44 namespace LocalRegions
55 boost::bind(&
TriExp::CreateMatrix, this, _1),
56 std::string(
"TriExpMatrix")),
57 m_staticCondMatrixManager(
58 boost::bind(&
TriExp::CreateStaticCondMatrix, this, _1),
59 std::string(
"TriExpStaticCondMatrix"))
70 m_matrixManager(T.m_matrixManager),
71 m_staticCondMatrixManager(T.m_staticCondMatrixManager)
84 int nquad0 =
m_base[0]->GetNumPoints();
85 int nquad1 =
m_base[1]->GetNumPoints();
93 Vmath::Vmul(nquad0*nquad1, jac, 1, inarray, 1,tmp, 1);
97 Vmath::Smul(nquad0*nquad1, jac[0], inarray, 1, tmp, 1);
101 ival = StdTriExp::v_Integral(tmp);
111 int nquad0 =
m_base[0]->GetNumPoints();
112 int nquad1 =
m_base[1]->GetNumPoints();
113 int nqtot = nquad0*nquad1;
120 StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
124 if(out_d0.num_elements())
127 Vmath::Vvtvp (nqtot,df[1],1,diff1,1, out_d0, 1, out_d0,1);
130 if(out_d1.num_elements())
133 Vmath::Vvtvp (nqtot,df[3],1,diff1,1, out_d1, 1, out_d1,1);
136 if(out_d2.num_elements())
139 Vmath::Vvtvp (nqtot,df[5],1,diff1,1, out_d2, 1, out_d2,1);
144 if(out_d0.num_elements())
146 Vmath::Smul (nqtot, df[0][0], diff0, 1, out_d0, 1);
147 Blas::Daxpy (nqtot, df[1][0], diff1, 1, out_d0, 1);
150 if(out_d1.num_elements())
152 Vmath::Smul (nqtot, df[2][0], diff0, 1, out_d1, 1);
153 Blas::Daxpy (nqtot, df[3][0], diff1, 1, out_d1, 1);
156 if(out_d2.num_elements())
158 Vmath::Smul (nqtot, df[4][0], diff0, 1, out_d2, 1);
159 Blas::Daxpy (nqtot, df[5][0], diff1, 1, out_d2, 1);
188 ASSERTL1(
false,
"input dir is out of range");
199 if(! out.num_elements())
204 int nquad0 =
m_base[0]->GetNumPoints();
205 int nquad1 =
m_base[1]->GetNumPoints();
206 int nqtot = nquad0*nquad1;
215 StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
224 for (
int i=0; i< 2; ++i)
227 for (
int k=0; k<(
m_geom->GetCoordim()); ++k)
229 Vmath::Vvtvp(nqtot,&df[2*k+i][0],1,&direction[k*nqtot],1,&tangmat[i][0],1,&tangmat[i][0],1);
234 Vmath::Vmul (nqtot,&tangmat[0][0],1,&diff0[0],1, &out[0], 1);
235 Vmath::Vvtvp (nqtot,&tangmat[1][0],1,&diff1[0],1, &out[0], 1, &out[0],1);
266 int npoints[2] = {
m_base[0]->GetNumPoints(),
267 m_base[1]->GetNumPoints()};
268 int nmodes[2] = {
m_base[0]->GetNumModes(),
269 m_base[1]->GetNumModes()};
271 fill(outarray.get(), outarray.get()+
m_ncoeffs, 0.0 );
275 for(i = 0; i < 3; i++)
282 for(i = 0; i < npoints[0]; i++)
284 physEdge[0][i] = inarray[i];
288 for(i = 0; i < npoints[1]; i++)
290 physEdge[1][i] = inarray[npoints[0]-1+i*npoints[0]];
291 physEdge[2][i] = inarray[i*npoints[0]];
299 for(i = 1; i < 3; i++)
306 for(i = 1; i < 3; i++)
311 m_base[0]->GetPointsKey(),physEdge[i]);
313 npoints[1] = npoints[0];
324 for(i = 0; i < 3; i++)
326 segexp[i]->FwdTrans_BndConstrained(physEdge[i],coeffEdge[i]);
331 for(j=0; j < nmodes[i!=0]; j++)
334 outarray[ mapArray[j] ] = sign * coeffEdge[i][j];
339 int nInteriorDofs =
m_ncoeffs - nBoundaryDofs;
341 if (nInteriorDofs > 0) {
362 for(i = 0; i < nInteriorDofs; i++)
364 rhs[i] = tmp1[ mapArray[i] ];
367 Blas::Dgemv(
'N', nInteriorDofs, nInteriorDofs, matsys->Scale(), &((matsys->GetOwnedMatrix())->GetPtr())[0],
368 nInteriorDofs,rhs.get(),1,0.0,result.get(),1);
370 for(i = 0; i < nInteriorDofs; i++)
372 outarray[ mapArray[i] ] = result[i];
395 bool multiplybyweights)
397 int nquad0 =
m_base[0]->GetNumPoints();
398 int nquad1 =
m_base[1]->GetNumPoints();
399 int order0 =
m_base[0]->GetNumModes();
401 if(multiplybyweights)
414 inarray,outarray,wsp);
426 Blas::Dgemv(
'N',
m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
427 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
436 ASSERTL1((dir==0)||(dir==1)||(dir==2),
"Invalid direction.");
437 ASSERTL1((dir==2)?(
m_geom->GetCoordim()==3):
true,
"Invalid direction.");
440 int nquad0 =
m_base[0]->GetNumPoints();
441 int nquad1 =
m_base[1]->GetNumPoints();
442 int nqtot = nquad0*nquad1;
443 int nmodes0 =
m_base[0]->GetNumModes();
444 int wspsize = max(max(nqtot,
m_ncoeffs),nquad1*nmodes0);
460 for(i = 0; i < nquad1; ++i)
462 gfac0[i] = 2.0/(1-z1[i]);
464 for(i = 0; i < nquad0; ++i)
466 gfac1[i] = 0.5*(1+z0[i]);
469 for(i = 0; i < nquad1; ++i)
471 Vmath::Smul(nquad0,gfac0[i],&inarray[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
474 for(i = 0; i < nquad1; ++i)
476 Vmath::Vmul(nquad0,&gfac1[0],1,&tmp0[0]+i*nquad0,1,&tmp1[0]+i*nquad0,1);
481 Vmath::Vmul(nqtot,&df[2*dir][0], 1,&tmp0[0], 1,&tmp0[0],1);
482 Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&tmp1[0], 1,&tmp1[0],1);
483 Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&inarray[0],1,&tmp2[0],1);
487 Vmath::Smul(nqtot, df[2*dir][0], tmp0, 1, tmp0, 1);
488 Vmath::Smul(nqtot, df[2*dir+1][0], tmp1, 1, tmp1, 1);
489 Vmath::Smul(nqtot, df[2*dir+1][0], inarray, 1, tmp2, 1);
528 ASSERTL1(
false,
"input dir is out of range");
536 Blas::Dgemv(
'N',
m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
537 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
547 int nq =
m_base[0]->GetNumPoints()*
m_base[1]->GetNumPoints();
557 &normals[1][0],1,&Fy[0],1,&Fn[0],1);
558 Vmath::Vvtvp (nq,&normals[2][0],1,&Fz[0],1,&Fn[0],1,&Fn[0],1);
563 normals[1][0],&Fy[0],1,&Fn[0],1);
564 Vmath::Svtvp (nq,normals[2][0],&Fz[0],1,&Fn[0],1,&Fn[0],1);
582 m_base[1]->GetBasisKey());
590 ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[1] <= 1.0 &&
591 Lcoords[1] >= -1.0 && Lcoords[1] <=1.0,
592 "Local coordinates are not in region [-1,1]");
596 for(i = 0; i <
m_geom->GetCoordim(); ++i)
598 coords[i] =
m_geom->GetCoord(i,Lcoords);
621 return StdTriExp::v_PhysEvaluate(Lcoord,physvals);
629 m_geom->GetLocCoords(coord,Lcoord);
631 return StdTriExp::v_PhysEvaluate(Lcoord, physvals);
650 int nquad0 =
m_base[0]->GetNumPoints();
651 int nquad1 =
m_base[1]->GetNumPoints();
676 -nquad0, &(outarray[0]),1);
683 -nquad0,&(outarray[0]),1);
692 ASSERTL0(
false,
"edge value (< 3) is out of range");
701 int nquad0 =
m_base[0]->GetNumPoints();
702 int nquad1 =
m_base[1]->GetNumPoints();
708 Vmath::Vcopy(nquad0, &(inarray[0]), 1, &(outarray[0]), 1);
712 nquad0, &(outarray[0]), 1);
715 Vmath::Vcopy(nquad1, &(inarray[0]), nquad0, &(outarray[0]), 1);
718 ASSERTL0(
false,
"edge value (< 3) is out of range");
723 if(
m_base[edge?1:0]->GetPointsKey() != EdgeExp->GetBasis(0)->GetPointsKey())
731 EdgeExp->GetBasis(0)->GetPointsKey(),
750 "Routine not implemented for triangular elements");
758 "Routine not implemented for triangular elements");
767 int nquad0 =
m_base[0]->GetNumPoints();
768 int nquad1 =
m_base[1]->GetNumPoints();
775 for (
int i = 0; i < nquad0; ++i)
782 for (
int i = 0; i < nquad1; ++i)
784 outarray[i] = (nquad0-1) + i * nquad0;
789 for (
int i = 0; i < nquad1; ++i)
791 outarray[i] = i*nquad0;
795 ASSERTL0(
false,
"edge value (< 3) is out of range");
810 int nqe =
m_base[0]->GetNumPoints();
815 for (i = 0; i < dim; ++i)
836 Vmath::Fill(nqe,df[2*i+1][0] + df[2*i][0],normal[i],1);
846 ASSERTL0(
false,
"Edge is out of range (edge < 3)");
853 fac += normal[i][0]*normal[i][0];
865 int nquad0 = ptsKeys[0].GetNumPoints();
866 int nquad1 = ptsKeys[1].GetNumPoints();
879 for(j = 0; j < nquad0; ++j)
884 normals[i*nquad0+j] = -df[2*i+1][j]*edgejac[j];
887 from_key = ptsKeys[0];
890 for(j = 0; j < nquad1; ++j)
892 edgejac[j] = jac[nquad0*j+nquad0-1];
895 normals[i*nquad1+j] = (df[2*i][nquad0*j + nquad0-1] + df[2*i+1][nquad0*j + nquad0-1])*edgejac[j];
898 from_key = ptsKeys[1];
901 for(j = 0; j < nquad1; ++j)
903 edgejac[j] = jac[nquad0*j];
906 normals[i*nquad1+j] = -df[2*i][nquad0*j]*edgejac[j];
909 from_key = ptsKeys[1];
912 ASSERTL0(
false,
"edge is out of range (edge < 3)");
934 Vmath::Vvtvp(nqe,normal[i],1, normal[i],1,work,1,work,1);
969 return m_geom->GetCoordim();
974 const std::vector<unsigned int > &nummodes,
const int mode_offset,
NekDouble * coeffs)
976 int data_order0 = nummodes[mode_offset];
977 int fillorder0 = min(
m_base[0]->GetNumModes(),data_order0);
978 int data_order1 = nummodes[mode_offset+1];
979 int order1 =
m_base[1]->GetNumModes();
980 int fillorder1 = min(order1,data_order1);
991 "Extraction routine not set up for this basis");
994 for(i = 0; i < fillorder0; ++i)
996 Vmath::Vcopy(fillorder1-i,&data[cnt],1,&coeffs[cnt1],1);
997 cnt += data_order1-i;
1003 ASSERTL0(
false,
"basis is either not set up or not hierarchicial");
1016 return GetGeom2D()->GetCartesianEorient(edge);
1022 ASSERTL1(dir >= 0 &&dir <= 1,
"input dir is out of range");
1048 returnval = StdTriExp::v_GenMatrix(mkey);
1063 return tmp->GetStdMatrix(mkey);
1153 int rows = deriv0.GetRows();
1154 int cols = deriv1.GetColumns();
1157 (*WeakDeriv) = df[2*dir][0]*deriv0 + df[2*dir+1][0]*deriv1;
1190 int rows = lap00.GetRows();
1191 int cols = lap00.GetColumns();
1195 (*lap) = gmat[0][0] * lap00 +
1196 gmat[1][0] * (lap01 +
Transpose(lap01)) +
1219 int rows = LapMat.GetRows();
1220 int cols = LapMat.GetColumns();
1225 (*helm) = LapMat + factor*MassMat;
1286 int rows = stdiprod0.GetRows();
1287 int cols = stdiprod1.GetColumns();
1290 (*mat) = df[2*dir][0]*stdiprod0 + df[2*dir+1][0]*stdiprod1;
1343 unsigned int nint = (
unsigned int)(
m_ncoeffs - nbdry);
1344 unsigned int exp_size[] = {nbdry,nint};
1345 unsigned int nblks = 2;
1356 goto UseLocRegionsMatrix;
1361 goto UseStdRegionsMatrix;
1366 goto UseLocRegionsMatrix;
1368 UseStdRegionsMatrix:
1383 UseLocRegionsMatrix:
1401 for(i = 0; i < nbdry; ++i)
1403 for(j = 0; j < nbdry; ++j)
1405 (*A)(i,j) = mat(bmap[i],bmap[j]);
1408 for(j = 0; j < nint; ++j)
1410 (*B)(i,j) = mat(bmap[i],imap[j]);
1414 for(i = 0; i < nint; ++i)
1416 for(j = 0; j < nbdry; ++j)
1418 (*C)(i,j) = mat(imap[i],bmap[j]);
1421 for(j = 0; j < nint; ++j)
1423 (*D)(i,j) = mat(imap[i],imap[j]);
1432 (*A) = (*A) - (*B)*(*C);
1471 StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
1488 StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,mkey);
1497 StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
1505 StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray,outarray,mkey);
1513 StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray,outarray,mkey);
1531 if(inarray.get() == outarray.get())
1536 Blas::Dgemv(
'N',
m_ncoeffs,
m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1537 m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1541 Blas::Dgemv(
'N',
m_ncoeffs,
m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1542 m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1557 int nquad0 =
m_base[0]->GetNumPoints();
1558 int nquad1 =
m_base[1]->GetNumPoints();
1559 int nqtot = nquad0*nquad1;
1560 int nmodes0 =
m_base[0]->GetNumModes();
1561 int nmodes1 =
m_base[1]->GetNumModes();
1562 int wspsize = max(max(max(nqtot,
m_ncoeffs),nquad1*nmodes0),nquad0*nmodes1);
1564 ASSERTL1(wsp.num_elements() >= 3*wspsize,
1565 "Workspace is of insufficient size.");
1580 StdExpansion2D::PhysTensorDeriv(inarray,wsp1,wsp2);
1586 Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp1[0],1,&metric01[0],1,&wsp2[0],1,&wsp0[0],1);
1587 Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp1[0],1,&metric11[0],1,&wsp2[0],1,&wsp2[0],1);
1610 const unsigned int dim = 2;
1619 for (i = 0; i < dim; ++i)
1621 for (j = i; j < dim; ++j)
1629 const unsigned int nquad0 =
m_base[0]->GetNumPoints();
1630 const unsigned int nquad1 =
m_base[1]->GetNumPoints();
1634 for(i = 0; i < nquad1; i++)
1636 Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[0][0]+i*nquad0,1);
1637 Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[1][0]+i*nquad0,1);
1639 for(i = 0; i < nquad0; i++)
1641 Blas::Dscal(nquad1,0.5*(1+z0[i]),&dEta_dXi[1][0]+i,nquad0);
1648 Vmath::Smul (nqtot,df[0][0],&dEta_dXi[0][0],1,&tmp[0],1);
1649 Vmath::Svtvp(nqtot,df[1][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1655 Vmath::Smul (nqtot,df[2][0],&dEta_dXi[0][0],1,&tmp[0],1);
1656 Vmath::Svtvp(nqtot,df[3][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1663 Vmath::Smul (nqtot,df[4][0],&dEta_dXi[0][0],1,&tmp[0],1);
1664 Vmath::Svtvp(nqtot,df[5][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1670 NekDouble g2 = df[1][0]*df[1][0] + df[3][0]*df[3][0];
1673 g2 += df[5][0]*df[5][0];
1680 Vmath::Vmul (nqtot,&df[0][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1681 Vmath::Vvtvp(nqtot,&df[1][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1688 Vmath::Vmul (nqtot,&df[2][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1689 Vmath::Vvtvp(nqtot,&df[3][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1697 Vmath::Vmul (nqtot,&df[4][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1698 Vmath::Vvtvp(nqtot,&df[5][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1706 for (
unsigned int i = 0; i < dim; ++i)
1708 for (
unsigned int j = i; j < dim; ++j)
1734 int n_coeffs = inarray.num_elements();
1735 int nquad0 =
m_base[0]->GetNumPoints();
1736 int nquad1 =
m_base[1]->GetNumPoints();
1737 int nqtot = nquad0*nquad1;
1738 int nmodes0 =
m_base[0]->GetNumModes();
1739 int nmodes1 =
m_base[1]->GetNumModes();
1740 int numMin2 = nmodes0, i;
1774 m_TriExp ->BwdTrans(inarray,phys_tmp);
1775 m_OrthoTriExp->FwdTrans(phys_tmp, coeff);
1777 for (i = 0; i < n_coeffs; i++)
1782 numMin += numMin2 - 1;
1787 m_OrthoTriExp->BwdTrans(coeff,phys_tmp);
1788 m_TriExp ->FwdTrans(phys_tmp, outarray);
1814 StdTriExp::v_SVVLaplacianFilter( array, mkey);
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
void ComputeLaplacianMetric()
const LibUtilities::PointsKeyVector GetPointsKeys() const
boost::shared_ptr< StdTriExp > StdTriExpSharedPtr
virtual NekDouble v_StdPhysEvaluate(const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
NekDouble GetConstFactor(const ConstFactorType &factor) const
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
#define ASSERTL0(condition, msg)
StdRegions::Orientation GetCartesianEorient(int edge)
const ConstFactorMap & GetConstFactors() const
const VarCoeffMap & GetVarCoeffs() const
std::vector< PointsKey > PointsKeyVector
virtual int v_GetCoordim()
MatrixType GetMatrixType() const
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix(const MatrixKey &mkey)
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
static Array< OneD, NekDouble > NullNekDouble1DArray
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
#define sign(a, b)
return the sign(b)*a
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
virtual int v_GetNumPoints(const int dir) const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_MassLevelCurvatureMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_IProductWRTDerivBase(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
virtual void v_PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
Calculate the derivative of the physical points.
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
virtual void v_WeakDirectionalDerivMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Principle Modified Functions .
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
std::map< int, StdRegions::NormalVector > m_edgeNormals
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
StdRegions::Orientation GetEorient(int edge)
virtual void v_ExtractDataToCoeffs(const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
Unpack data from input file assuming it comes from the same expansion type.
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
LibUtilities::ShapeType GetShapeType() const
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
SpatialDomains::GeometrySharedPtr m_geom
virtual void v_PhysDirectionalDeriv(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out)
Physical derivative along a direction vector.
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
boost::shared_ptr< DNekMat > DNekMatSharedPtr
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
virtual void v_FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Transform a given function from physical quadrature space to coefficient space.
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
virtual void v_GetEdgePhysVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Extract the physical values along edge edge from inarray into outarray following the local edge orien...
virtual void v_HelmholtzMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
Principle Orthogonal Functions .
bool ConstFactorExists(const ConstFactorType &factor) const
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
virtual void v_IProductWRTDerivBase_MatOp(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual void v_ComputeEdgeNormal(const int edge)
int NumBndryCoeffs(void) const
virtual void v_NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
boost::shared_ptr< SegExp > SegExpSharedPtr
virtual void v_ComputeLaplacianMetric()
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
int getNumberOfCoefficients(int Na)
virtual void v_IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into ou...
virtual void v_IProductWRTBase_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual NekDouble v_Integral(const Array< OneD, const NekDouble > &inarray)
Integrates the specified function over the domain.
virtual void v_GetTracePhysVals(const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
Principle Modified Functions .
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
virtual void v_GetEdgeQFactors(const int edge, Array< OneD, NekDouble > &outarray)
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Principle Orthogonal Functions .
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
Defines a specification for a set of points.
Expansion3DSharedPtr GetLeftAdjacentElementExp() const
virtual StdRegions::StdExpansionSharedPtr v_GetStdExp(void) const
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
virtual const LibUtilities::BasisSharedPtr & v_GetBasis(int dir) const
virtual void v_GeneralMatrixOp_MatOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
virtual void v_FwdTrans_BndConstrained(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
This function evaluates the expansion at a single (arbitrary) point of the domain.
virtual void v_ReduceOrderCoeffs(int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual StdRegions::Orientation v_GetCartesianEorient(int edge)
SpatialDomains::GeometrySharedPtr GetGeom() const
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
void GetEdgeToElementMap(const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
virtual DNekScalMatSharedPtr v_GetLocMatrix(const MatrixKey &mkey)
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Geometry is straight-sided with constant geometric factors.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
void HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
unsigned int GetNumPoints() const
virtual void v_WeakDerivMatrixOp(const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
virtual void v_SVVLaplacianFilter(Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
void ComputeQuadratureMetric()
virtual void v_MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
boost::shared_ptr< TriGeom > TriGeomSharedPtr
virtual void v_GetCoord(const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
int GetLeftAdjacentElementFace() const
virtual StdRegions::Orientation v_GetEorient(int edge)
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
virtual void v_IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
virtual void v_LaplacianMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
GeomType
Indicates the type of element geometry.
boost::shared_ptr< Basis > BasisSharedPtr
virtual void v_LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Zero(int n, T *x, const int incx)
Zero vector.
void v_DropLocStaticCondMatrix(const MatrixKey &mkey)
boost::shared_ptr< StdExpansion > StdExpansionSharedPtr
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
virtual void v_GetEdgePhysMap(const int edge, Array< OneD, int > &outarray)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Geometry is curved or has non-constant factors.
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
virtual DNekMatSharedPtr v_CreateStdMatrix(const StdRegions::StdMatrixKey &mkey)
Describes the specification for a Basis.
1D Gauss-Lobatto-Legendre quadrature points
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
virtual void v_GetEdgeInterpVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
virtual DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)