, 0.0);
2166  Array<OneD, NekDouble > mu2 (nPts, 0.0);
2167  Array<OneD, NekDouble > divVel (nPts, 0.0);
2168  Array<OneD, NekDouble > pressure (nPts, 0.0);
2169  Array<OneD, NekDouble > temperature(nPts, 0.0);
2170 
2171  for (i = 0; i < nVariables; ++i)
2172  {
2173  m_fields[0]->PhysInterp1DScaled(
2174  OneDptscale, physfield[i], fields_interp[i]);
2175  }
2176 
2177  for (i = 0; i < variables_phys; ++i)
2178  {
2179  physfield_interp[i] = Array<OneD, NekDouble> (nPts);
2180 
2181  // Interpolation to higher space
2182  m_fields[0]->PhysInterp1DScaled(OneDptscale, physfield[i],
2183  physfield_interp[i]);
2184  }
2185 
2186  for (i = 0; i < m_spacedim; ++i)
2187  {
2188  derivativesO1_interp[i] = Array<OneD, Array<OneD, NekDouble> >(
2189  nVariables_aux);
2190  for (j = 0; j < nVariables_aux; ++j)
2191  {
2192  derivativesO1_interp[i][j] = Array<OneD, NekDouble>(nPts);
2193  m_fields[0]->PhysInterp1DScaled(
2194  OneDptscale, derivativesO1[i][j],
2195  derivativesO1_interp[i][j]);
2196  }
2197  }
2198 
2199  // Thermodynamic related quantities
2200  GetPressure(fields_interp, pressure);
2201  GetTemperature(fields_interp, pressure, temperature);
2202 
2203  // Variable viscosity through the Sutherland's law
2204  if (m_ViscosityType == "Variable")
2205  {
2206  GetDynamicViscosity(fields_interp[variables_phys-1], mu);
2207  }
2208  else
2209  {
2210  Vmath::Sadd(nPts, m_mu, &mu[0], 1, &mu[0], 1);
2211  }
2212 
2213  // Computing diagonal terms of viscous stress tensor
2214  Array<OneD, Array<OneD, NekDouble> > tmp(m_spacedim);
2215  Array<OneD, Array<OneD, NekDouble> > Sgg(m_spacedim);
2216 
2217  // mu2 = 2 * mu
2218  Vmath::Smul(nPts, 2.0, &mu[0], 1, &mu2[0], 1);
2219 
2220  // Velocity divergence
2221  for (j = 0; j < m_spacedim; ++j)
2222  {
2223  Vmath::Vadd(nPts, &divVel[0], 1, &derivativesO1_interp[j][j][0], 1,
2224  &divVel[0], 1);
2225  }
2226 
2227  // Velocity divergence scaled by lambda * mu
2228  Vmath::Smul(nPts, lambda, &divVel[0], 1, &divVel[0], 1);
2229  Vmath::Vmul(nPts, &mu[0], 1, &divVel[0], 1, &divVel[0], 1);
2230 
2231  // Digonal terms of viscous stress tensor (Sxx, Syy, Szz)
2232  // Sjj = 2 * mu * du_j/dx_j - (2 / 3) * mu * sum_j(du_j/dx_j)
2233  for (j = 0; j < m_spacedim; ++j)
2234  {
2235  tmp[j] = Array<OneD, NekDouble>(nPts, 0.0);
2236  Sgg[j] = Array<OneD, NekDouble>(nPts, 0.0);
2237 
2238  Vmath::Vmul(nPts, &mu2[0], 1, &derivativesO1_interp[j][j][0], 1,
2239  &tmp[j][0], 1);
2240 
2241  Vmath::Vadd(nPts, &tmp[j][0], 1, &divVel[0], 1, &Sgg[j][0], 1);
2242  }
2243 
2244  // Extra diagonal terms of viscous stress tensor (Sxy, Sxz, Syz)
2245  // Note: they exist for 2D and 3D problems only
2246  Array<OneD, NekDouble > Sxy(nPts, 0.0);
2247  Array<OneD, NekDouble > Sxz(nPts, 0.0);
2248  Array<OneD, NekDouble > Syz(nPts, 0.0);
2249 
2250  if (m_spacedim == 2)
2251  {
2252  // Sxy = (du/dy + dv/dx)
2253  Vmath::Vadd(nPts, &derivativesO1_interp[0][1][0], 1,
2254  &derivativesO1_interp[1][0][0], 1, &Sxy[0], 1);
2255 
2256  // Sxy = mu * (du/dy + dv/dx)
2257  Vmath::Vmul(nPts, &mu[0], 1, &Sxy[0], 1, &Sxy[0], 1);
2258  }
2259  else if (m_spacedim == 3)
2260  {
2261  // Sxy = (du/dy + dv/dx)
2262  Vmath::Vadd(nPts, &derivativesO1_interp[0][1][0], 1,
2263  &derivativesO1_interp[1][0][0], 1, &Sxy[0], 1);
2264 
2265  // Sxz = (du/dz + dw/dx)
2266  Vmath::Vadd(nPts, &derivativesO1_interp[0][2][0], 1,
2267  &derivativesO1_interp[2][0][0], 1, &Sxz[0], 1);
2268 
2269  // Syz = (dv/dz + dw/dy)
2270  Vmath::Vadd(nPts, &derivativesO1_interp[1][2][0], 1,
2271  &derivativesO1_interp[2][1][0], 1, &Syz[0], 1);
2272 
2273  // Sxy = mu * (du/dy + dv/dx)
2274  Vmath::Vmul(nPts, &mu[0], 1, &Sxy[0], 1, &Sxy[0], 1);
2275 
2276  // Sxz = mu * (du/dy + dv/dx)
2277  Vmath::Vmul(nPts, &mu[0], 1, &Sxz[0], 1, &Sxz[0], 1);
2278 
2279  // Syz = mu * (du/dy + dv/dx)
2280  Vmath::Vmul(nPts, &mu[0], 1, &Syz[0], 1, &Syz[0], 1);
2281  }
2282 
2283  // Energy-related terms
2284  Array<OneD, NekDouble > STx(nPts, 0.0);
2285  Array<OneD, NekDouble > STy(nPts, 0.0);
2286  Array<OneD, NekDouble > STz(nPts, 0.0);
2287  // Building the viscous flux vector
2288  if (i == 0)
2289  {
2290  // Viscous flux vector for the rho equation
2291  for (k = 0; k < m_spacedim; ++k)
2292  {
2293  Vmath::Zero(nPts, viscousTensor_interp[k][i], 1);
2294  }
2295  }
2296 
2297  if (m_spacedim == 1)
2298  {
2299  Array<OneD, NekDouble > tmp1(nPts, 0.0);
2300 
2301  // u * Sxx
2302  Vmath::Vmul(nPts, &physfield_interp[0][0], 1,
2303  &Sgg[0][0], 1, &STx[0], 1);
2304 
2305  // k * dT/dx
2307  &derivativesO1_interp[0][1][0], 1, &tmp1[0], 1);
2308 
2309  // STx = u * Sxx + (K / mu) * dT/dx
2310  Vmath::Vadd(nPts, &STx[0], 1, &tmp1[0], 1, &STx[0], 1);
2311  }
2312  else if (m_spacedim == 2)
2313  {
2314  Array<OneD, NekDouble > tmp1(nPts, 0.0);
2315  Array<OneD, NekDouble > tmp2(nPts, 0.0);
2316 
2317  // Computation of STx
2318 
2319  // u * Sxx
2320  Vmath::Vmul(nPts, &physfield_interp[0][0], 1,
2321  &Sgg[0][0], 1, &STx[0], 1);
2322 
2323  // v * Sxy
2324  Vmath::Vmul(nPts, &physfield_interp[1][0], 1,
2325  &Sxy[0], 1, &tmp1[0], 1);
2326 
2327  // k * dT/dx
2329  &derivativesO1_interp[0][2][0], 1, &tmp2[0], 1);
2330 
2331  // STx = u * Sxx + v * Sxy + K * dT/dx
2332  Vmath::Vadd(nPts, &STx[0], 1, &tmp1[0], 1, &STx[0], 1);
2333  Vmath::Vadd(nPts, &STx[0], 1, &tmp2[0], 1, &STx[0], 1);
2334 
2335  // Computation of STy
2336 
2337  // Re-initialise temporary arrays
2338  Vmath::Zero(nPts, &tmp1[0], 1);
2339  Vmath::Zero(nPts, &tmp2[0], 1);
2340 
2341  // v * Syy
2342  Vmath::Vmul(nPts, &physfield_interp[1][0], 1,
2343  &Sgg[1][0], 1, &STy[0], 1);
2344 
2345  // u * Sxy
2346  Vmath::Vmul(nPts, &physfield_interp[0][0], 1,
2347  &Sxy[0], 1, &tmp1[0], 1);
2348 
2349  // k * dT/dy
2351  &derivativesO1_interp[1][2][0], 1, &tmp2[0], 1);
2352 
2353  // STy = v * Syy + u * Sxy + K * dT/dy
2354  Vmath::Vadd(nPts, &STy[0], 1, &tmp1[0], 1, &STy[0], 1);
2355  Vmath::Vadd(nPts, &STy[0], 1, &tmp2[0], 1, &STy[0], 1);
2356  }
2357  else if (m_spacedim == 3)
2358  {
2359  Array<OneD, NekDouble > tmp1(nPts, 0.0);
2360  Array<OneD, NekDouble > tmp2(nPts, 0.0);
2361  Array<OneD, NekDouble > tmp3(nPts, 0.0);
2362 
2363  // Computation of STx
2364 
2365  // u * Sxx
2366  Vmath::Vmul(nPts, &physfield_interp[0][0], 1,
2367  &Sgg[0][0], 1, &STx[0], 1);
2368 
2369  // v * Sxy
2370  Vmath::Vmul(nPts, &physfield_interp[1][0], 1,
2371  &Sxy[0], 1, &tmp1[0], 1);
2372 
2373  // v * Sxy
2374  Vmath::Vmul(nPts, &physfield_interp[2][0], 1,
2375  &Sxz[0], 1, &tmp2[0], 1);
2376 
2377  // k * dT/dx
2379  &derivativesO1_interp[0][3][0], 1, &tmp3[0], 1);
2380 
2381  // STx = u * Sxx + v * Sxy + w * Sxz + (K / mu) * dT/dx
2382  Vmath::Vadd(nPts, &STx[0], 1, &tmp1[0], 1, &STx[0], 1);
2383  Vmath::Vadd(nPts, &STx[0], 1, &tmp2[0], 1, &STx[0], 1);
2384  Vmath::Vadd(nPts, &STx[0], 1, &tmp3[0], 1, &STx[0], 1);
2385 
2386  // Computation of STy
2387 
2388  // Re-initialise temporary arrays
2389  Vmath::Zero(nPts, &tmp1[0], 1);
2390  Vmath::Zero(nPts, &tmp2[0], 1);
2391  Vmath::Zero(nPts, &tmp3[0], 1);
2392 
2393  // v * Syy
2394  Vmath::Vmul(nPts, &physfield_interp[1][0], 1,
2395  &Sgg[1][0], 1, &STy[0], 1);
2396 
2397  // u * Sxy
2398  Vmath::Vmul(nPts, &physfield_interp[0][0], 1,
2399  &Sxy[0], 1, &tmp1[0], 1);
2400 
2401  // w * Syz
2402  Vmath::Vmul(nPts, &physfield_interp[2][0], 1,
2403  &Syz[0], 1, &tmp2[0], 1);
2404 
2405  // k * dT/dy
2407  &derivativesO1_interp[1][3][0], 1, &tmp3[0], 1);
2408 
2409  // STy = v * Syy + u * Sxy + w * Syz + K * dT/dy
2410  Vmath::Vadd(nPts, &STy[0], 1, &tmp1[0], 1, &STy[0], 1);
2411  Vmath::Vadd(nPts, &STy[0], 1, &tmp2[0], 1, &STy[0], 1);
2412  Vmath::Vadd(nPts, &STy[0], 1, &tmp3[0], 1, &STy[0], 1);
2413 
2414  // Computation of STz
2415 
2416  // Re-initialise temporary arrays
2417  Vmath::Zero(nPts, &tmp1[0], 1);
2418  Vmath::Zero(nPts, &tmp2[0], 1);
2419  Vmath::Zero(nPts, &tmp3[0], 1);
2420 
2421  // w * Szz
2422  Vmath::Vmul(nPts, &physfield_interp[2][0], 1,
2423  &Sgg[2][0], 1, &STz[0], 1);
2424 
2425  // u * Sxz
2426  Vmath::Vmul(nPts, &physfield_interp[0][0], 1,
2427  &Sxz[0], 1, &tmp1[0], 1);
2428 
2429  // v * Syz
2430  Vmath::Vmul(nPts, &physfield_interp[1][0], 1,
2431  &Syz[0], 1, &tmp2[0], 1);
2432 
2433  // k * dT/dz
2435  &derivativesO1_interp[2][3][0], 1, &tmp3[0], 1);
2436 
2437  // STz = w * Szz + u * Sxz + v * Syz + K * dT/dz
2438  Vmath::Vadd(nPts, &STz[0], 1, &tmp1[0], 1, &STz[0], 1);
2439  Vmath::Vadd(nPts, &STz[0], 1, &tmp2[0], 1, &STz[0], 1);
2440  Vmath::Vadd(nPts, &STz[0], 1, &tmp3[0], 1, &STz[0], 1);
2441  }
2442 
2443  switch (m_spacedim)
2444  {
2445  case 1:
2446  {
2447 
2448  int nq = physfield[0].num_elements();
2449  // f_11v = f_rho = 0
2450  Vmath::Zero(nq, &viscousTensor_interp[0][0][0], 1);
2451 
2452  // f_21v = f_rhou
2453  Vmath::Vcopy(nPts, &Sgg[0][0], 1, &viscousTensor_interp[0][1][0], 1);
2454 
2455  // f_31v = f_E
2456  Vmath::Vcopy(nPts, &STx[0], 1, &viscousTensor_interp[0][2][0], 1);
2457  break;
2458  }
2459  case 2:
2460  {
2461  int nq = physfield[0].num_elements();
2462  // f_11v = f_rho1 = 0
2463  Vmath::Zero(nq, &viscousTensor_interp[0][0][0], 1);
2464  // f_12v = f_rho2 = 0
2465  Vmath::Zero(nq, &viscousTensor_interp[1][0][0], 1);
2466 
2467  // f_21v = f_rhou1
2468  Vmath::Vcopy(nPts, &Sgg[0][0], 1, &viscousTensor_interp[0][1][0], 1);
2469  // f_22v = f_rhou2
2470  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor_interp[1][1][0], 1);
2471 
2472  // f_31v = f_rhov1
2473  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor_interp[0][2][0], 1);
2474  // f_32v = f_rhov2
2475  Vmath::Vcopy(nPts, &Sgg[1][0], 1, &viscousTensor_interp[1][2][0], 1);
2476 
2477  // f_41v = f_E1
2478  Vmath::Vcopy(nPts, &STx[0], 1, &viscousTensor_interp[0][3][0], 1);
2479  // f_42v = f_E2
2480  Vmath::Vcopy(nPts, &STy[0], 1, &viscousTensor_interp[1][3][0], 1);
2481  break;
2482  }
2483  case 3:
2484  {
2485  int nq = physfield[0].num_elements();
2486  // f_11v = f_rho1 = 0
2487  Vmath::Zero(nq, &viscousTensor_interp[0][0][0], 1);
2488  // f_12v = f_rho2 = 0
2489  Vmath::Zero(nq, &viscousTensor_interp[1][0][0], 1);
2490  // f_13v = f_rho3 = 0
2491  Vmath::Zero(nq, &viscousTensor_interp[2][0][0], 1);
2492 
2493  // f_21v = f_rhou1
2494  Vmath::Vcopy(nPts, &Sgg[0][0], 1, &viscousTensor_interp[0][1][0], 1);
2495  // f_22v = f_rhou2
2496  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor_interp[1][1][0], 1);
2497  // f_23v = f_rhou3
2498  Vmath::Vcopy(nPts, &Sxz[0], 1, &viscousTensor_interp[2][1][0], 1);
2499 
2500  // f_31v = f_rhov1
2501  Vmath::Vcopy(nPts, &Sxy[0], 1, &viscousTensor_interp[0][2][0], 1);
2502  // f_32v = f_rhov2
2503  Vmath::Vcopy(nPts, &Sgg[1][0], 1, &viscousTensor_interp[1][2][0], 1);
2504  // f_33v = f_rhov3
2505  Vmath::Vcopy(nPts, &Syz[0], 1, &viscousTensor_interp[2][2][0], 1);
2506 
2507  // f_31v = f_rhow1
2508  Vmath::Vcopy(nPts, &Sxz[0], 1, &viscousTensor_interp[0][3][0], 1);
2509  // f_32v = f_rhow2
2510  Vmath::Vcopy(nPts, &Syz[0], 1, &viscousTensor_interp[1][3][0], 1);
2511  // f_33v = f_rhow3
2512  Vmath::Vcopy(nPts, &Sgg[2][0], 1, &viscousTensor_interp[2][3][0], 1);
2513 
2514  // f_41v = f_E1
2515  Vmath::Vcopy(nPts, &STx[0], 1, &viscousTensor_interp[0][4][0], 1);
2516  // f_42v = f_E2
2517  Vmath::Vcopy(nPts, &STy[0], 1, &viscousTensor_interp[1][4][0], 1);
2518  // f_43v = f_E3
2519  Vmath::Vcopy(nPts, &STz[0], 1, &viscousTensor_interp[2][4][0], 1);
2520  break;
2521  }
2522  default:
2523  {
2524  ASSERTL0(false, "Illegal expansion dimension");
2525  }
2526  }
2527 
2528  for (i = 0; i < m_spacedim; ++i)
2529  {
2530  for (j = 1; j < nVariables; ++j)
2531  {
2532  // Galerkin project solution back to origianl space
2533  m_fields[0]->PhysGalerkinProjection1DScaled(
2534  OneDptscale,
2535  viscousTensor_interp[i][j],
2536  viscousTensor[i][j]);
2537  }
2538  }
2539 #endif
2540 }
2541 
2542  /**
2543  * @brief Calculate the pressure field \f$ p =
2544  * (\gamma-1)(E-\frac{1}{2}\rho\| \mathbf{v} \|^2) \f$ assuming an ideal
2545  * gas law.
2546  *
2547  * @param physfield Input momentum.
2548  * @param pressure Computed pressure field.
2549  */
2551  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
2552  Array<OneD, NekDouble> &pressure)
2553  {
2554  int nBCEdgePts = physfield[0].num_elements();
2555  NekDouble alpha = -0.5;
2556 
2557  // Calculate ||rho v||^2
2558  Vmath::Vmul(nBCEdgePts, physfield[1], 1, physfield[1], 1, pressure, 1);
2559  for (int i = 1; i < m_spacedim; ++i)
2560  {
2561  Vmath::Vvtvp(nBCEdgePts, physfield[1+i], 1, physfield[1+i], 1,
2562  pressure, 1, pressure, 1);
2563  }
2564  // Divide by rho to get rho*||v||^2
2565  Vmath::Vdiv (nBCEdgePts, pressure, 1, physfield[0], 1, pressure, 1);
2566  // pressure <- E - 0.5*pressure
2567  Vmath::Svtvp(nBCEdgePts, alpha,
2568  pressure, 1, physfield[m_spacedim+1], 1, pressure, 1);
2569  // Multiply by (gamma-1)
2570  Vmath::Smul (nBCEdgePts, m_gamma-1, pressure, 1, pressure, 1);
2571  }
2572 
2573  /**
2574  * @brief Compute the enthalpy term \f$ H = E + p/rho \$.
2575  */
2577  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
2578  Array<OneD, NekDouble> &pressure,
2579  Array<OneD, NekDouble> &enthalpy)
2580  {
2581  int npts = m_fields[0]->GetTotPoints();
2582  Array<OneD, NekDouble> tmp(npts, 0.0);
2583 
2584  // Calculate E = rhoE/rho
2585  Vmath::Vdiv(npts, physfield[m_spacedim+1], 1, physfield[0], 1, tmp, 1);
2586  // Calculate p/rho
2587  Vmath::Vdiv(npts, pressure, 1, physfield[0], 1, enthalpy, 1);
2588  // Calculate H = E + p/rho
2589  Vmath::Vadd(npts, tmp, 1, enthalpy, 1, enthalpy, 1);
2590  }
2591 
2592  /**
2593  * @brief Calculate the pressure field \f$ p =
2594  * (\gamma-1)(E-\frac{1}{2}\rho\| \mathbf{v} \|^2) \f$ assuming an ideal
2595  * gas law.
2596  *
2597  * This is a slightly optimised way to calculate the pressure field which
2598  * avoids division by the density field if the velocity field has already
2599  * been calculated.
2600  *
2601  * @param physfield Input momentum.
2602  * @param velocity Velocity vector.
2603  * @param pressure Computed pressure field.
2604  */
2606  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
2607  const Array<OneD, const Array<OneD, NekDouble> > &velocity,
2608  Array<OneD, NekDouble> &pressure)
2609  {
2610  int nBCEdgePts = physfield[0].num_elements();
2611  NekDouble alpha = -0.5;
2612 
2613  // Calculate ||\rho v||^2.
2614  Vmath::Vmul (nBCEdgePts, velocity[0], 1, physfield[1], 1, pressure, 1);
2615  for (int i = 1; i < m_spacedim; ++i)
2616  {
2617  Vmath::Vvtvp(nBCEdgePts, velocity[i], 1, physfield[1+i], 1,
2618  pressure, 1, pressure, 1);
2619  }
2620  // pressure <- E - 0.5*pressure
2621  Vmath::Svtvp(nBCEdgePts, alpha,
2622  pressure, 1, physfield[m_spacedim+1], 1, pressure, 1);
2623  // Multiply by (gamma-1).
2624  Vmath::Smul (nBCEdgePts, m_gamma-1, pressure, 1, pressure, 1);
2625  }
2626 
2627  /**
2628  * @brief Compute the velocity field \f$ \mathbf{v} \f$ given the momentum
2629  * \f$ \rho\mathbf{v} \f$.
2630  *
2631  * @param physfield Momentum field.
2632  * @param velocity Velocity field.
2633  */
2635  const Array<OneD, Array<OneD, NekDouble> > &physfield,
2636  Array<OneD, Array<OneD, NekDouble> > &velocity)
2637  {
2638  const int nBCEdgePts = physfield[0].num_elements();
2639 
2640  for (int i = 0; i < m_spacedim; ++i)
2641  {
2642  Vmath::Vdiv(nBCEdgePts, physfield[1+i], 1, physfield[0], 1,
2643  velocity[i], 1);
2644  }
2645  }
2646 
2647  /**
2648  * @brief Compute the temperature \f$ T = p/\rho R \f$.
2649  *
2650  * @param physfield Input physical field.
2651  * @param pressure The pressure field corresponding to physfield.
2652  * @param temperature The resulting temperature \f$ T \f$.
2653  */
2655  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
2656  Array<OneD, NekDouble > &pressure,
2657  Array<OneD, NekDouble > &temperature)
2658  {
2659  const int nq = physfield[0].num_elements();
2660 
2661  Vmath::Vdiv(nq, pressure, 1, physfield[0], 1, temperature, 1);
2662  Vmath::Smul(nq, 1.0/m_gasConstant, temperature, 1, temperature, 1);
2663  }
2664 
2665  /**
2666  * @brief Compute the sound speed \f$ c = sqrt(\gamma p/\rho) \f$.
2667  *
2668  * @param physfield Input physical field.
2669  * @param pressure The pressure field corresponding to physfield.
2670  * @param soundspeed The resulting sound speed \f$ c \f$.
2671  */
2673  const Array<OneD, Array<OneD, NekDouble> > &physfield,
2674  Array<OneD, NekDouble > &pressure,
2675  Array<OneD, NekDouble > &soundspeed)
2676  {
2677  const int nq = m_fields[0]->GetTotPoints();
2678  Vmath::Vdiv (nq, pressure, 1, physfield[0], 1, soundspeed, 1);
2679  Vmath::Smul (nq, m_gamma, soundspeed, 1, soundspeed, 1);
2680  Vmath::Vsqrt(nq, soundspeed, 1, soundspeed, 1);
2681  }
2682 
2683  /**
2684  * @brief Compute the mach number \f$ M = \| \mathbf{v} \|^2 / c \f$.
2685  *
2686  * @param physfield Input physical field.
2687  * @param soundfield The speed of sound corresponding to physfield.
2688  * @param mach The resulting mach number \f$ M \f$.
2689  */
2691  Array<OneD, Array<OneD, NekDouble> > &physfield,
2692  Array<OneD, NekDouble > &soundspeed,
2694  {
2695  const int nq = m_fields[0]->GetTotPoints();
2696 
2697  Vmath::Vmul(nq, physfield[1], 1, physfield[1], 1, mach, 1);
2698 
2699  for (int i = 1; i < m_spacedim; ++i)
2700  {
2701  Vmath::Vvtvp(nq, physfield[1+i], 1, physfield[1+i], 1,
2702  mach, 1, mach, 1);
2703  }
2704 
2705  Vmath::Vdiv(nq, mach, 1, physfield[0], 1, mach, 1);
2706  Vmath::Vdiv(nq, mach, 1, physfield[0], 1, mach, 1);
2707  Vmath::Vsqrt(nq, mach, 1, mach, 1);
2708 
2709  Vmath::Vdiv(nq, mach, 1, soundspeed, 1, mach, 1);
2710  }
2711 
2712  /**
2713  * @brief Compute the dynamic viscosity using the Sutherland's law
2714  * \f$ \mu = \mu_star * (T / T_star)^3/2 * (T_star + 110) / (T + 110) \f$,
2715  * where: \mu_star = 1.7894 * 10^-5 Kg / (m * s)
2716  * T_star = 288.15 K
2717  *
2718  * @param physfield Input physical field.
2719  * @param mu The resulting dynamic viscosity.
2720  */
2722  const Array<OneD, const NekDouble> &temperature,
2724  {
2725  const int nPts = temperature.num_elements();
2726  NekDouble mu_star = m_mu;
2727  NekDouble T_star = m_pInf / (m_rhoInf * m_gasConstant);
2728  NekDouble ratio;
2729 
2730  for (int i = 0; i < nPts; ++i)
2731  {
2732  ratio = temperature[i] / T_star;
2733  mu[i] = mu_star * ratio * sqrt(ratio) *
2734  (T_star + 110.0) / (temperature[i] + 110.0);
2735  }
2736  }
2737 
2738  /**
2739  * @brief Perform post-integration checks, presently just to check steady
2740  * state behaviour.
2741  */
2743  {
2744  if (m_steadyStateTol > 0.0)
2745  {
2746  bool doOutput = step % m_infosteps == 0;
2747  if (CalcSteadyState(doOutput))
2748  {
2749  if (m_comm->GetRank() == 0)
2750  {
2751  cout << "Reached Steady State to tolerance "
2752  << m_steadyStateTol << endl;
2753  }
2754  return true;
2755  }
2756  }
2757  return false;
2758  }
2759 
2760  /**
2761  * @brief Calculate whether the system has reached a steady state by
2762  * observing residuals to a user-defined tolerance.
2763  */
2764  bool CompressibleFlowSystem::CalcSteadyState(bool output)
2765  {
2766  const int nPoints = GetTotPoints();
2767  const int nFields = m_fields.num_elements();
2768 
2769  // Holds L2 errors.
2770  Array<OneD, NekDouble> L2 (nFields);
2771  Array<OneD, NekDouble> residual(nFields);
2772 
2773  for (int i = 0; i < nFields; ++i)
2774  {
2775  Array<OneD, NekDouble> diff(nPoints);
2776 
2777  Vmath::Vsub(nPoints, m_fields[i]->GetPhys(), 1, m_un[i], 1, diff, 1);
2778  Vmath::Vmul(nPoints, diff, 1, diff, 1, diff, 1);
2779  residual[i] = Vmath::Vsum(nPoints, diff, 1);
2780  }
2781 
2782  m_comm->AllReduce(residual, LibUtilities::ReduceSum);
2783 
2784  // L2 error
2785  L2[0] = sqrt(residual[0]) / m_rhoInf;
2786 
2787  for (int i = 1; i < nFields-1; ++i)
2788  {
2789  L2[i] = sqrt(residual[i]) / m_UInf / m_rhoInf;
2790  }
2791 
2792  NekDouble Einf = m_pInf / (m_gamma-1.0) + 0.5 * m_rhoInf * m_UInf;
2793  L2[nFields-1] = sqrt(residual[nFields-1]) / Einf;
2794 
2795  if (m_comm->GetRank() == 0 && output)
2796  {
2797  // Output time
2798  m_errFile << setprecision(8) << setw(17) << scientific << m_time;
2799 
2800  // Output residuals
2801  for (int i = 0; i < nFields; ++i)
2802  {
2803  m_errFile << setprecision(11) << setw(22) << scientific
2804  << L2[i];
2805  }
2806 
2807  m_errFile << endl;
2808  }
2809 
2810  // Calculate maximum L2 error
2811  NekDouble maxL2 = Vmath::Vmax(nFields, L2, 1);
2812 
2813  if (m_session->DefinesCmdLineArgument("verbose") &&
2814  m_comm->GetRank() == 0 && output)
2815  {
2816  cout << "-- Maximum L^2 residual: " << maxL2 << endl;
2817  }
2818 
2819  if (maxL2 <= m_steadyStateTol)
2820  {
2821  return true;
2822  }
2823 
2824  return false;
2825  }
2826 
2827  /**
2828  * @brief Calculate entropy.
2829  */
2831  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
2832  const Array<OneD, const NekDouble> &pressure,
2833  const Array<OneD, const NekDouble> &temperature,
2834  Array<OneD, NekDouble> &entropy)
2835  {
2836  NekDouble entropy_sum = 0.0;
2837  const int npts = m_fields[0]->GetTotPoints();
2838  const NekDouble temp_inf = m_pInf/(m_rhoInf*m_gasConstant);;
2839  Array<OneD, NekDouble> L2entropy(npts, 0.0);
2840 
2841  for (int i = 0; i < npts; ++i)
2842  {
2843  entropy[i] = m_gamma / (m_gamma - 1.0) * m_gasConstant *
2844  log(temperature[i]/temp_inf) - m_gasConstant *
2845  log(pressure[i] / m_pInf);
2846  }
2847 
2848  Vmath::Vmul(npts, entropy, 1, entropy, 1, L2entropy, 1);
2849 
2850  entropy_sum = Vmath::Vsum(npts, L2entropy, 1);
2851 
2852  entropy_sum = sqrt(entropy_sum);
2853 
2854  std::ofstream m_file( "L2entropy.txt", std::ios_base::app);
2855 
2856  m_file << setprecision(16) << scientific << entropy_sum << endl;
2857  //m_file << Vmath::Vmax(entropy.num_elements(),entropy,1) << endl;
2858 
2859  m_file.close();
2860  }
2861 
2862  /**
2863  * @brief Calculate the maximum timestep subject to CFL restrictions.
2864  */
2866  const Array<OneD, const Array<OneD, NekDouble> > &inarray)
2867  {
2868  int n;
2869  int nElements = m_fields[0]->GetExpSize();
2870  const Array<OneD, int> ExpOrder = GetNumExpModesPerExp();
2871 
2872  Array<OneD, NekDouble> tstep (nElements, 0.0);
2873  Array<OneD, NekDouble> stdVelocity(nElements);
2874 
2875  // Get standard velocity to compute the time-step limit
2876  GetStdVelocity(inarray, stdVelocity);
2877 
2878  // Factors to compute the time-step limit
2879  NekDouble minLength = 0.0;
2880  NekDouble alpha = MaxTimeStepEstimator();
2881  NekDouble cLambda = 0.2; // Spencer book-317
2882 
2883  // Loop over elements to compute the time-step limit for each element
2884  for(n = 0; n < nElements; ++n)
2885  {
2886  int npoints = m_fields[0]->GetExp(n)->GetTotPoints();
2887  Array<OneD, NekDouble> one2D(npoints, 1.0);
2888  NekDouble Area = m_fields[0]->GetExp(n)->Integral(one2D);
2889 
2890  minLength = sqrt(Area);
2891  if (m_fields[0]->GetExp(n)->as<LocalRegions::TriExp>())
2892  {
2893  minLength *= 2.0;
2894  }
2895 
2896  tstep[n] = m_cflSafetyFactor * alpha * minLength
2897  / (stdVelocity[n] * cLambda
2898  * (ExpOrder[n] - 1) * (ExpOrder[n] - 1));
2899  }
2900 
2901  // Get the minimum time-step limit and return the time-step
2902  NekDouble TimeStep = Vmath::Vmin(nElements, tstep, 1);
2903  m_comm->AllReduce(TimeStep, LibUtilities::ReduceMin);
2904  return TimeStep;
2905  }
2906 
2907  /**
2908  * @brief Set up logic for residual calculation.
2909  */
2911  NekDouble initialtime,
2912  bool dumpInitialConditions,
2913  const int domain)
2914  {
2915  if (m_session->DefinesParameter("SteadyStateTol"))
2916  {
2917  const int nPoints = m_fields[0]->GetTotPoints();
2919  m_fields.num_elements());
2920 
2921  for (int i = 0; i < m_fields.num_elements(); ++i)
2922  {
2923  cout << Vmath::Vmax(nPoints, m_fields[i]->GetPhys(), 1) << endl;
2924  m_un[i] = Array<OneD, NekDouble>(nPoints);
2925  Vmath::Vcopy(nPoints, m_fields[i]->GetPhys(), 1, m_un[i], 1);
2926  }
2927 
2928  if (m_comm->GetRank() == 0)
2929  {
2930  std::string fName = m_session->GetSessionName() +
2931  std::string(".res");
2932  m_errFile.open(fName.c_str());
2933  m_errFile << "# "
2934  << setw(15) << left << "Time"
2935  << setw(22) << left << "rho";
2936 
2937  std::string velFields[3] = {"u", "v", "w"};
2938 
2939  for (int i = 0; i < m_fields.num_elements()-2; ++i)
2940  {
2941  m_errFile << setw(22) << "rho"+velFields[i];
2942  }
2943 
2944  m_errFile << setw(22) << left << "E" << endl;
2945  }
2946  }
2947  }
2948 
2949 
2950  /**
2951  * @brief Compute the advection velocity in the standard space
2952  * for each element of the expansion.
2953  *
2954  * @param inarray Momentum field.
2955  * @param stdV Standard velocity field.
2956  */
2958  const Array<OneD, const Array<OneD, NekDouble> > &inarray,
2959  Array<OneD, NekDouble> &stdV)
2960  {
2961  int nTotQuadPoints = GetTotPoints();
2962  int n_element = m_fields[0]->GetExpSize();
2963  int nBCEdgePts = 0;
2964 
2965  // Getting the velocity vector on the 2D normal space
2968  Array<OneD, NekDouble> pressure (nTotQuadPoints);
2969  Array<OneD, NekDouble> soundspeed (nTotQuadPoints);
2971 
2972  // Zero output array
2973  Vmath::Zero(stdV.num_elements(), stdV, 1);
2974 
2975  for (int i = 0; i < m_spacedim; ++i)
2976  {
2977  velocity [i] = Array<OneD, NekDouble>(nTotQuadPoints);
2978  stdVelocity[i] = Array<OneD, NekDouble>(nTotQuadPoints, 0.0);
2979  }
2980 
2981  GetVelocityVector(inarray, velocity);
2982  GetPressure (inarray, velocity, pressure);
2983  GetSoundSpeed (inarray, pressure, soundspeed);
2984 
2985  for(int el = 0; el < n_element; ++el)
2986  {
2987  ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
2988 
2989  // Possible bug: not multiply by jacobian??
2990  const SpatialDomains::GeomFactorsSharedPtr metricInfo =
2991  m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo();
2992  const Array<TwoD, const NekDouble> &gmat =
2993  m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo()
2994  ->GetDerivFactors(ptsKeys);
2995 
2996  int nq = m_fields[0]->GetExp(el)->GetTotPoints();
2997 
2998  if(metricInfo->GetGtype() == SpatialDomains::eDeformed)
2999  {
3000  // d xi/ dx = gmat = 1/J * d x/d xi
3001  for (int i = 0; i < m_spacedim; ++i)
3002  {
3003  Vmath::Vmul(nq, gmat[i], 1, velocity[0], 1,
3004  stdVelocity[i], 1);
3005  for (int j = 1; j < m_spacedim; ++j)
3006  {
3007  Vmath::Vvtvp(nq, gmat[m_spacedim*j+i], 1, velocity[j],
3008  1, stdVelocity[i], 1, stdVelocity[i], 1);
3009  }
3010  }
3011  }
3012  else
3013  {
3014  for (int i = 0; i < m_spacedim; ++i)
3015  {
3016  Vmath::Smul(nq, gmat[i][0], velocity[0], 1,
3017  stdVelocity[i], 1);
3018  for (int j = 1; j < m_spacedim; ++j)
3019  {
3020  Vmath::Svtvp(nq, gmat[m_spacedim*j+i][0], velocity[j],
3021  1, stdVelocity[i], 1, stdVelocity[i], 1);
3022  }
3023  }
3024  }
3025 
3026  for (int i = 0; i < nq; ++i)
3027  {
3028  NekDouble pntVelocity = 0.0;
3029  for (int j = 0; j < m_spacedim; ++j)
3030  {
3031  pntVelocity += stdVelocity[j][i]*stdVelocity[j][i];
3032  }
3033  pntVelocity = sqrt(pntVelocity) + soundspeed[nBCEdgePts];
3034  if (pntVelocity > stdV[el])
3035  {
3036  stdV[el] = pntVelocity;
3037  }
3038  nBCEdgePts++;
3039  }
3040  }
3041  }
3042 
3043  /**
3044  * @brief Set the denominator to compute the time step when a cfl
3045  * control is employed. This function is no longer used but is still
3046  * here for being utilised in the future.
3047  *
3048  * @param n Order of expansion element by element.
3049  */
3051  {
3052  ASSERTL0(n <= 20, "Illegal modes dimension for CFL calculation "
3053  "(P has to be less then 20)");
3054 
3055  NekDouble CFLDG[21] = { 2.0000, 6.0000, 11.8424, 19.1569,
3056  27.8419, 37.8247, 49.0518, 61.4815,
3057  75.0797, 89.8181, 105.6700, 122.6200,
3058  140.6400, 159.7300, 179.8500, 201.0100,
3059  223.1800, 246.3600, 270.5300, 295.6900,
3060  321.8300}; //CFLDG 1D [0-20]
3061  NekDouble CFL = 0.0;
3062 
3064  {
3065  CFL = CFLDG[n];
3066  }
3067  else
3068  {
3069  ASSERTL0(false, "Continuous Galerkin stability coefficients "
3070  "not introduced yet.");
3071  }
3072 
3073  return CFL;
3074  }
3075 
3076  /**
3077  * @brief Compute the vector of denominators to compute the time step
3078  * when a cfl control is employed. This function is no longer used but
3079  * is still here for being utilised in the future.
3080  *
3081  * @param ExpOrder Order of expansion element by element.
3082  */
3084  const Array<OneD,int> &ExpOrder)
3085  {
3086  int i;
3087  Array<OneD,NekDouble> returnval(m_fields[0]->GetExpSize(), 0.0);
3088  for (i =0; i<m_fields[0]->GetExpSize(); i++)
3089  {
3090  returnval[i] = GetStabilityLimit(ExpOrder[i]);
3091  }
3092  return returnval;
3093  }
3094 
3096  const Array<OneD, const Array<OneD, NekDouble> > &physarray,
3097  Array<OneD, NekDouble> &Sensor,
3098  Array<OneD, NekDouble> &SensorKappa)
3099  {
3100  int e, NumModesElement, nQuadPointsElement;
3101  int nTotQuadPoints = GetTotPoints();
3102  int nElements = m_fields[0]->GetExpSize();
3103 
3104  // Find solution (SolP) at p = P;
3105  // The input array (physarray) is the solution at p = P;
3106 
3107  Array<OneD,int> ExpOrderElement = GetNumExpModesPerExp();
3108 
3109  Array<OneD, NekDouble> SolP (nTotQuadPoints, 0.0);
3110  Array<OneD, NekDouble> SolPmOne(nTotQuadPoints, 0.0);
3111  Array<OneD, NekDouble> SolNorm (nTotQuadPoints, 0.0);
3112 
3113  Vmath::Vcopy(nTotQuadPoints, physarray[0], 1, SolP, 1);
3114 
3115  int CoeffsCount = 0;
3116 
3117  for (e = 0; e < nElements; e++)
3118  {
3119  NumModesElement = ExpOrderElement[e];
3120  int nQuadPointsElement = m_fields[0]->GetExp(e)->GetTotPoints();
3121  int nCoeffsElement = m_fields[0]->GetExp(e)->GetNcoeffs();
3122  int numCutOff = NumModesElement - 1;
3123 
3124  // Set-up of the Orthogonal basis for a Quadrilateral element which
3125  // is needed to obtain thesolution at P = p - 1;
3126 
3127  Array<OneD, NekDouble> SolPElementPhys (nQuadPointsElement, 0.0);
3128  Array<OneD, NekDouble> SolPElementCoeffs(nCoeffsElement, 0.0);
3129 
3130  Array<OneD, NekDouble> SolPmOneElementPhys(nQuadPointsElement, 0.0);
3131  Array<OneD, NekDouble> SolPmOneElementCoeffs(nCoeffsElement, 0.0);
3132 
3133  // create vector the save the solution points per element at P = p;
3134 
3135  for (int i = 0; i < nQuadPointsElement; i++)
3136  {
3137  SolPElementPhys[i] = SolP[CoeffsCount+i];
3138  }
3139 
3140  m_fields[0]->GetExp(e)->FwdTrans(SolPElementPhys,
3141  SolPElementCoeffs);
3142 
3143  // ReduceOrderCoeffs reduces the polynomial order of the solution
3144  // that is represented by the coeffs given as an inarray. This is
3145  // done by projecting the higher order solution onto the orthogonal
3146  // basis and padding the higher order coefficients with zeros.
3147 
3148  m_fields[0]->GetExp(e)->ReduceOrderCoeffs(numCutOff,
3149  SolPElementCoeffs,
3150  SolPmOneElementCoeffs);
3151 
3152  m_fields[0]->GetExp(e)->BwdTrans(SolPmOneElementCoeffs,
3153  SolPmOneElementPhys);
3154 
3155  for (int i = 0; i < nQuadPointsElement; i++)
3156  {
3157  SolPmOne[CoeffsCount+i] = SolPmOneElementPhys[i];
3158  }
3159 
3160  NekDouble SolPmeanNumerator = 0.0;
3161  NekDouble SolPmeanDenumerator = 0.0;
3162 
3163  // Determining the norm of the numerator of the Sensor
3164 
3165  Vmath::Vsub(nQuadPointsElement,
3166  SolPElementPhys, 1,
3167  SolPmOneElementPhys, 1,
3168  SolNorm, 1);
3169 
3170  Vmath::Vmul(nQuadPointsElement,
3171  SolNorm, 1,
3172  SolNorm, 1,
3173  SolNorm, 1);
3174 
3175  for (int i = 0; i < nQuadPointsElement; i++)
3176  {
3177  SolPmeanNumerator += SolNorm[i];
3178  SolPmeanDenumerator += SolPElementPhys[i];
3179  }
3180 
3181  for (int i = 0; i < nQuadPointsElement; ++i)
3182  {
3183  Sensor[CoeffsCount+i] =
3184  sqrt(SolPmeanNumerator / nQuadPointsElement) /
3185  sqrt(SolPmeanDenumerator / nQuadPointsElement);
3186 
3187  Sensor[CoeffsCount+i] = log10(Sensor[CoeffsCount+i]);
3188  }
3189  CoeffsCount += nQuadPointsElement;
3190  }
3191 
3192  CoeffsCount = 0.0;
3193 
3194  for (e = 0; e < nElements; e++)
3195  {
3196  NumModesElement = ExpOrderElement[e];
3197  NekDouble ThetaS = m_mu0;
3198  NekDouble Phi0 = m_Skappa;
3199  NekDouble DeltaPhi = m_Kappa;
3200  nQuadPointsElement = m_fields[0]->GetExp(e)->GetTotPoints();
3201 
3202  for (int i = 0; i < nQuadPointsElement; i++)
3203  {
3204  if (Sensor[CoeffsCount+i] <= (Phi0 - DeltaPhi))
3205  {
3206  SensorKappa[CoeffsCount+i] = 0;
3207  }
3208  else if(Sensor[CoeffsCount+i] >= (Phi0 + DeltaPhi))
3209  {
3210  SensorKappa[CoeffsCount+i] = ThetaS;
3211  }
3212  else if(abs(Sensor[CoeffsCount+i]-Phi0) < DeltaPhi)
3213  {
3214  SensorKappa[CoeffsCount+i] =
3215  ThetaS / 2 * (1 + sin(M_PI * (Sensor[CoeffsCount+i] -
3216  Phi0) / (2 * DeltaPhi)));
3217  }
3218  }
3219 
3220  CoeffsCount += nQuadPointsElement;
3221  }
3222 
3223  }
3224 
3226  const Array<OneD, const Array<OneD, NekDouble> > &inarray,
3227  Array<OneD, Array<OneD, NekDouble> > outarrayForcing)
3228  {
3229  const int nPts = m_fields[0]->GetTotPoints();
3230  const int nvariables = m_fields.num_elements();
3231  const int nElements = m_fields[0]->GetExpSize();
3232 
3233  Array<OneD, NekDouble> Sensor(nPts, 0.0);
3234  Array<OneD, NekDouble> SensorKappa(nPts, 0.0);
3235  Array <OneD, NekDouble > Lambda(nPts, 0.0);
3236  Array <OneD, NekDouble > Tau(nPts, 1.0);
3237  Array <OneD, NekDouble > soundspeed(nPts, 0.0);
3238  Array <OneD, NekDouble > pressure(nPts, 0.0);
3239  Array <OneD, NekDouble > temperature(nPts, 0.0);
3240  Array <OneD, NekDouble > absVelocity(nPts, 0.0);
3241  Array <OneD, NekDouble > hel(nPts, 0.0);
3242  Array <OneD, NekDouble > h_minmin(m_spacedim, 0.0);
3243 
3244  Array<OneD,int> pOrderElmt = GetNumExpModesPerExp();
3245  Array<OneD, NekDouble> pOrder (nPts, 0.0);
3246 
3247  // Thermodynamic related quantities
3248  GetPressure(inarray, pressure);
3249  GetTemperature(inarray, pressure, temperature);
3250  GetSoundSpeed(inarray, pressure, soundspeed);
3251  GetAbsoluteVelocity(inarray, absVelocity);
3252  GetSensor(inarray, Sensor, SensorKappa);
3253 
3254  // Determine the maximum wavespeed
3255  Vmath::Vadd(nPts, absVelocity, 1, soundspeed, 1, Lambda, 1);
3256 
3257  NekDouble LambdaMax = Vmath::Vmax(nPts, Lambda, 1);
3258 
3259  int PointCount = 0;
3260 
3261  for (int e = 0; e < nElements; e++)
3262  {
3263  int nQuadPointsElement = m_fields[0]->GetExp(e)->GetTotPoints();
3264 
3265  for (int n = 0; n < nQuadPointsElement; n++)
3266  {
3267  pOrder[n + PointCount] = pOrderElmt[e];
3268 
3269  // order 1.0e-06
3270  Tau[n + PointCount] =
3271  1.0 / (m_C1*pOrder[n + PointCount]*LambdaMax);
3272 
3273  outarrayForcing[nvariables-1][n + PointCount] =
3274  1 / Tau[n + PointCount] * (m_hFactor * LambdaMax /
3275  pOrder[n + PointCount] *
3276  SensorKappa[n + PointCount] -
3277  inarray[nvariables-1][n + PointCount]);
3278  }
3279  PointCount += nQuadPointsElement;
3280  }
3281  }
3282 
3284  Array<OneD, Array<OneD, NekDouble> > &outarray,
3286  {
3287  // So far, this function is only implemented for quads
3288  const int nElements = m_fields[0]->GetExpSize();
3289 
3291 
3292  NekDouble hx = 0.0;
3293  NekDouble hy = 0.0;
3294 
3295  for (int e = 0; e < nElements; e++)
3296  {
3297  NekDouble nedges = m_fields[0]->GetExp(e)->GetNedges();
3298  Array <OneD, NekDouble> L1(nedges, 0.0);
3299 
3300  for (int j = 0; j < nedges; ++j)
3301  {
3302 
3303  NekDouble x0 = 0.0;
3304  NekDouble y0 = 0.0;
3305  NekDouble z0 = 0.0;
3306 
3307  NekDouble x1 = 0.0;
3308  NekDouble y1 = 0.0;
3309  NekDouble z1 = 0.0;
3310 
3311  if (boost::dynamic_pointer_cast<SpatialDomains::QuadGeom>(
3312  m_fields[0]->GetExp(e)->GetGeom()))
3313  {
3315  boost::dynamic_pointer_cast<SpatialDomains::QuadGeom>(
3316  m_fields[0]->GetExp(e)->GetGeom());
3317 
3318  ElQuadGeom->GetEdge(j)->GetVertex(0)->GetCoords(x0, y0, z0);
3319  ElQuadGeom->GetEdge(j)->GetVertex(1)->GetCoords(x1, y1, z1);
3320 
3321  L1[j] = sqrt(pow((x0-x1),2)+pow((y0-y1),2)+pow((z0-z1),2));
3322  }
3323  else
3324  {
3325  ASSERTL0(false, "GetElementDimensions() is only "
3326  "implemented for quadrilateral elements");
3327  }
3328  }
3329  // determine the minimum length in x and y direction
3330  // still have to find a better estimate when dealing
3331  // with unstructured meshes
3332  if(boost::dynamic_pointer_cast<SpatialDomains::QuadGeom>(
3333  m_fields[0]->GetExp(e)->GetGeom()))
3334  {
3335  hx = min(L1[0], L1[2]);
3336  hy = min(L1[1], L1[3]);
3337 
3338  outarray[0][e] = hx;
3339  outarray[1][e] = hy;
3340  }
3341  }
3342 
3343  hmin[0] = Vmath::Vmin(outarray[0].num_elements(), outarray[0], 1);
3344  hmin[1] = Vmath::Vmin(outarray[1].num_elements(), outarray[1], 1);
3345  }
3346 
3348  const Array<OneD, const Array<OneD, NekDouble> > &inarray,
3349  Array<OneD, NekDouble> &Vtot)
3350  {
3351  int nTotQuadPoints = GetTotPoints();
3352 
3353  // Getting the velocity vector on the 2D normal space
3354  Array<OneD, Array<OneD, NekDouble> > velocity (m_spacedim);
3355 
3356  Vmath::Zero(Vtot.num_elements(), Vtot, 1);
3357 
3358  for (int i = 0; i < m_spacedim; ++i)
3359  {
3360  velocity[i] = Array<OneD, NekDouble>(nTotQuadPoints);
3361  }
3362 
3363  GetVelocityVector(inarray, velocity);
3364 
3365  for (int i = 0; i < m_spacedim; ++i)
3366  {
3367  Vmath::Vvtvp(nTotQuadPoints,
3368  velocity[i], 1,
3369  velocity[i], 1,
3370  Vtot, 1,
3371  Vtot, 1);
3372  }
3373 
3374  Vmath::Vsqrt(Vtot.num_elements(),Vtot,1,Vtot,1);
3375  }
3376 
3378  const Array<OneD, Array<OneD, NekDouble> > &physfield,
3379  Array<OneD, NekDouble > &eps_bar)
3380  {
3381  int nvariables = physfield.num_elements();
3382  int nPts = m_fields[0]->GetTotPoints();
3383 
3384  Array<OneD, NekDouble > pressure (nPts, 0.0);
3385  Array<OneD, NekDouble > temperature(nPts, 0.0);
3386  Array<OneD, NekDouble > sensor (nPts, 0.0);
3387  Array<OneD, NekDouble > SensorKappa(nPts, 0.0);
3388  Array<OneD, NekDouble > absVelocity(nPts, 0.0);
3389  Array<OneD, NekDouble > soundspeed (nPts, 0.0);
3390  Array<OneD, NekDouble > Lambda (nPts, 0.0);
3391  Array<OneD, NekDouble > mu_var (nPts, 0.0);
3392  Array<OneD, NekDouble > h_minmin (m_spacedim, 0.0);
3393  Vmath::Zero(nPts, eps_bar, 1);
3394 
3395  // Thermodynamic related quantities
3396  GetPressure(physfield, pressure);
3397  GetTemperature(physfield, pressure, temperature);
3398  GetSoundSpeed(physfield, pressure, soundspeed);
3399  GetAbsoluteVelocity(physfield, absVelocity);
3400  GetSensor(physfield, sensor, SensorKappa);
3401 
3402  // Determine the maximum wavespeed
3403  Vmath::Vadd(nPts, absVelocity, 1, soundspeed, 1, Lambda, 1);
3404 
3405  // Determine hbar = hx_i/h
3406  Array<OneD,int> pOrderElmt = GetNumExpModesPerExp();
3407 
3408  NekDouble ThetaH = m_FacH;
3409  NekDouble ThetaL = m_FacL;
3410 
3411  NekDouble Phi0 = (ThetaH+ThetaL)/2;
3412  NekDouble DeltaPhi = ThetaH-Phi0;
3413 
3414  Vmath::Zero(eps_bar.num_elements(), eps_bar, 1);
3415 
3416  /*Vmath::Smul(eps_bar.num_elements(),
3417  m_eps_max,
3418  &physfield[nvariables-1][0], 1,
3419  &eps_bar[0], 1);*/
3420 
3421  for (int e = 0; e < eps_bar.num_elements(); e++)
3422  {
3423  if (physfield[nvariables-1][e] <= (Phi0 - DeltaPhi))
3424  {
3425  eps_bar[e] = 0;
3426  }
3427  else if(physfield[nvariables-1][e] >= (Phi0 + DeltaPhi))
3428  {
3429  eps_bar[e] = m_mu0;
3430  }
3431  else if(abs(physfield[nvariables-1][e]-Phi0) < DeltaPhi)
3432  {
3433  eps_bar[e] = m_mu0/2*(1+sin(M_PI*
3434  (physfield[nvariables-1][e]-Phi0)/(2*DeltaPhi)));
3435  }
3436  }
3437 
3438  }
3439 
3441  const Array<OneD, Array<OneD, NekDouble> > &physfield,
3442  Array<OneD, NekDouble > &mu_var)
3443  {
3444  const int nElements = m_fields[0]->GetExpSize();
3445  int PointCount = 0;
3446  int nTotQuadPoints = GetTotPoints();
3447 
3448  Array<OneD, NekDouble> S_e (nTotQuadPoints, 0.0);
3449  Array<OneD, NekDouble> se (nTotQuadPoints, 0.0);
3450  Array<OneD, NekDouble> Sensor (nTotQuadPoints, 0.0);
3451  Array<OneD, NekDouble> SensorKappa(nTotQuadPoints, 0.0);
3452  Array<OneD, NekDouble> absVelocity(nTotQuadPoints, 0.0);
3453  Array<OneD, NekDouble> soundspeed (nTotQuadPoints, 0.0);
3454  Array<OneD, NekDouble> pressure (nTotQuadPoints, 0.0);
3455 
3456  GetAbsoluteVelocity(physfield, absVelocity);
3457  GetPressure (physfield, pressure);
3458  GetSoundSpeed (physfield, pressure, soundspeed);
3459  GetSensor (physfield, Sensor, SensorKappa);
3460 
3461  Array<OneD, int> pOrderElmt = GetNumExpModesPerExp();
3462  Array<OneD, NekDouble> Lambda(nTotQuadPoints, 1.0);
3463  Vmath::Vadd(nTotQuadPoints, absVelocity, 1, soundspeed, 1, Lambda, 1);
3464 
3465  for (int e = 0; e < nElements; e++)
3466  {
3467  // Threshold value specified in C. Biottos thesis. Based on a 1D
3468  // shock tube problem S_k = log10(1/p^4). See G.E. Barter and
3469  // D.L. Darmofal. Shock Capturing with PDE-based artificial
3470  // diffusion for DGFEM: Part 1 Formulation, Journal of Computational
3471  // Physics 229 (2010) 1810-1827 for further reference
3472 
3473  // Adjustable depending on the coarsness of the mesh. Might want to
3474  // move this variable into the session file
3475 
3476  int nQuadPointsElement = m_fields[0]->GetExp(e)->GetTotPoints();
3477  Array <OneD, NekDouble> one2D(nQuadPointsElement, 1.0);
3478 
3479  for (int n = 0; n < nQuadPointsElement; n++)
3480  {
3481  NekDouble mu_0 = m_mu0;
3482 
3483  if (Sensor[n+PointCount] < (m_Skappa-m_Kappa))
3484  {
3485  mu_var[n+PointCount] = 0;
3486  }
3487  else if (Sensor[n+PointCount] >= (m_Skappa-m_Kappa)
3488  && Sensor[n+PointCount] <= (m_Skappa+m_Kappa))
3489  {
3490  mu_var[n+PointCount] = mu_0 * (0.5 * (1 + sin(
3491  M_PI * (Sensor[n+PointCount] -
3492  m_Skappa - m_Kappa) /
3493  (2*m_Kappa))));
3494  }
3495  else if (Sensor[n+PointCount] > (m_Skappa+m_Kappa))
3496  {
3497  mu_var[n+PointCount] = mu_0;
3498  }
3499  }
3500 
3501  PointCount += nQuadPointsElement;
3502  }
3503  }
3504 
3506  const Array<OneD, const Array<OneD, NekDouble> > &physfield,
3507  Array<OneD, NekDouble > &PolyOrder)
3508  {
3509  int e;
3510  NekDouble s_ds, s_sm, s_fl;
3511 
3512  int nElements = m_fields[0]->GetExpSize();
3513  int npts = m_fields[0]->GetTotPoints();
3514 
3515  Array<OneD, NekDouble > Sensor (npts, 0.0);
3516  Array<OneD, NekDouble > SensorKappa(npts, 0.0);
3517  Array<OneD, NekDouble > se (npts, 0.0);
3518 
3519  GetSensor(physfield, Sensor, SensorKappa);
3520 
3521  int nQuadPointsElement = 0;
3522  int npCount = 0;
3523  int MinOrder = 2;
3524  int MaxOrder = 12;
3525  int MinOrderShock = 4;
3526 
3527  std::ofstream m_file( "VariablePComposites.txt", std::ios_base::app);
3528  for (int e = 0; e < nElements; e++)
3529  {
3530  m_file << "<C ID=\"" << e+1 << "\"> Q[" << e << "] </C>"<< endl;
3531  }
3532  m_file.close();
3533 
3534  std::ofstream m_file2( "VariablePExpansions.txt", std::ios_base::app);
3535 
3536  for (e = 0; e < nElements; e++)
3537  {
3538  nQuadPointsElement = m_fields[0]->GetExp(e)->GetTotPoints();
3539 
3540  // Define thresholds
3541  // Ideally, these threshold values could be given
3542  // in the Session File
3543  s_ds = -5.0;
3544  //s_ds = s_0*log10(PolyOrder[e]);
3545  s_sm = -6;
3546  s_fl = -7;
3547 
3548 
3549  for (int i = 0; i < nQuadPointsElement; i++)
3550  {
3551  se[npCount + i] = (Sensor[npCount + i]);
3552 
3553  if (se[npCount + i] > s_ds)
3554  {
3555  if (PolyOrder[npCount + i] > MinOrderShock)
3556  {
3557  PolyOrder[npCount + i] = PolyOrder[npCount + i] - 1;
3558  }
3559  else if(PolyOrder[e] < MinOrderShock)
3560  {
3561  PolyOrder[npCount + i] = PolyOrder[npCount + i] + 1;
3562  }
3563 
3564  }
3565  else if (se[npCount + i] > s_sm && se[npCount + i] < s_ds)
3566  {
3567  if (PolyOrder[npCount + i] < MaxOrder)
3568  {
3569  PolyOrder[npCount + i] = PolyOrder[npCount + i] + 2;
3570  }
3571  }
3572  else if (se[npCount + i] > s_fl && se[npCount + i] < s_sm)
3573  {
3574  PolyOrder[npCount + i] = PolyOrder[npCount + i] + 1;
3575  }
3576  else if (se[npCount + i] < s_fl)
3577  {
3578  if (PolyOrder[npCount + i] > MinOrder)
3579  {
3580  PolyOrder[npCount + i] = PolyOrder[npCount + i];
3581  }
3582  }
3583  }
3584  m_file2 << "<E COMPOSITE= \"C[" << e+1
3585  << "]\" NUMMODES=\"" << PolyOrder[npCount + 1]
3586  << "\" TYPE=\"MODIFIED\" FIELDS=\"rho,rhou,rhov,rhow,E\" />"
3587  << endl;
3588  npCount += nQuadPointsElement;
3589  }
3590 
3591  m_file2.close();
3592  }
3593 
3595  std::vector<Array<OneD, NekDouble> > &fieldcoeffs,
3596  std::vector<std::string> &variables)
3597  {
3598  const int nPhys = m_fields[0]->GetNpoints();
3599  const int nCoeffs = m_fields[0]->GetNcoeffs();
3600  Array<OneD, Array<OneD, NekDouble> > tmp(m_fields.num_elements());
3601 
3602  for (int i = 0; i < m_fields.num_elements(); ++i)
3603  {
3604  tmp[i] = m_fields[i]->GetPhys();
3605  }
3606 
3607  Array<OneD, NekDouble> pressure(nPhys), soundspeed(nPhys), mach(nPhys);
3608  Array<OneD, NekDouble> sensor(nPhys), SensorKappa(nPhys), smooth(nPhys);
3609 
3610  GetPressure (tmp, pressure);
3611  GetSoundSpeed(tmp, pressure, soundspeed);
3612  GetMach (tmp, soundspeed, mach);
3613  GetSensor (tmp, sensor, SensorKappa);
3614  GetSmoothArtificialViscosity (tmp, smooth);
3615 
3616  Array<OneD, NekDouble> pFwd(nCoeffs), sFwd(nCoeffs), mFwd(nCoeffs);
3617  Array<OneD, NekDouble> sensFwd(nCoeffs), smoothFwd(nCoeffs);
3618 
3619  m_fields[0]->FwdTrans(pressure, pFwd);
3620  m_fields[0]->FwdTrans(soundspeed, sFwd);
3621  m_fields[0]->FwdTrans(mach, mFwd);
3622  m_fields[0]->FwdTrans(sensor, sensFwd);
3623  m_fields[0]->FwdTrans(smooth, smoothFwd);
3624 
3625  variables.push_back ("p");
3626  variables.push_back ("a");
3627  variables.push_back ("Mach");
3628  variables.push_back ("Sensor");
3629  variables.push_back ("SmoothVisc");
3630  fieldcoeffs.push_back(pFwd);
3631  fieldcoeffs.push_back(sFwd);
3632  fieldcoeffs.push_back(mFwd);
3633  fieldcoeffs.push_back(sensFwd);
3634  fieldcoeffs.push_back(smoothFwd);
3635  }
3636 }
void ExtrapOrder0BC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Extrapolation of order 0 for all the variables such that, at the boundaries, a trivial Riemann proble...
void GetMach(Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &soundspeed, Array< OneD, NekDouble > &mach)
void RiemannInvariantBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Outflow characteristic boundary conditions for compressible flow problems.
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Definition: Tau.hpp:39
virtual void v_InitObject()
Initialization object for CompressibleFlowSystem class.
Array< OneD, Array< OneD, NekDouble > > m_fieldStorage
void SymmetryBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Symmetry boundary conditions for compressible flow problems.
void PressureOutflowNonReflectiveBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Pressure outflow non-reflective boundary conditions for compressible flow problems.
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
virtual ~CompressibleFlowSystem()
Destructor for CompressibleFlowSystem class.
void GetSoundSpeed(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure, Array< OneD, NekDouble > &soundspeed)
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
void PressureOutflowFileBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Pressure outflow boundary conditions for compressible flow problems.
NekDouble m_time
Current time of simulation.
void GetViscousFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
Return the flux vector for the LDG diffusion problem.
void GetStdVelocity(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &stdV)
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
SolverUtils::RiemannSolverSharedPtr m_riemannSolverLDG
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:765
virtual bool v_PostIntegrate(int step)
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:47
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
Definition: Vmath.cpp:857
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp()
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
boost::shared_ptr< QuadGeom > QuadGeomSharedPtr
Definition: QuadGeom.h:54
NekDouble GetStabilityLimit(int n)
Function to calculate the stability limit for DG/CG.
DiffusionFactory & GetDiffusionFactory()
Definition: Diffusion.cpp:42
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
bool m_specHP_dealiasing
Flag to determine if dealisising is usde for the Spectral/hp element discretisation.
void GetTemperature(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure, Array< OneD, NekDouble > &temperature)
void GetArtificialDynamicViscosity(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &mu_var)
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:84
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
Array< OneD, Array< OneD, NekDouble > > m_un
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
void GetViscousFluxVectorDeAlias(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &derivatives, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &viscousTensor)
Return the flux vector for the LDG diffusion problem.
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator()
Get the maximum timestep estimator for cfl control.
void PressureOutflowBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Pressure outflow boundary conditions for compressible flow problems.
boost::shared_ptr< HexGeom > HexGeomSharedPtr
Definition: HexGeom.h:110
boost::shared_ptr< SessionReader > SessionReaderSharedPtr
Definition: MeshPartition.h:51
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:410
LibUtilities::CommSharedPtr m_comm
Communicator.
SOLVER_UTILS_EXPORT int GetTotPoints()
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Print a summary of time stepping parameters.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void SetVarPOrderElmt(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &PolyOrder)
void SetCommonBC(const std::string &userDefStr, const int n, const NekDouble time, int &cnt, Array< OneD, Array< OneD, NekDouble > > &inarray)
Set boundary conditions which can be: a) Wall and Symmerty BCs implemented at CompressibleFlowSystem ...
void GetVelocityVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &velocity)
void WallViscousBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Wall boundary conditions for viscous compressible flow problems.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
void GetFluxVectorDeAlias(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Return the flux vector for the compressible Euler equations by using the de-aliasing technique...
void GetEntropy(const Array< OneD, const Array< OneD, NekDouble > > &physfield, const Array< OneD, const NekDouble > &pressure, const Array< OneD, const NekDouble > &temperature, Array< OneD, NekDouble > &entropy)
RiemannSolverFactory & GetRiemannSolverFactory()
void WallBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Wall boundary conditions for compressible flow problems.
static std::string npts
Definition: InputFld.cpp:43
int m_spacedim
Spatial dimension (>= expansion dim).
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:382
double NekDouble
NekDouble m_cflSafetyFactor
CFL safety factor (comprise between 0 to 1).
virtual void v_ExtraFldOutput(std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
bool CalcSteadyState(bool output)
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.cpp:301
Array< OneD, NekDouble > m_pressureStorage
EquationSystemFactory & GetEquationSystemFactory()
Array< OneD, NekDouble > GetStabilityLimitVector(const Array< OneD, int > &ExpOrder)
Function to calculate the stability limit for DG/CG (a vector of them).
void GetAbsoluteVelocity(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &Vtot)
SolverUtils::AdvectionSharedPtr m_advection
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
SolverUtils::DiffusionSharedPtr m_diffusion
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
SOLVER_UTILS_EXPORT int GetPhys_Offset(int n)
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
virtual void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
void GetDynamicViscosity(const Array< OneD, const NekDouble > &temperature, Array< OneD, NekDouble > &mu)
virtual NekDouble v_GetTimeStep(const Array< OneD, const Array< OneD, NekDouble > > &inarray)
Return the timestep to be used for the next step in the time-marching loop.
SOLVER_UTILS_EXPORT int GetExpSize()
void GetEnthalpy(const Array< OneD, const Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &pressure, Array< OneD, NekDouble > &enthalpy)
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void GetSmoothArtificialViscosity(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, NekDouble > &eps_bar)
const Geometry1DSharedPtr GetEdge(int i) const
Definition: Geometry2D.cpp:80
void GetForcingTerm(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > outarrayForcing)
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure()
Get pressure field if available.
int m_infosteps
Number of time steps between outputting status information.
void GetSensor(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, NekDouble > &Sensor, Array< OneD, NekDouble > &SensorKappa)
CompressibleFlowSystem(const LibUtilities::SessionReaderSharedPtr &pSession)
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession)
Creates an instance of this class.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Return the flux vector for the compressible Euler equations.
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:723
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
static std::string className
Name of class.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
Geometry is curved or has non-constant factors.
void GetElementDimensions(Array< OneD, Array< OneD, NekDouble > > &outarray, Array< OneD, NekDouble > &hmin)
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void PressureInflowFileBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &physarray)
Pressure inflow boundary conditions for compressible flow problems where either the density and the v...
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, tDescription pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:215