Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members
Nektar::LocalRegions::TriExp Class Reference

#include <TriExp.h>

Inheritance diagram for Nektar::LocalRegions::TriExp:
Inheritance graph
[legend]
Collaboration diagram for Nektar::LocalRegions::TriExp:
Collaboration graph
[legend]

Public Member Functions

 TriExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb, const SpatialDomains::TriGeomSharedPtr &geom)
 Constructor using BasisKey class for quadrature points and order definition. More...
 
 TriExp (const TriExp &T)
 
 ~TriExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdTriExp
 StdTriExp ()
 
 StdTriExp (const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdTriExp (const StdTriExp &T)
 
 ~StdTriExp ()
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion2D
 StdExpansion2D ()
 
 StdExpansion2D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdExpansion2D (const StdExpansion2D &T)
 
virtual ~StdExpansion2D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
 Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const
LibUtilities::BasisSharedPtr > & 
GetBase () const
 This function gets the shared point to basis. More...
 
const
LibUtilities::BasisSharedPtr
GetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const
NekDouble > & 
GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetNedges () const
 This function returns the number of edges of the expansion domain. More...
 
int GetEdgeNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge. More...
 
int GetTotalEdgeIntNcoeffs () const
 
int GetEdgeNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th edge. More...
 
int DetCartesianDirOfEdge (const int edge)
 
const LibUtilities::BasisKey DetEdgeBasisKey (const int i) const
 
const LibUtilities::BasisKey DetFaceBasisKey (const int i, const int k) const
 
int GetFaceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th face. More...
 
int GetFaceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th face. More...
 
int GetFaceIntNcoeffs (const int i) const
 
int GetTotalFaceIntNcoeffs () const
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th edge/face. More...
 
LibUtilities::PointsKey GetFacePointsKey (const int i, const int j) const
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
LibUtilities::BasisType GetEdgeBasisType (const int i) const
 This function returns the type of expansion basis on the i-th edge. More...
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNfaces () const
 This function returns the number of faces of the expansion domain. More...
 
int GetNtrace () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
boost::shared_ptr< StdExpansionGetStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
IndexMapValuesSharedPtr GetIndexMap (const IndexMapKey &ikey)
 
const Array< OneD, const
NekDouble > & 
GetPhysNormals (void)
 
void SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void SetUpPhysNormals (const int edge)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
StdRegions::Orientation GetForient (int face)
 
StdRegions::Orientation GetEorient (int edge)
 
StdRegions::Orientation GetPorient (int point)
 
StdRegions::Orientation GetCartesianEorient (int edge)
 
void SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
void SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
void ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int nmodes_offset, NekDouble *coeffs)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetFaceInteriorMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
void GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
void GetFaceToElementMap (const int fid, const Orientation faceOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int nummodesA=-1, int nummodesB=-1)
 
void GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
void GetEdgePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetTracePhysVals (const int edge, const boost::shared_ptr< StdExpansion > &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetVertexPhysVals (const int vertex, const Array< OneD, const NekDouble > &inarray, NekDouble &outarray)
 
void GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 Extract the metric factors to compute the contravariant fluxes along edge edge and stores them into outarray following the local edge orientation (i.e. anticlockwise convention). More...
 
void GetFacePhysVals (const int face, const boost::shared_ptr< StdExpansion > &FaceExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient=eNoOrientation)
 
void GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
void GetFacePhysMap (const int face, Array< OneD, int > &outarray)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix $\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$ More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
void AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
const boost::shared_ptr
< SpatialDomains::GeomFactors > & 
GetMetricInfo (void) const
 
virtual int v_GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
virtual const Array< OneD,
const NekDouble > & 
v_GetPhysNormals (void)
 
virtual void v_SetPhysNormals (Array< OneD, const NekDouble > &normal)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual StdRegions::Orientation v_GetForient (int face)
 
virtual StdRegions::Orientation v_GetPorient (int point)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_\infty$ error $ |\epsilon|_\infty = \max |u - u_{exact}|$ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ L_2$ error, $ | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete $ H^1$ error, $ | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 $ where $ u_{exact}$ is given by the array sol. More...
 
const NormalVectorGetEdgeNormal (const int edge) const
 
void ComputeEdgeNormal (const int edge)
 
void NegateEdgeNormal (const int edge)
 
bool EdgeNormalNegated (const int edge)
 
void ComputeFaceNormal (const int face)
 
void NegateFaceNormal (const int face)
 
bool FaceNormalNegated (const int face)
 
void ComputeVertexNormal (const int vertex)
 
const NormalVectorGetFaceNormal (const int face) const
 
const NormalVectorGetVertexNormal (const int vertex) const
 
const NormalVectorGetSurfaceNormal (const int id) const
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
Array< OneD, unsigned int > GetEdgeInverseBoundaryMap (int eid)
 
Array< OneD, unsigned int > GetFaceInverseBoundaryMap (int fid, StdRegions::Orientation faceOrient=eNoOrientation)
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion2D
 Expansion2D (SpatialDomains::Geometry2DSharedPtr pGeom)
 
virtual ~Expansion2D ()
 
void SetTraceToGeomOrientation (Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &inout)
 
Expansion1DSharedPtr GetEdgeExp (int edge, bool SetUpNormal=true)
 
void SetEdgeExp (const int edge, Expansion1DSharedPtr &e)
 
void AddNormTraceInt (const int dir, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &edgeCoeffs, Array< OneD, NekDouble > &outarray)
 
void AddNormTraceInt (const int dir, Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs)
 
void AddEdgeBoundaryInt (const int edge, ExpansionSharedPtr &EdgeExp, Array< OneD, NekDouble > &edgePhys, Array< OneD, NekDouble > &outarray, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
void AddHDGHelmholtzEdgeTerms (const NekDouble tau, const int edge, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, NekDouble > &edgePhys, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
void AddHDGHelmholtzTraceTerms (const NekDouble tau, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, const StdRegions::VarCoeffMap &dirForcing, Array< OneD, NekDouble > &outarray)
 
Expansion3DSharedPtr GetLeftAdjacentElementExp () const
 
Expansion3DSharedPtr GetRightAdjacentElementExp () const
 
int GetLeftAdjacentElementFace () const
 
int GetRightAdjacentElementFace () const
 
void SetAdjacentElementExp (int face, Expansion3DSharedPtr &f)
 
SpatialDomains::Geometry2DSharedPtr GetGeom2D () const
 
void ReOrientEdgePhysMap (const int nvert, const StdRegions::Orientation orient, const int nq0, Array< OneD, int > &idmap)
 
- Public Member Functions inherited from Nektar::LocalRegions::Expansion
 Expansion (SpatialDomains::GeometrySharedPtr pGeom)
 
 Expansion (const Expansion &pSrc)
 
virtual ~Expansion ()
 
DNekScalMatSharedPtr GetLocMatrix (const LocalRegions::MatrixKey &mkey)
 
DNekScalMatSharedPtr GetLocMatrix (const StdRegions::MatrixType mtype, const StdRegions::ConstFactorMap &factors=StdRegions::NullConstFactorMap, const StdRegions::VarCoeffMap &varcoeffs=StdRegions::NullVarCoeffMap)
 
SpatialDomains::GeometrySharedPtr GetGeom () const
 
void Reset ()
 
virtual const
SpatialDomains::GeomFactorsSharedPtr
v_GetMetricInfo () const
 
DNekMatSharedPtr BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
DNekMatSharedPtr BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
void DGDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &coeffs, Array< OneD, NekDouble > &outarray)
 

Protected Member Functions

virtual NekDouble v_Integral (const Array< OneD, const NekDouble > &inarray)
 Integrates the specified function over the domain. More...
 
virtual void v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 Calculate the derivative of the physical points. More...
 
virtual void v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the derivative of the physical points in a given direction. More...
 
virtual void v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &out)
 Physical derivative along a direction vector. More...
 
virtual void v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Transform a given function from physical quadrature space to coefficient space. More...
 
virtual void v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into outarray. More...
 
virtual void v_IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
virtual void v_IProductWRTBase_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_IProductWRTDerivBase_MatOp (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual
StdRegions::StdExpansionSharedPtr 
v_GetStdExp (void) const
 
virtual void v_GetCoord (const Array< OneD, const NekDouble > &Lcoords, Array< OneD, NekDouble > &coords)
 
virtual void v_GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coord, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual void v_GetEdgePhysVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp. More...
 
virtual void v_GetEdgePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetTracePhysVals (const int edge, const StdRegions::StdExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, StdRegions::Orientation orient)
 
virtual void v_GetEdgeInterpVals (const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetEdgeQFactors (const int edge, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeEdgeNormal (const int edge)
 
virtual int v_GetCoordim ()
 
virtual void v_ExtractDataToCoeffs (const NekDouble *data, const std::vector< unsigned int > &nummodes, const int mode_offset, NekDouble *coeffs)
 Unpack data from input file assuming it comes from the same expansion type. More...
 
virtual StdRegions::Orientation v_GetEorient (int edge)
 
virtual StdRegions::Orientation v_GetCartesianEorient (int edge)
 
virtual const
LibUtilities::BasisSharedPtr
v_GetBasis (int dir) const
 
virtual int v_GetNumPoints (const int dir) const
 
virtual void v_GetEdgePhysMap (const int edge, Array< OneD, int > &outarray)
 
virtual DNekMatSharedPtr v_GenMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekMatSharedPtr v_CreateStdMatrix (const StdRegions::StdMatrixKey &mkey)
 
virtual DNekScalMatSharedPtr CreateMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix (const MatrixKey &mkey)
 
virtual DNekScalMatSharedPtr v_GetLocMatrix (const MatrixKey &mkey)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const MatrixKey &mkey)
 
void v_DropLocStaticCondMatrix (const MatrixKey &mkey)
 
virtual void v_MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_GeneralMatrixOp_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
virtual void v_ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_ComputeLaplacianMetric ()
 
virtual void v_SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdRegions::StdMatrixKey &mkey)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdTriExp
virtual void v_StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
virtual void v_StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 Backward tranform for triangular elements. More...
 
virtual void v_BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)
 
virtual void v_LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 
virtual void v_FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 
virtual int v_GetNverts () const
 
virtual int v_GetNedges () const
 
virtual LibUtilities::ShapeType v_DetShapeType () const
 
virtual int v_NumBndryCoeffs () const
 
virtual int v_NumDGBndryCoeffs () const
 
virtual int v_GetEdgeNcoeffs (const int i) const
 
virtual int v_GetEdgeNumPoints (const int i) const
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual LibUtilities::BasisType v_GetEdgeBasisType (const int i) const
 
virtual bool v_IsBoundaryInteriorExpansion ()
 
virtual int v_DetCartesianDirOfEdge (const int edge)
 
virtual const
LibUtilities::BasisKey 
v_DetEdgeBasisKey (const int edge) const
 
virtual void v_GetEdgeToElementMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
 
virtual int v_GetVertexMap (int localVertexId, bool useCoeffPacking=false)
 
virtual void v_GetEdgeInteriorMap (const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray)
 
virtual void v_GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion2D
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual int v_GetTraceNcoeffs (const int i) const
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
IndexMapValuesSharedPtr CreateIndexMap (const IndexMapKey &ikey)
 Create an IndexMap which contains mapping information linking any specific element shape with either its boundaries, edges, faces, verteces, etc. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion2D
virtual void v_DGDeriv (const int dir, const Array< OneD, const NekDouble > &incoeffs, Array< OneD, ExpansionSharedPtr > &EdgeExp, Array< OneD, Array< OneD, NekDouble > > &edgeCoeffs, Array< OneD, NekDouble > &out_d)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddRobinMassMatrix (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, DNekMatSharedPtr &inoutmat)
 
virtual void v_AddRobinEdgeContribution (const int edgeid, const Array< OneD, const NekDouble > &primCoeffs, Array< OneD, NekDouble > &coeffs)
 
virtual DNekMatSharedPtr v_BuildVertexMatrix (const DNekScalMatSharedPtr &r_bnd)
 
void GetPhysEdgeVarCoeffsFromElement (const int edge, ExpansionSharedPtr &EdgeExp, const Array< OneD, const NekDouble > &varcoeff, Array< OneD, NekDouble > &outarray)
 
void ReOrientQuadEdgePhysMap (const StdRegions::Orientation orient, const int nq0, Array< OneD, int > &idmap)
 
Array< OneD, unsigned int > v_GetEdgeInverseBoundaryMap (int eid)
 
virtual void v_NegateEdgeNormal (const int edge)
 
virtual bool v_EdgeNormalNegated (const int edge)
 
virtual void v_SetUpPhysNormals (const int edge)
 
const StdRegions::NormalVectorv_GetEdgeNormal (const int edge) const
 
const StdRegions::NormalVectorv_GetSurfaceNormal (const int id) const
 
- Protected Member Functions inherited from Nektar::LocalRegions::Expansion
void ComputeLaplacianMetric ()
 
void ComputeQuadratureMetric ()
 
virtual void v_MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual DNekMatSharedPtr v_BuildTransformationMatrix (const DNekScalMatSharedPtr &r_bnd, const StdRegions::MatrixType matrixType)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddEdgeNormBoundaryInt (const int edge, const boost::shared_ptr< Expansion > &EdgeExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 
virtual void v_AddFaceNormBoundaryInt (const int face, const boost::shared_ptr< Expansion > &FaceExp, const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray)
 

Private Member Functions

 TriExp ()
 

Private Attributes

LibUtilities::NekManager
< MatrixKey, DNekScalMat,
MatrixKey::opLess
m_matrixManager
 
LibUtilities::NekManager
< MatrixKey, DNekScalBlkMat,
MatrixKey::opLess
m_staticCondMatrixManager
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD,
LibUtilities::BasisSharedPtr
m_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager
< StdMatrixKey, DNekMat,
StdMatrixKey::opLess
m_stdMatrixManager
 
LibUtilities::NekManager
< StdMatrixKey, DNekBlkMat,
StdMatrixKey::opLess
m_stdStaticCondMatrixManager
 
LibUtilities::NekManager
< IndexMapKey, IndexMapValues,
IndexMapKey::opLess
m_IndexMapManager
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion2D
std::vector< Expansion1DWeakPtrm_edgeExp
 
std::vector< bool > m_requireNeg
 
std::map< int,
StdRegions::NormalVector
m_edgeNormals
 
std::map< int, bool > m_negatedNormals
 
Expansion3DWeakPtr m_elementLeft
 
Expansion3DWeakPtr m_elementRight
 
int m_elementFaceLeft
 
int m_elementFaceRight
 
- Protected Attributes inherited from Nektar::LocalRegions::Expansion
SpatialDomains::GeometrySharedPtr m_geom
 
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
 
MetricMap m_metrics
 

Detailed Description

Definition at line 51 of file TriExp.h.

Constructor & Destructor Documentation

Nektar::LocalRegions::TriExp::TriExp ( const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb,
const SpatialDomains::TriGeomSharedPtr geom 
)

Constructor using BasisKey class for quadrature points and order definition.

Definition at line 46 of file TriExp.cpp.

48  :
49  StdExpansion (LibUtilities::StdTriData::getNumberOfCoefficients(Ba.GetNumModes(),(Bb.GetNumModes())),2,Ba,Bb),
50  StdExpansion2D(LibUtilities::StdTriData::getNumberOfCoefficients(Ba.GetNumModes(),(Bb.GetNumModes())),Ba,Bb),
51  StdTriExp(Ba,Bb),
52  Expansion (geom),
53  Expansion2D (geom),
55  boost::bind(&TriExp::CreateMatrix, this, _1),
56  std::string("TriExpMatrix")),
58  boost::bind(&TriExp::CreateStaticCondMatrix, this, _1),
59  std::string("TriExpStaticCondMatrix"))
60  {
61  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:46
virtual DNekScalBlkMatSharedPtr CreateStaticCondMatrix(const MatrixKey &mkey)
Definition: TriExp.cpp:1334
int getNumberOfCoefficients(int Na, int Nb)
Definition: ShapeType.hpp:111
Expansion2D(SpatialDomains::Geometry2DSharedPtr pGeom)
Definition: Expansion2D.cpp:47
StdExpansion()
Default Constructor.
virtual DNekScalMatSharedPtr CreateMatrix(const MatrixKey &mkey)
Definition: TriExp.cpp:1067
Nektar::LocalRegions::TriExp::TriExp ( const TriExp T)

Definition at line 64 of file TriExp.cpp.

64  :
65  StdExpansion(T),
66  StdExpansion2D(T),
67  StdTriExp(T),
68  Expansion(T),
69  Expansion2D(T),
70  m_matrixManager(T.m_matrixManager),
71  m_staticCondMatrixManager(T.m_staticCondMatrixManager)
72  {
73  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
Expansion(SpatialDomains::GeometrySharedPtr pGeom)
Definition: Expansion.cpp:46
Expansion2D(SpatialDomains::Geometry2DSharedPtr pGeom)
Definition: Expansion2D.cpp:47
StdExpansion()
Default Constructor.
Nektar::LocalRegions::TriExp::~TriExp ( )

Definition at line 76 of file TriExp.cpp.

77  {
78  }
Nektar::LocalRegions::TriExp::TriExp ( )
private

Member Function Documentation

DNekScalMatSharedPtr Nektar::LocalRegions::TriExp::CreateMatrix ( const MatrixKey mkey)
protectedvirtual

Definition at line 1067 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::LocalRegions::Expansion::BuildVertexMatrix(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::eHelmholtz, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eInvHybridDGHelmholtz, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::eInvMass, Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::eLaplacian, Nektar::StdRegions::eLaplacian00, Nektar::StdRegions::eLaplacian01, Nektar::StdRegions::eLaplacian11, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::ePreconLinearSpace, Nektar::StdRegions::eWeakDeriv0, Nektar::StdRegions::eWeakDeriv1, Nektar::StdRegions::eWeakDeriv2, Nektar::StdRegions::StdExpansion::GenMatrix(), Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetConstFactors(), Nektar::StdRegions::StdExpansion::GetLocStaticCondMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdMatrixKey::GetShapeType(), Nektar::StdRegions::StdExpansion::GetStdMatrix(), Nektar::StdRegions::StdMatrixKey::GetVarCoeffs(), m_matrixManager, Nektar::LocalRegions::Expansion::m_metricinfo, and Nektar::Transpose().

1068  {
1069  DNekScalMatSharedPtr returnval;
1071 
1072  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1073 
1074  switch(mkey.GetMatrixType())
1075  {
1076  case StdRegions::eMass:
1077  {
1078  if((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)||
1079  (mkey.GetNVarCoeff()))
1080  {
1081  NekDouble one = 1.0;
1082  DNekMatSharedPtr mat = GenMatrix(mkey);
1083  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1084  }
1085  else
1086  {
1087  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1088  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1089  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1090  }
1091  }
1092  break;
1093  case StdRegions::eInvMass:
1094  {
1095  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1096  {
1097  NekDouble one = 1.0;
1098  StdRegions::StdMatrixKey masskey(StdRegions::eMass,DetShapeType(),
1099  *this);
1100  DNekMatSharedPtr mat = GenMatrix(masskey);
1101  mat->Invert();
1102 
1103  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1104  }
1105  else
1106  {
1107  NekDouble fac = 1.0/(m_metricinfo->GetJac(ptsKeys))[0];
1108  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1109  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(fac,mat);
1110 
1111  }
1112  }
1113  break;
1117  {
1118  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed || mkey.GetNVarCoeff())
1119  {
1120  NekDouble one = 1.0;
1121  DNekMatSharedPtr mat = GenMatrix(mkey);
1122 
1123  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1124  }
1125  else
1126  {
1127  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1128  Array<TwoD, const NekDouble> df = m_metricinfo->GetDerivFactors(ptsKeys);
1129  int dir = 0;
1130  switch(mkey.GetMatrixType())
1131  {
1133  dir = 0;
1134  break;
1136  dir = 1;
1137  break;
1139  dir = 2;
1140  break;
1141  default:
1142  break;
1143  }
1144 
1145  MatrixKey deriv0key(StdRegions::eWeakDeriv0,
1146  mkey.GetShapeType(), *this);
1147  MatrixKey deriv1key(StdRegions::eWeakDeriv1,
1148  mkey.GetShapeType(), *this);
1149 
1150  DNekMat &deriv0 = *GetStdMatrix(deriv0key);
1151  DNekMat &deriv1 = *GetStdMatrix(deriv1key);
1152 
1153  int rows = deriv0.GetRows();
1154  int cols = deriv1.GetColumns();
1155 
1157  (*WeakDeriv) = df[2*dir][0]*deriv0 + df[2*dir+1][0]*deriv1;
1158 
1159  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,WeakDeriv);
1160  }
1161  }
1162  break;
1164  {
1165  if( (m_metricinfo->GetGtype() == SpatialDomains::eDeformed) ||
1166  (mkey.GetNVarCoeff() > 0)||(mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio)))
1167  {
1168  NekDouble one = 1.0;
1169  DNekMatSharedPtr mat = GenMatrix(mkey);
1170 
1171  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1172  }
1173  else
1174  {
1175  MatrixKey lap00key(StdRegions::eLaplacian00,
1176  mkey.GetShapeType(), *this);
1177  MatrixKey lap01key(StdRegions::eLaplacian01,
1178  mkey.GetShapeType(), *this);
1179  MatrixKey lap11key(StdRegions::eLaplacian11,
1180  mkey.GetShapeType(), *this);
1181 
1182  DNekMat &lap00 = *GetStdMatrix(lap00key);
1183  DNekMat &lap01 = *GetStdMatrix(lap01key);
1184  DNekMat &lap11 = *GetStdMatrix(lap11key);
1185 
1186  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1187  Array<TwoD, const NekDouble> gmat =
1188  m_metricinfo->GetGmat(ptsKeys);
1189 
1190  int rows = lap00.GetRows();
1191  int cols = lap00.GetColumns();
1192 
1194 
1195  (*lap) = gmat[0][0] * lap00 +
1196  gmat[1][0] * (lap01 + Transpose(lap01)) +
1197  gmat[3][0] * lap11;
1198 
1199  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,lap);
1200  }
1201  }
1202  break;
1204  {
1205  DNekMatSharedPtr mat = GenMatrix(mkey);
1206  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(1.0,mat);
1207  }
1208  break;
1210  {
1211  NekDouble factor = mkey.GetConstFactor(StdRegions::eFactorLambda);
1212 
1213  MatrixKey masskey(mkey, StdRegions::eMass);
1214  DNekScalMat &MassMat = *(this->m_matrixManager[masskey]);
1215 
1216  MatrixKey lapkey(mkey, StdRegions::eLaplacian);
1217  DNekScalMat &LapMat = *(this->m_matrixManager[lapkey]);
1218 
1219  int rows = LapMat.GetRows();
1220  int cols = LapMat.GetColumns();
1221 
1223 
1224  NekDouble one = 1.0;
1225  (*helm) = LapMat + factor*MassMat;
1226 
1227  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,helm);
1228  }
1229  break;
1231  {
1232  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1233  {
1234  NekDouble one = 1.0;
1235  DNekMatSharedPtr mat = GenMatrix(mkey);
1236  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1237  }
1238  else
1239  {
1240  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1241  DNekMatSharedPtr mat = GetStdMatrix(mkey);
1242  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1243  }
1244  }
1245  break;
1249  {
1250  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1251  {
1252  NekDouble one = 1.0;
1253  DNekMatSharedPtr mat = GenMatrix(mkey);
1254  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1255  }
1256  else
1257  {
1258  NekDouble jac = (m_metricinfo->GetJac(ptsKeys))[0];
1259 
1260  const Array<TwoD, const NekDouble>& df = m_metricinfo->GetDerivFactors(ptsKeys);
1261  int dir = 0;
1262 
1263  switch(mkey.GetMatrixType())
1264  {
1266  dir = 0;
1267  break;
1269  dir = 1;
1270  break;
1272  dir = 2;
1273  break;
1274  default:
1275  break;
1276  }
1277 
1278  MatrixKey iProdDeriv0Key(StdRegions::eIProductWRTDerivBase0,
1279  mkey.GetShapeType(), *this);
1280  MatrixKey iProdDeriv1Key(StdRegions::eIProductWRTDerivBase1,
1281  mkey.GetShapeType(), *this);
1282 
1283  DNekMat &stdiprod0 = *GetStdMatrix(iProdDeriv0Key);
1284  DNekMat &stdiprod1 = *GetStdMatrix(iProdDeriv0Key);
1285 
1286  int rows = stdiprod0.GetRows();
1287  int cols = stdiprod1.GetColumns();
1288 
1290  (*mat) = df[2*dir][0]*stdiprod0 + df[2*dir+1][0]*stdiprod1;
1291 
1292  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(jac,mat);
1293  }
1294  }
1295  break;
1296 
1298  {
1299  NekDouble one = 1.0;
1300 
1301  MatrixKey hkey(StdRegions::eHybridDGHelmholtz, DetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1302 
1303  DNekMatSharedPtr mat = GenMatrix(hkey);
1304 
1305  mat->Invert();
1306  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1307  }
1308  break;
1310  {
1311  NekDouble one = 1.0;
1312  MatrixKey helmkey(StdRegions::eHelmholtz, mkey.GetShapeType(), *this, mkey.GetConstFactors(), mkey.GetVarCoeffs());
1313  DNekScalBlkMatSharedPtr helmStatCond = GetLocStaticCondMatrix(helmkey);
1314  DNekScalMatSharedPtr A =helmStatCond->GetBlock(0,0);
1316 
1318  }
1319  break;
1320  default:
1321  {
1322  NekDouble one = 1.0;
1323  DNekMatSharedPtr mat = GenMatrix(mkey);
1324 
1325  returnval = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,mat);
1326  }
1327  break;
1328  }
1329 
1330  return returnval;
1331  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
const LibUtilities::PointsKeyVector GetPointsKeys() const
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
DNekMatSharedPtr GenMatrix(const StdMatrixKey &mkey)
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
DNekMatSharedPtr BuildVertexMatrix(const DNekScalMatSharedPtr &r_bnd)
Definition: Expansion.cpp:96
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix(const LocalRegions::MatrixKey &mkey)
Definition: StdExpansion.h:747
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
DNekMatSharedPtr GetStdMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:700
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
NekMatrix< InnerMatrixType, BlockMatrixTag > Transpose(NekMatrix< InnerMatrixType, BlockMatrixTag > &rhs)
NekMatrix< NekDouble, StandardMatrixTag > DNekMat
Definition: NekTypeDefs.hpp:52
double NekDouble
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
DNekScalBlkMatSharedPtr Nektar::LocalRegions::TriExp::CreateStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Definition at line 1334 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL2, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::eMass, Nektar::SpatialDomains::eNoGeomType, Nektar::StdRegions::StdExpansion::GetBoundaryMap(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdMatrixKey::GetMatrixType(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetStdStaticCondMatrix(), Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, and Nektar::StdRegions::StdExpansion::NumBndryCoeffs().

1335  {
1336  DNekScalBlkMatSharedPtr returnval;
1338 
1339  ASSERTL2(m_metricinfo->GetGtype() != SpatialDomains::eNoGeomType,"Geometric information is not set up");
1340 
1341  // set up block matrix system
1342  unsigned int nbdry = NumBndryCoeffs();
1343  unsigned int nint = (unsigned int)(m_ncoeffs - nbdry);
1344  unsigned int exp_size[] = {nbdry,nint};
1345  unsigned int nblks = 2;
1346  returnval = MemoryManager<DNekScalBlkMat>::AllocateSharedPtr(nblks,nblks,exp_size,exp_size); //Really need a constructor which takes Arrays
1347  NekDouble factor = 1.0;
1348 
1349  switch(mkey.GetMatrixType())
1350  {
1351  // this can only use stdregions statically condensed system for mass matrix
1352  case StdRegions::eMass:
1353  if((m_metricinfo->GetGtype() == SpatialDomains::eDeformed)||(mkey.GetNVarCoeff()))
1354  {
1355  factor = 1.0;
1356  goto UseLocRegionsMatrix;
1357  }
1358  else
1359  {
1360  factor = (m_metricinfo->GetJac(ptsKeys))[0];
1361  goto UseStdRegionsMatrix;
1362  }
1363  break;
1364  default: // use Deformed case for both regular and deformed geometries
1365  factor = 1.0;
1366  goto UseLocRegionsMatrix;
1367  break;
1368  UseStdRegionsMatrix:
1369  {
1370  NekDouble invfactor = 1.0/factor;
1371  NekDouble one = 1.0;
1373  DNekScalMatSharedPtr Atmp;
1374  DNekMatSharedPtr Asubmat;
1375 
1376  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(0,0)));
1377  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,Asubmat = mat->GetBlock(0,1)));
1378  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,Asubmat = mat->GetBlock(1,0)));
1379  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,Asubmat = mat->GetBlock(1,1)));
1380  }
1381  break;
1382 
1383  UseLocRegionsMatrix:
1384  {
1385  int i,j;
1386  NekDouble invfactor = 1.0/factor;
1387  NekDouble one = 1.0;
1388 
1389  DNekScalMat &mat = *GetLocMatrix(mkey);
1390 
1395 
1396  Array<OneD,unsigned int> bmap(nbdry);
1397  Array<OneD,unsigned int> imap(nint);
1398  GetBoundaryMap(bmap);
1399  GetInteriorMap(imap);
1400 
1401  for(i = 0; i < nbdry; ++i)
1402  {
1403  for(j = 0; j < nbdry; ++j)
1404  {
1405  (*A)(i,j) = mat(bmap[i],bmap[j]);
1406  }
1407 
1408  for(j = 0; j < nint; ++j)
1409  {
1410  (*B)(i,j) = mat(bmap[i],imap[j]);
1411  }
1412  }
1413 
1414  for(i = 0; i < nint; ++i)
1415  {
1416  for(j = 0; j < nbdry; ++j)
1417  {
1418  (*C)(i,j) = mat(imap[i],bmap[j]);
1419  }
1420 
1421  for(j = 0; j < nint; ++j)
1422  {
1423  (*D)(i,j) = mat(imap[i],imap[j]);
1424  }
1425  }
1426 
1427  // Calculate static condensed system
1428  if(nint)
1429  {
1430  D->Invert();
1431  (*B) = (*B)*(*D);
1432  (*A) = (*A) - (*B)*(*C);
1433  }
1434 
1435  DNekScalMatSharedPtr Atmp;
1436 
1437  returnval->SetBlock(0,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,A));
1438  returnval->SetBlock(0,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(one,B));
1439  returnval->SetBlock(1,0,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(factor,C));
1440  returnval->SetBlock(1,1,Atmp = MemoryManager<DNekScalMat>::AllocateSharedPtr(invfactor,D));
1441 
1442  }
1443  }
1444 
1445  return returnval;
1446  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekBlkMatSharedPtr GetStdStaticCondMatrix(const StdMatrixKey &mkey)
Definition: StdExpansion.h:705
boost::shared_ptr< DNekScalBlkMat > DNekScalBlkMatSharedPtr
Definition: NekTypeDefs.hpp:74
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
boost::shared_ptr< DNekBlkMat > DNekBlkMatSharedPtr
Definition: NekTypeDefs.hpp:72
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:83
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed t...
Definition: ErrorUtil.hpp:213
Geometry is curved or has non-constant factors.
NekMatrix< NekMatrix< NekDouble, StandardMatrixTag >, ScaledMatrixTag > DNekScalMat
void GetBoundaryMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:816
void Nektar::LocalRegions::TriExp::v_ComputeEdgeNormal ( const int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 802 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eBackwards, Nektar::SpatialDomains::eDeformed, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::LocalRegions::Expansion::GetGeom(), Nektar::LibUtilities::PointsKey::GetNumPoints(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion2D::m_edgeNormals, Vmath::Reverse(), Vmath::Sdiv(), Vmath::Smul(), Vmath::Vmul(), Vmath::Vsqrt(), Vmath::Vvtvp(), and Vmath::Zero().

803  {
804  int i;
805  const SpatialDomains::GeomFactorsSharedPtr & geomFactors = GetGeom()->GetMetricInfo();
807  const SpatialDomains::GeomType type = geomFactors->GetGtype();
808  const Array<TwoD, const NekDouble> & df = geomFactors->GetDerivFactors(ptsKeys);
809  const Array<OneD, const NekDouble> & jac = geomFactors->GetJac(ptsKeys);
810  int nqe = m_base[0]->GetNumPoints();
811  int dim = GetCoordim();
812 
813  m_edgeNormals[edge] = Array<OneD, Array<OneD, NekDouble> >(dim);
814  Array<OneD, Array<OneD, NekDouble> > &normal = m_edgeNormals[edge];
815  for (i = 0; i < dim; ++i)
816  {
817  normal[i] = Array<OneD, NekDouble>(nqe);
818  }
819 
820  // Regular geometry case
822  {
823  NekDouble fac;
824  // Set up normals
825  switch(edge)
826  {
827  case 0:
828  for(i = 0; i < GetCoordim(); ++i)
829  {
830  Vmath::Fill(nqe,-df[2*i+1][0],normal[i],1);
831  }
832  break;
833  case 1:
834  for(i = 0; i < GetCoordim(); ++i)
835  {
836  Vmath::Fill(nqe,df[2*i+1][0] + df[2*i][0],normal[i],1);
837  }
838  break;
839  case 2:
840  for(i = 0; i < GetCoordim(); ++i)
841  {
842  Vmath::Fill(nqe,-df[2*i][0],normal[i],1);
843  }
844  break;
845  default:
846  ASSERTL0(false,"Edge is out of range (edge < 3)");
847  }
848 
849  // normalise
850  fac = 0.0;
851  for(i =0 ; i < GetCoordim(); ++i)
852  {
853  fac += normal[i][0]*normal[i][0];
854  }
855  fac = 1.0/sqrt(fac);
856  for (i = 0; i < GetCoordim(); ++i)
857  {
858  Vmath::Smul(nqe,fac,normal[i],1,normal[i],1);
859  }
860  }
861  else // Set up deformed normals
862  {
863  int j;
864 
865  int nquad0 = ptsKeys[0].GetNumPoints();
866  int nquad1 = ptsKeys[1].GetNumPoints();
867 
868  LibUtilities::PointsKey from_key;
869 
870  Array<OneD,NekDouble> normals(GetCoordim()*max(nquad0,nquad1),0.0);
871  Array<OneD,NekDouble> edgejac(GetCoordim()*max(nquad0,nquad1),0.0);
872 
873  // Extract Jacobian along edges and recover local
874  // derivates (dx/dr) for polynomial interpolation by
875  // multiplying m_gmat by jacobian
876  switch(edge)
877  {
878  case 0:
879  for(j = 0; j < nquad0; ++j)
880  {
881  edgejac[j] = jac[j];
882  for(i = 0; i < GetCoordim(); ++i)
883  {
884  normals[i*nquad0+j] = -df[2*i+1][j]*edgejac[j];
885  }
886  }
887  from_key = ptsKeys[0];
888  break;
889  case 1:
890  for(j = 0; j < nquad1; ++j)
891  {
892  edgejac[j] = jac[nquad0*j+nquad0-1];
893  for(i = 0; i < GetCoordim(); ++i)
894  {
895  normals[i*nquad1+j] = (df[2*i][nquad0*j + nquad0-1] + df[2*i+1][nquad0*j + nquad0-1])*edgejac[j];
896  }
897  }
898  from_key = ptsKeys[1];
899  break;
900  case 2:
901  for(j = 0; j < nquad1; ++j)
902  {
903  edgejac[j] = jac[nquad0*j];
904  for(i = 0; i < GetCoordim(); ++i)
905  {
906  normals[i*nquad1+j] = -df[2*i][nquad0*j]*edgejac[j];
907  }
908  }
909  from_key = ptsKeys[1];
910  break;
911  default:
912  ASSERTL0(false,"edge is out of range (edge < 3)");
913 
914  }
915 
916  int nq = from_key.GetNumPoints();
917  Array<OneD,NekDouble> work(nqe,0.0);
918 
919  // interpolate Jacobian and invert
920  LibUtilities::Interp1D(from_key,jac,m_base[0]->GetPointsKey(),work);
921  Vmath::Sdiv(nq,1.0,&work[0],1,&work[0],1);
922 
923  // interpolate
924  for(i = 0; i < GetCoordim(); ++i)
925  {
926  LibUtilities::Interp1D(from_key,&normals[i*nq],m_base[0]->GetPointsKey(),&normal[i][0]);
927  Vmath::Vmul(nqe,work,1,normal[i],1,normal[i],1);
928  }
929 
930  //normalise normal vectors
931  Vmath::Zero(nqe,work,1);
932  for(i = 0; i < GetCoordim(); ++i)
933  {
934  Vmath::Vvtvp(nqe,normal[i],1, normal[i],1,work,1,work,1);
935  }
936 
937  Vmath::Vsqrt(nqe,work,1,work,1);
938  Vmath::Sdiv(nqe,1.0,work,1,work,1);
939 
940  for(i = 0; i < GetCoordim(); ++i)
941  {
942  Vmath::Vmul(nqe,normal[i],1,work,1,normal[i],1);
943  }
944 
945  // Reverse direction so that points are in
946  // anticlockwise direction if edge >=2
947  if(edge >= 2)
948  {
949  for(i = 0; i < GetCoordim(); ++i)
950  {
951  Vmath::Reverse(nqe,normal[i],1, normal[i],1);
952  }
953  }
954  }
956  {
957  for(i = 0; i < GetCoordim(); ++i)
958  {
959  if(geomFactors->GetGtype() == SpatialDomains::eDeformed)
960  {
961  Vmath::Reverse(nqe, normal[i], 1, normal[i],1);
962  }
963  }
964  }
965  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:220
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
std::map< int, StdRegions::NormalVector > m_edgeNormals
Definition: Expansion2D.h:135
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:762
void Sdiv(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha/y.
Definition: Vmath.cpp:257
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1071
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
SpatialDomains::GeometrySharedPtr GetGeom() const
Definition: Expansion.cpp:148
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Geometry is straight-sided with constant geometric factors.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
GeomType
Indicates the type of element geometry.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_ComputeLaplacianMetric ( )
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1600 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::ComputeQuadratureMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian02, Nektar::LocalRegions::eMetricLaplacian11, Nektar::LocalRegions::eMetricLaplacian12, Nektar::LocalRegions::eMetricLaplacian22, Nektar::LocalRegions::eMetricQuadrature, Nektar::SpatialDomains::eMovingRegular, Nektar::SpatialDomains::eRegular, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetCoordim(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

1601  {
1602  if (m_metrics.count(eMetricQuadrature) == 0)
1603  {
1605  }
1606 
1607  unsigned int i, j;
1608  const SpatialDomains::GeomType type = m_metricinfo->GetGtype();
1609  const unsigned int nqtot = GetTotPoints();
1610  const unsigned int dim = 2;
1614  };
1615 
1616  Array<OneD, NekDouble> dEta_dXi[2] = {Array<OneD, NekDouble>(nqtot,1.0),
1617  Array<OneD, NekDouble>(nqtot,1.0)};
1618 
1619  for (i = 0; i < dim; ++i)
1620  {
1621  for (j = i; j < dim; ++j)
1622  {
1623  m_metrics[m[i][j]] = Array<OneD, NekDouble>(nqtot);
1624  }
1625  }
1626 
1627  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
1628  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
1629  const unsigned int nquad0 = m_base[0]->GetNumPoints();
1630  const unsigned int nquad1 = m_base[1]->GetNumPoints();
1631  const Array<TwoD, const NekDouble>& df =
1632  m_metricinfo->GetDerivFactors(GetPointsKeys());
1633 
1634  for(i = 0; i < nquad1; i++)
1635  {
1636  Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[0][0]+i*nquad0,1);
1637  Blas::Dscal(nquad0,2.0/(1-z1[i]),&dEta_dXi[1][0]+i*nquad0,1);
1638  }
1639  for(i = 0; i < nquad0; i++)
1640  {
1641  Blas::Dscal(nquad1,0.5*(1+z0[i]),&dEta_dXi[1][0]+i,nquad0);
1642  }
1643 
1644  Array<OneD, NekDouble> tmp(nqtot);
1645  if((type == SpatialDomains::eRegular ||
1647  {
1648  Vmath::Smul (nqtot,df[0][0],&dEta_dXi[0][0],1,&tmp[0],1);
1649  Vmath::Svtvp(nqtot,df[1][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1650 
1651  Vmath::Vmul (nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1);
1652  Vmath::Smul (nqtot,df[1][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1);
1653 
1654 
1655  Vmath::Smul (nqtot,df[2][0],&dEta_dXi[0][0],1,&tmp[0],1);
1656  Vmath::Svtvp(nqtot,df[3][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1657 
1658  Vmath::Vvtvp(nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1659  Vmath::Svtvp(nqtot,df[3][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1660 
1661  if(GetCoordim() == 3)
1662  {
1663  Vmath::Smul (nqtot,df[4][0],&dEta_dXi[0][0],1,&tmp[0],1);
1664  Vmath::Svtvp(nqtot,df[5][0],&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1665 
1666  Vmath::Vvtvp(nqtot,&tmp[0],1, &tmp[0],1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1667  Vmath::Svtvp(nqtot,df[5][0],&tmp[0],1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1668  }
1669 
1670  NekDouble g2 = df[1][0]*df[1][0] + df[3][0]*df[3][0];
1671  if(GetCoordim() == 3)
1672  {
1673  g2 += df[5][0]*df[5][0];
1674  }
1675  Vmath::Fill(nqtot,g2,&m_metrics[eMetricLaplacian11][0],1);
1676  }
1677  else
1678  {
1679 
1680  Vmath::Vmul (nqtot,&df[0][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1681  Vmath::Vvtvp(nqtot,&df[1][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1682 
1683  Vmath::Vmul (nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1);
1684  Vmath::Vmul (nqtot,&df[1][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1);
1685  Vmath::Vmul (nqtot,&df[1][0],1,&df[1][0],1,&m_metrics[eMetricLaplacian11][0],1);
1686 
1687 
1688  Vmath::Vmul (nqtot,&df[2][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1689  Vmath::Vvtvp(nqtot,&df[3][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1690 
1691  Vmath::Vvtvp(nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1692  Vmath::Vvtvp(nqtot,&df[3][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1693  Vmath::Vvtvp(nqtot,&df[3][0],1,&df[3][0],1,&m_metrics[eMetricLaplacian11][0],1,&m_metrics[eMetricLaplacian11][0],1);
1694 
1695  if(GetCoordim() == 3)
1696  {
1697  Vmath::Vmul (nqtot,&df[4][0],1,&dEta_dXi[0][0],1,&tmp[0],1);
1698  Vmath::Vvtvp(nqtot,&df[5][0],1,&dEta_dXi[1][0],1,&tmp[0],1,&tmp[0],1);
1699 
1700  Vmath::Vvtvp(nqtot,&tmp[0], 1,&tmp[0], 1,&m_metrics[eMetricLaplacian00][0],1,&m_metrics[eMetricLaplacian00][0],1);
1701  Vmath::Vvtvp(nqtot,&df[5][0],1,&tmp[0], 1,&m_metrics[eMetricLaplacian01][0],1,&m_metrics[eMetricLaplacian01][0],1);
1702  Vmath::Vvtvp(nqtot,&df[5][0],1,&df[5][0],1,&m_metrics[eMetricLaplacian11][0],1,&m_metrics[eMetricLaplacian11][0],1);
1703  }
1704  }
1705 
1706  for (unsigned int i = 0; i < dim; ++i)
1707  {
1708  for (unsigned int j = i; j < dim; ++j)
1709  {
1711  m_metrics[m[i][j]]);
1712 
1713  }
1714  }
1715  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Geometry is straight-sided with constant geometric factors.
GeomType
Indicates the type of element geometry.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
DNekMatSharedPtr Nektar::LocalRegions::TriExp::v_CreateStdMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1056 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

1057  {
1058  LibUtilities::BasisKey bkey0 = m_base[0]->GetBasisKey();
1059  LibUtilities::BasisKey bkey1 = m_base[1]->GetBasisKey();
1061  AllocateSharedPtr(bkey0,bkey1);
1062 
1063  return tmp->GetStdMatrix(mkey);
1064  }
boost::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:267
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_DropLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1460 of file TriExp.cpp.

References m_staticCondMatrixManager.

1461  {
1462  m_staticCondMatrixManager.DeleteObject(mkey);
1463  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
void Nektar::LocalRegions::TriExp::v_ExtractDataToCoeffs ( const NekDouble data,
const std::vector< unsigned int > &  nummodes,
const int  nmode_offset,
NekDouble coeffs 
)
protectedvirtual

Unpack data from input file assuming it comes from the same expansion type.

See also
StdExpansion::ExtractDataToCoeffs

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 973 of file TriExp.cpp.

References ASSERTL0, ASSERTL1, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vcopy(), and Vmath::Zero().

975  {
976  int data_order0 = nummodes[mode_offset];
977  int fillorder0 = min(m_base[0]->GetNumModes(),data_order0);
978  int data_order1 = nummodes[mode_offset+1];
979  int order1 = m_base[1]->GetNumModes();
980  int fillorder1 = min(order1,data_order1);
981 
982  switch(m_base[0]->GetBasisType())
983  {
985  {
986  int i;
987  int cnt = 0;
988  int cnt1 = 0;
989 
991  "Extraction routine not set up for this basis");
992 
993  Vmath::Zero(m_ncoeffs,coeffs,1);
994  for(i = 0; i < fillorder0; ++i)
995  {
996  Vmath::Vcopy(fillorder1-i,&data[cnt],1,&coeffs[cnt1],1);
997  cnt += data_order1-i;
998  cnt1 += order1-i;
999  }
1000  }
1001  break;
1002  default:
1003  ASSERTL0(false,"basis is either not set up or not hierarchicial");
1004  }
1005  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Principle Modified Functions .
Definition: BasisType.h:49
Principle Modified Functions .
Definition: BasisType.h:50
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:359
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TriExp::v_FwdTrans ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Transform a given function from physical quadrature space to coefficient space.

See also
StdExpansion::FwdTrans

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 244 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::eCopy, Nektar::StdRegions::eInvMass, Nektar::eWrapper, Nektar::StdRegions::StdExpansion::IProductWRTBase(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

246  {
247  IProductWRTBase(inarray,outarray);
248 
249  // get Mass matrix inverse
250  MatrixKey masskey(StdRegions::eInvMass,
251  DetShapeType(),*this);
252  DNekScalMatSharedPtr matsys = m_matrixManager[masskey];
253 
254  // copy inarray in case inarray == outarray
255  NekVector<NekDouble> in (m_ncoeffs,outarray,eCopy);
256  NekVector<NekDouble> out(m_ncoeffs,outarray,eWrapper);
257 
258  out = (*matsys)*in;
259  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
void Nektar::LocalRegions::TriExp::v_FwdTrans_BndConstrained ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 262 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eBackwards, Nektar::StdRegions::eForwards, Nektar::LibUtilities::eGaussLobattoLegendre, Nektar::StdRegions::eMass, Nektar::StdRegions::StdExpansion::GetEdgeToElementMap(), Nektar::LocalRegions::Expansion2D::GetGeom2D(), Nektar::StdRegions::StdExpansion::GetInteriorMap(), Nektar::StdRegions::StdExpansion::GetPointsType(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, m_staticCondMatrixManager, Nektar::StdRegions::StdExpansion::MassMatrixOp(), Nektar::StdRegions::StdExpansion::NumBndryCoeffs(), sign, and Vmath::Vsub().

264  {
265  int i,j;
266  int npoints[2] = {m_base[0]->GetNumPoints(),
267  m_base[1]->GetNumPoints()};
268  int nmodes[2] = {m_base[0]->GetNumModes(),
269  m_base[1]->GetNumModes()};
270 
271  fill(outarray.get(), outarray.get()+m_ncoeffs, 0.0 );
272 
273  Array<OneD, NekDouble> physEdge[3];
274  Array<OneD, NekDouble> coeffEdge[3];
275  for(i = 0; i < 3; i++)
276  {
277  // define physEdge and add 1 so can interpolate grl10 points if necessary
278  physEdge[i] = Array<OneD, NekDouble>(max(npoints[i!=0],npoints[0]));
279  coeffEdge[i] = Array<OneD, NekDouble>(nmodes[i!=0]);
280  }
281 
282  for(i = 0; i < npoints[0]; i++)
283  {
284  physEdge[0][i] = inarray[i];
285  }
286 
287  // extract data in cartesian directions
288  for(i = 0; i < npoints[1]; i++)
289  {
290  physEdge[1][i] = inarray[npoints[0]-1+i*npoints[0]];
291  physEdge[2][i] = inarray[i*npoints[0]];
292  }
293 
294  SegExpSharedPtr segexp[3];
295  segexp[0] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[0]->GetBasisKey(),GetGeom2D()->GetEdge(0));
296 
298  {
299  for(i = 1; i < 3; i++)
300  {
301  segexp[i] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[i!=0]->GetBasisKey(),GetGeom2D()->GetEdge(i));
302  }
303  }
304  else // interploate using edge 0 GLL distribution
305  {
306  for(i = 1; i < 3; i++)
307  {
308  segexp[i] = MemoryManager<LocalRegions::SegExp>::AllocateSharedPtr(m_base[0]->GetBasisKey(),GetGeom2D()->GetEdge(i));
309 
310  LibUtilities::Interp1D(m_base[1]->GetPointsKey(),physEdge[i],
311  m_base[0]->GetPointsKey(),physEdge[i]);
312  }
313  npoints[1] = npoints[0];
314  }
315 
316 
317  Array<OneD, unsigned int> mapArray;
318  Array<OneD, int> signArray;
319  NekDouble sign;
320  // define an orientation to get EdgeToElmtMapping from Cartesian data
323 
324  for(i = 0; i < 3; i++)
325  {
326  segexp[i]->FwdTrans_BndConstrained(physEdge[i],coeffEdge[i]);
327 
328  // this orient goes with the one above and so could
329  // probably set both to eForwards
330  GetEdgeToElementMap(i,orient[i],mapArray,signArray);
331  for(j=0; j < nmodes[i!=0]; j++)
332  {
333  sign = (NekDouble) signArray[j];
334  outarray[ mapArray[j] ] = sign * coeffEdge[i][j];
335  }
336  }
337 
338  int nBoundaryDofs = NumBndryCoeffs();
339  int nInteriorDofs = m_ncoeffs - nBoundaryDofs;
340 
341  if (nInteriorDofs > 0) {
342  Array<OneD, NekDouble> tmp0(m_ncoeffs);
343  Array<OneD, NekDouble> tmp1(m_ncoeffs);
344 
345  StdRegions::StdMatrixKey stdmasskey(StdRegions::eMass,DetShapeType(),*this);
346  MassMatrixOp(outarray,tmp0,stdmasskey);
347  IProductWRTBase(inarray,tmp1);
348 
349  Vmath::Vsub(m_ncoeffs, tmp1, 1, tmp0, 1, tmp1, 1);
350 
351  // get Mass matrix inverse (only of interior DOF)
352  // use block (1,1) of the static condensed system
353  // note: this block alreay contains the inverse matrix
354  MatrixKey masskey(StdRegions::eMass,DetShapeType(),*this);
355  DNekScalMatSharedPtr matsys = (m_staticCondMatrixManager[masskey])->GetBlock(1,1);
356 
357  Array<OneD, NekDouble> rhs(nInteriorDofs);
358  Array<OneD, NekDouble> result(nInteriorDofs);
359 
360  GetInteriorMap(mapArray);
361 
362  for(i = 0; i < nInteriorDofs; i++)
363  {
364  rhs[i] = tmp1[ mapArray[i] ];
365  }
366 
367  Blas::Dgemv('N', nInteriorDofs, nInteriorDofs, matsys->Scale(), &((matsys->GetOwnedMatrix())->GetPtr())[0],
368  nInteriorDofs,rhs.get(),1,0.0,result.get(),1);
369 
370  for(i = 0; i < nInteriorDofs; i++)
371  {
372  outarray[ mapArray[i] ] = result[i];
373  }
374  }
375  }
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
void MassMatrixOp(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
Definition: StdExpansion.h:971
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
#define sign(a, b)
return the sign(b)*a
Definition: Polylib.cpp:22
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
boost::shared_ptr< SegExp > SegExpSharedPtr
Definition: SegExp.h:266
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:269
void GetInteriorMap(Array< OneD, unsigned int > &outarray)
Definition: StdExpansion.h:821
double NekDouble
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:329
void GetEdgeToElementMap(const int eid, const Orientation edgeOrient, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, int P=-1)
Definition: StdExpansion.h:846
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
LibUtilities::PointsType GetPointsType(const int dir) const
This function returns the type of quadrature points used in the dir direction.
Definition: StdExpansion.h:216
Array< OneD, LibUtilities::BasisSharedPtr > m_base
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:50
void Nektar::LocalRegions::TriExp::v_GeneralMatrixOp_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1525 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::GetLocMatrix(), Nektar::StdRegions::StdExpansion::m_ncoeffs, and Vmath::Vcopy().

1528  {
1529  DNekScalMatSharedPtr mat = GetLocMatrix(mkey);
1530 
1531  if(inarray.get() == outarray.get())
1532  {
1533  Array<OneD,NekDouble> tmp(m_ncoeffs);
1534  Vmath::Vcopy(m_ncoeffs,inarray.get(),1,tmp.get(),1);
1535 
1536  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1537  m_ncoeffs, tmp.get(), 1, 0.0, outarray.get(), 1);
1538  }
1539  else
1540  {
1541  Blas::Dgemv('N',m_ncoeffs,m_ncoeffs,mat->Scale(),(mat->GetOwnedMatrix())->GetPtr().get(),
1542  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
1543  }
1544  }
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
DNekScalMatSharedPtr GetLocMatrix(const LocalRegions::MatrixKey &mkey)
Definition: Expansion.cpp:83
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
DNekMatSharedPtr Nektar::LocalRegions::TriExp::v_GenMatrix ( const StdRegions::StdMatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1033 of file TriExp.cpp.

References Nektar::StdRegions::eHybridDGHelmBndLam, Nektar::StdRegions::eHybridDGHelmholtz, Nektar::StdRegions::eHybridDGLamToQ0, Nektar::StdRegions::eHybridDGLamToQ1, Nektar::StdRegions::eHybridDGLamToQ2, Nektar::StdRegions::eHybridDGLamToU, Nektar::StdRegions::eInvLaplacianWithUnityMean, Nektar::StdRegions::StdMatrixKey::GetMatrixType(), and Nektar::LocalRegions::Expansion2D::v_GenMatrix().

1034  {
1035  DNekMatSharedPtr returnval;
1036  switch(mkey.GetMatrixType())
1037  {
1045  returnval = Expansion2D::v_GenMatrix(mkey);
1046  break;
1047  default:
1048  returnval = StdTriExp::v_GenMatrix(mkey);
1049  break;
1050  }
1051 
1052  return returnval;
1053  }
boost::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:70
virtual DNekMatSharedPtr v_GenMatrix(const StdRegions::StdMatrixKey &mkey)
const LibUtilities::BasisSharedPtr & Nektar::LocalRegions::TriExp::v_GetBasis ( int  dir) const
protectedvirtual

Definition at line 1020 of file TriExp.cpp.

References ASSERTL1, and Nektar::StdRegions::StdExpansion::m_base.

1021  {
1022  ASSERTL1(dir >= 0 &&dir <= 1,"input dir is out of range");
1023  return m_base[dir];
1024  }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
StdRegions::Orientation Nektar::LocalRegions::TriExp::v_GetCartesianEorient ( int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1014 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion2D::GetGeom2D().

1015  {
1016  return GetGeom2D()->GetCartesianEorient(edge);
1017  }
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:269
void Nektar::LocalRegions::TriExp::v_GetCoord ( const Array< OneD, const NekDouble > &  Lcoords,
Array< OneD, NekDouble > &  coords 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 585 of file TriExp.cpp.

References ASSERTL1, and Nektar::LocalRegions::Expansion::m_geom.

587  {
588  int i;
589 
590  ASSERTL1(Lcoords[0] >= -1.0 && Lcoords[1] <= 1.0 &&
591  Lcoords[1] >= -1.0 && Lcoords[1] <=1.0,
592  "Local coordinates are not in region [-1,1]");
593 
594  m_geom->FillGeom();
595 
596  for(i = 0; i < m_geom->GetCoordim(); ++i)
597  {
598  coords[i] = m_geom->GetCoord(i,Lcoords);
599  }
600  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
int Nektar::LocalRegions::TriExp::v_GetCoordim ( void  )
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion2D.

Definition at line 967 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::m_geom.

968  {
969  return m_geom->GetCoordim();
970  }
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::TriExp::v_GetCoords ( Array< OneD, NekDouble > &  coords_1,
Array< OneD, NekDouble > &  coords_2,
Array< OneD, NekDouble > &  coords_3 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 602 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion::v_GetCoords().

606  {
607  Expansion::v_GetCoords(coords_0, coords_1, coords_2);
608  }
virtual void v_GetCoords(Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2, Array< OneD, NekDouble > &coords_3)
Definition: Expansion.cpp:211
void Nektar::LocalRegions::TriExp::v_GetEdgeInterpVals ( const int  edge,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 745 of file TriExp.cpp.

References ASSERTL0.

748  {
749  ASSERTL0(false,
750  "Routine not implemented for triangular elements");
751  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
void Nektar::LocalRegions::TriExp::v_GetEdgePhysMap ( const int  edge,
Array< OneD, int > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 763 of file TriExp.cpp.

References ASSERTL0, and Nektar::StdRegions::StdExpansion::m_base.

766  {
767  int nquad0 = m_base[0]->GetNumPoints();
768  int nquad1 = m_base[1]->GetNumPoints();
769 
770  // Get points in Cartesian orientation
771  switch (edge)
772  {
773  case 0:
774  outarray = Array<OneD, int>(nquad0);
775  for (int i = 0; i < nquad0; ++i)
776  {
777  outarray[i] = i;
778  }
779  break;
780  case 1:
781  outarray = Array<OneD, int>(nquad1);
782  for (int i = 0; i < nquad1; ++i)
783  {
784  outarray[i] = (nquad0-1) + i * nquad0;
785  }
786  break;
787  case 2:
788  outarray = Array<OneD, int>(nquad1);
789  for (int i = 0; i < nquad1; ++i)
790  {
791  outarray[i] = i*nquad0;
792  }
793  break;
794  default:
795  ASSERTL0(false, "edge value (< 3) is out of range");
796  break;
797  }
798 
799  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_GetEdgePhysVals ( const int  edge,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Extract the physical values along edge edge from inarray into outarray following the local edge orientation and point distribution defined by defined in EdgeExp.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 645 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eForwards, Nektar::StdRegions::StdExpansion::GetEorient(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by v_GetTracePhysVals().

649  {
650  int nquad0 = m_base[0]->GetNumPoints();
651  int nquad1 = m_base[1]->GetNumPoints();
652 
653  StdRegions::Orientation edgedir = GetEorient(edge);
654  switch(edge)
655  {
656  case 0:
657  if (edgedir == StdRegions::eForwards)
658  {
659  Vmath::Vcopy(nquad0,&(inarray[0]),1,&(outarray[0]),1);
660  }
661  else
662  {
663  Vmath::Vcopy(nquad0,&(inarray[0])+(nquad0-1),-1,
664  &(outarray[0]),1);
665  }
666  break;
667  case 1:
668  if (edgedir == StdRegions::eForwards)
669  {
670  Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0-1),nquad0,
671  &(outarray[0]),1);
672  }
673  else
674  {
675  Vmath::Vcopy(nquad1,&(inarray[0])+(nquad0*nquad1-1),
676  -nquad0, &(outarray[0]),1);
677  }
678  break;
679  case 2:
680  if (edgedir == StdRegions::eForwards)
681  {
682  Vmath::Vcopy(nquad1,&(inarray[0]) + nquad0*(nquad1-1),
683  -nquad0,&(outarray[0]),1);
684  }
685  else
686  {
687  Vmath::Vcopy(nquad1,&(inarray[0]),nquad0,
688  &(outarray[0]),1);
689  }
690  break;
691  default:
692  ASSERTL0(false,"edge value (< 3) is out of range");
693  break;
694  }
695  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
StdRegions::Orientation GetEorient(int edge)
Definition: StdExpansion.h:762
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TriExp::v_GetEdgePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Definition at line 697 of file TriExp.cpp.

References ASSERTL0, Nektar::StdRegions::eBackwards, Nektar::StdRegions::StdExpansion::GetCartesianEorient(), Nektar::LibUtilities::Interp1D(), Nektar::StdRegions::StdExpansion::m_base, Vmath::Reverse(), and Vmath::Vcopy().

700  {
701  int nquad0 = m_base[0]->GetNumPoints();
702  int nquad1 = m_base[1]->GetNumPoints();
703 
704  // get points in Cartesian orientation
705  switch(edge)
706  {
707  case 0:
708  Vmath::Vcopy(nquad0, &(inarray[0]), 1, &(outarray[0]), 1);
709  break;
710  case 1:
711  Vmath::Vcopy(nquad1, &(inarray[0])+(nquad0-1),
712  nquad0, &(outarray[0]), 1);
713  break;
714  case 2:
715  Vmath::Vcopy(nquad1, &(inarray[0]), nquad0, &(outarray[0]), 1);
716  break;
717  default:
718  ASSERTL0(false,"edge value (< 3) is out of range");
719  break;
720  }
721 
722  // Interpolate if required
723  if(m_base[edge?1:0]->GetPointsKey() != EdgeExp->GetBasis(0)->GetPointsKey())
724  {
725  Array<OneD,NekDouble> outtmp(max(nquad0,nquad1));
726 
727  outtmp = outarray;
728 
729  LibUtilities::Interp1D(m_base[edge?1:0]->GetPointsKey(),
730  outtmp,
731  EdgeExp->GetBasis(0)->GetPointsKey(),
732  outarray);
733  }
734 
735  //Reverse data if necessary
737  {
738  Vmath::Reverse(EdgeExp->GetNumPoints(0),&outarray[0],1,
739  &outarray[0],1);
740  }
741 
742  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
StdRegions::Orientation GetCartesianEorient(int edge)
Definition: StdExpansion.h:772
void Reverse(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1071
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
Definition: Interp.cpp:54
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1047
void Nektar::LocalRegions::TriExp::v_GetEdgeQFactors ( const int  edge,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 753 of file TriExp.cpp.

References ASSERTL0.

756  {
757  ASSERTL0(false,
758  "Routine not implemented for triangular elements");
759  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
StdRegions::Orientation Nektar::LocalRegions::TriExp::v_GetEorient ( int  edge)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1008 of file TriExp.cpp.

References Nektar::LocalRegions::Expansion2D::GetGeom2D().

1009  {
1010  return GetGeom2D()->GetEorient(edge);
1011  }
SpatialDomains::Geometry2DSharedPtr GetGeom2D() const
Definition: Expansion2D.h:269
DNekScalMatSharedPtr Nektar::LocalRegions::TriExp::v_GetLocMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::LocalRegions::Expansion.

Definition at line 1449 of file TriExp.cpp.

References m_matrixManager.

1450  {
1451  return m_matrixManager[mkey];
1452  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
DNekScalBlkMatSharedPtr Nektar::LocalRegions::TriExp::v_GetLocStaticCondMatrix ( const MatrixKey mkey)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1455 of file TriExp.cpp.

References m_staticCondMatrixManager.

1456  {
1457  return m_staticCondMatrixManager[mkey];
1458  }
LibUtilities::NekManager< MatrixKey, DNekScalBlkMat, MatrixKey::opLess > m_staticCondMatrixManager
Definition: TriExp.h:285
int Nektar::LocalRegions::TriExp::v_GetNumPoints ( const int  dir) const
protectedvirtual

Definition at line 1027 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::GetNumPoints().

1028  {
1029  return GetNumPoints(dir);
1030  }
int GetNumPoints(const int dir) const
This function returns the number of quadrature points in the dir direction.
Definition: StdExpansion.h:229
StdRegions::StdExpansionSharedPtr Nektar::LocalRegions::TriExp::v_GetStdExp ( void  ) const
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 577 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::StdRegions::StdExpansion::m_base.

578  {
579 
581  ::AllocateSharedPtr(m_base[0]->GetBasisKey(),
582  m_base[1]->GetBasisKey());
583  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_GetTracePhysVals ( const int  edge,
const StdRegions::StdExpansionSharedPtr EdgeExp,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
StdRegions::Orientation  orient 
)
protectedvirtual

Definition at line 635 of file TriExp.cpp.

References v_GetEdgePhysVals().

641  {
642  v_GetEdgePhysVals(edge,EdgeExp,inarray,outarray);
643  }
virtual void v_GetEdgePhysVals(const int edge, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Extract the physical values along edge edge from inarray into outarray following the local edge orien...
Definition: TriExp.cpp:645
void Nektar::LocalRegions::TriExp::v_HelmholtzMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1517 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree().

1520  {
1521  TriExp::HelmholtzMatrixOp_MatFree(inarray,outarray,mkey);
1522  }
void HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
NekDouble Nektar::LocalRegions::TriExp::v_Integral ( const Array< OneD, const NekDouble > &  inarray)
protectedvirtual

Integrates the specified function over the domain.

See also
StdRegions::StdExpansion::Integral.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 82 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), and Vmath::Vmul().

83  {
84  int nquad0 = m_base[0]->GetNumPoints();
85  int nquad1 = m_base[1]->GetNumPoints();
86  Array<OneD, const NekDouble> jac = m_metricinfo->GetJac(GetPointsKeys());
87  NekDouble ival;
88  Array<OneD,NekDouble> tmp(nquad0*nquad1);
89 
90  // multiply inarray with Jacobian
91  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
92  {
93  Vmath::Vmul(nquad0*nquad1, jac, 1, inarray, 1,tmp, 1);
94  }
95  else
96  {
97  Vmath::Smul(nquad0*nquad1, jac[0], inarray, 1, tmp, 1);
98  }
99 
100  // call StdQuadExp version;
101  ival = StdTriExp::v_Integral(tmp);
102  return ival;
103  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
double NekDouble
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_IProductWRTBase ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Calculate the inner product of inarray with respect to the basis B=base0[p]*base1[pq] and put into outarray.

$ \begin{array}{rcl} I_{pq} = (\phi^A_q \phi^B_{pq}, u) &=& \sum_{i=0}^{nq_0}\sum_{j=0}^{nq_1} \phi^A_p(\eta_{0,i})\phi^B_{pq}(\eta_{1,j}) w^0_i w^1_j u(\xi_{0,i} \xi_{1,j}) \\ & = & \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i}) \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) \tilde{u}_{i,j} \end{array} $

where

$ \tilde{u}_{i,j} = w^0_i w^1_j u(\xi_{0,i},\xi_{1,j}) $

which can be implemented as

$ f_{pj} = \sum_{i=0}^{nq_0} \phi^A_p(\eta_{0,i}) \tilde{u}_{i,j} \rightarrow {\bf B_1 U} $ $ I_{pq} = \sum_{j=0}^{nq_1} \phi^B_{pq}(\eta_{1,j}) f_{pj} \rightarrow {\bf B_2[p*skip] f[skip]} $

Recall: $ \eta_{1} = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \, \eta_2 = \xi_2$

Note: For the orthgonality of this expansion to be realised the 'q' ordering must run fastest in contrast to the Quad and Hex ordering where 'p' index runs fastest to be consistent with the quadrature ordering.

In the triangular space the i (i.e. $\eta_1$ direction) ordering still runs fastest by convention.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 378 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTBase_SumFac().

380  {
381  IProductWRTBase_SumFac(inarray,outarray);
382  }
void IProductWRTBase_SumFac(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
void Nektar::LocalRegions::TriExp::v_IProductWRTBase_MatOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 419 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTBase, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

421  {
422  int nq = GetTotPoints();
423  MatrixKey iprodmatkey(StdRegions::eIProductWRTBase,DetShapeType(),*this);
424  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
425 
426  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
427  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
428 
429  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
void Nektar::LocalRegions::TriExp::v_IProductWRTBase_SumFac ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  multiplybyweights = true 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 393 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric().

396  {
397  int nquad0 = m_base[0]->GetNumPoints();
398  int nquad1 = m_base[1]->GetNumPoints();
399  int order0 = m_base[0]->GetNumModes();
400 
401  if(multiplybyweights)
402  {
403  Array<OneD,NekDouble> tmp(nquad0*nquad1+nquad1*order0);
404  Array<OneD,NekDouble> wsp(tmp+nquad0*nquad1);
405 
406  MultiplyByQuadratureMetric(inarray,tmp);
407  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),m_base[1]->GetBdata(),tmp,outarray,wsp);
408  }
409  else
410  {
411  Array<OneD,NekDouble> wsp(+nquad1*order0);
412 
413  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),m_base[1]->GetBdata(),
414  inarray,outarray,wsp);
415  }
416  }
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 385 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::IProductWRTDerivBase_SumFac().

388  {
389  IProductWRTDerivBase_SumFac(dir,inarray,outarray);
390  }
void IProductWRTDerivBase_SumFac(const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase_MatOp ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 502 of file TriExp.cpp.

References ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eIProductWRTDerivBase0, Nektar::StdRegions::eIProductWRTDerivBase1, Nektar::StdRegions::eIProductWRTDerivBase2, Nektar::StdRegions::StdExpansion::GetTotPoints(), m_matrixManager, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

505  {
506  int nq = GetTotPoints();
508 
509  switch(dir)
510  {
511  case 0:
512  {
514  }
515  break;
516  case 1:
517  {
519  }
520  break;
521  case 2:
522  {
524  }
525  break;
526  default:
527  {
528  ASSERTL1(false,"input dir is out of range");
529  }
530  break;
531  }
532 
533  MatrixKey iprodmatkey(mtype,DetShapeType(),*this);
534  DNekScalMatSharedPtr iprodmat = m_matrixManager[iprodmatkey];
535 
536  Blas::Dgemv('N',m_ncoeffs,nq,iprodmat->Scale(),(iprodmat->GetOwnedMatrix())->GetPtr().get(),
537  m_ncoeffs, inarray.get(), 1, 0.0, outarray.get(), 1);
538 
539  }
LibUtilities::NekManager< MatrixKey, DNekScalMat, MatrixKey::opLess > m_matrixManager
Definition: TriExp.h:284
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:470
boost::shared_ptr< DNekScalMat > DNekScalMatSharedPtr
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::TriExp::v_IProductWRTDerivBase_SumFac ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 432 of file TriExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), Vmath::Smul(), Vmath::Vadd(), and Vmath::Vmul().

435  {
436  ASSERTL1((dir==0)||(dir==1)||(dir==2),"Invalid direction.");
437  ASSERTL1((dir==2)?(m_geom->GetCoordim()==3):true,"Invalid direction.");
438 
439  int i;
440  int nquad0 = m_base[0]->GetNumPoints();
441  int nquad1 = m_base[1]->GetNumPoints();
442  int nqtot = nquad0*nquad1;
443  int nmodes0 = m_base[0]->GetNumModes();
444  int wspsize = max(max(nqtot,m_ncoeffs),nquad1*nmodes0);
445 
446  const Array<TwoD, const NekDouble>& df =
447  m_metricinfo->GetDerivFactors(GetPointsKeys());
448 
449  Array<OneD, NekDouble> tmp0 (6*wspsize);
450  Array<OneD, NekDouble> tmp1 (tmp0 + wspsize);
451  Array<OneD, NekDouble> tmp2 (tmp0 + 2*wspsize);
452  Array<OneD, NekDouble> tmp3 (tmp0 + 3*wspsize);
453  Array<OneD, NekDouble> gfac0(tmp0 + 4*wspsize);
454  Array<OneD, NekDouble> gfac1(tmp0 + 5*wspsize);
455 
456  const Array<OneD, const NekDouble>& z0 = m_base[0]->GetZ();
457  const Array<OneD, const NekDouble>& z1 = m_base[1]->GetZ();
458 
459  // set up geometric factor: 2/(1-z1)
460  for(i = 0; i < nquad1; ++i)
461  {
462  gfac0[i] = 2.0/(1-z1[i]);
463  }
464  for(i = 0; i < nquad0; ++i)
465  {
466  gfac1[i] = 0.5*(1+z0[i]);
467  }
468 
469  for(i = 0; i < nquad1; ++i)
470  {
471  Vmath::Smul(nquad0,gfac0[i],&inarray[0]+i*nquad0,1,&tmp0[0]+i*nquad0,1);
472  }
473 
474  for(i = 0; i < nquad1; ++i)
475  {
476  Vmath::Vmul(nquad0,&gfac1[0],1,&tmp0[0]+i*nquad0,1,&tmp1[0]+i*nquad0,1);
477  }
478 
479  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
480  {
481  Vmath::Vmul(nqtot,&df[2*dir][0], 1,&tmp0[0], 1,&tmp0[0],1);
482  Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&tmp1[0], 1,&tmp1[0],1);
483  Vmath::Vmul(nqtot,&df[2*dir+1][0],1,&inarray[0],1,&tmp2[0],1);
484  }
485  else
486  {
487  Vmath::Smul(nqtot, df[2*dir][0], tmp0, 1, tmp0, 1);
488  Vmath::Smul(nqtot, df[2*dir+1][0], tmp1, 1, tmp1, 1);
489  Vmath::Smul(nqtot, df[2*dir+1][0], inarray, 1, tmp2, 1);
490  }
491  Vmath::Vadd(nqtot, tmp0, 1, tmp1, 1, tmp1, 1);
492 
493  MultiplyByQuadratureMetric(tmp1,tmp1);
494  MultiplyByQuadratureMetric(tmp2,tmp2);
495 
496  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),m_base[1]->GetBdata() ,tmp1,tmp3 ,tmp0);
497  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata() ,m_base[1]->GetDbdata(),tmp2,outarray,tmp0);
498  Vmath::Vadd(m_ncoeffs, tmp3, 1, outarray, 1, outarray, 1);
499  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:942
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1475 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree().

1478  {
1479  TriExp::LaplacianMatrixOp_MatFree(inarray,outarray,mkey);
1480  }
void LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp ( const int  k1,
const int  k2,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1483 of file TriExp.cpp.

1487  {
1488  StdExpansion::LaplacianMatrixOp_MatFree(k1,k2,inarray,outarray,mkey);
1489  }
void Nektar::LocalRegions::TriExp::v_LaplacianMatrixOp_MatFree_Kernel ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1547 of file TriExp.cpp.

References ASSERTL1, Nektar::LocalRegions::Expansion::ComputeLaplacianMetric(), Nektar::LocalRegions::eMetricLaplacian00, Nektar::LocalRegions::eMetricLaplacian01, Nektar::LocalRegions::eMetricLaplacian11, Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metrics, Nektar::StdRegions::StdExpansion::m_ncoeffs, Vmath::Vadd(), and Vmath::Vvtvvtp().

1551  {
1552  if (m_metrics.count(eMetricLaplacian00) == 0)
1553  {
1555  }
1556 
1557  int nquad0 = m_base[0]->GetNumPoints();
1558  int nquad1 = m_base[1]->GetNumPoints();
1559  int nqtot = nquad0*nquad1;
1560  int nmodes0 = m_base[0]->GetNumModes();
1561  int nmodes1 = m_base[1]->GetNumModes();
1562  int wspsize = max(max(max(nqtot,m_ncoeffs),nquad1*nmodes0),nquad0*nmodes1);
1563 
1564  ASSERTL1(wsp.num_elements() >= 3*wspsize,
1565  "Workspace is of insufficient size.");
1566 
1567  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
1568  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
1569  const Array<OneD, const NekDouble>& dbase0 = m_base[0]->GetDbdata();
1570  const Array<OneD, const NekDouble>& dbase1 = m_base[1]->GetDbdata();
1571  const Array<OneD, const NekDouble>& metric00 = m_metrics[eMetricLaplacian00];
1572  const Array<OneD, const NekDouble>& metric01 = m_metrics[eMetricLaplacian01];
1573  const Array<OneD, const NekDouble>& metric11 = m_metrics[eMetricLaplacian11];
1574 
1575  // Allocate temporary storage
1576  Array<OneD,NekDouble> wsp0(wsp);
1577  Array<OneD,NekDouble> wsp1(wsp+wspsize);
1578  Array<OneD,NekDouble> wsp2(wsp+2*wspsize);
1579 
1580  StdExpansion2D::PhysTensorDeriv(inarray,wsp1,wsp2);
1581 
1582  // wsp0 = k = g0 * wsp1 + g1 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1583  // wsp2 = l = g1 * wsp1 + g2 * wsp2 = g0 * du_dxi1 + g1 * du_dxi2
1584  // where g0, g1 and g2 are the metric terms set up in the GeomFactors class
1585  // especially for this purpose
1586  Vmath::Vvtvvtp(nqtot,&metric00[0],1,&wsp1[0],1,&metric01[0],1,&wsp2[0],1,&wsp0[0],1);
1587  Vmath::Vvtvvtp(nqtot,&metric01[0],1,&wsp1[0],1,&metric11[0],1,&wsp2[0],1,&wsp2[0],1);
1588 
1589  // outarray = m = (D_xi1 * B)^T * k
1590  // wsp1 = n = (D_xi2 * B)^T * l
1591  IProductWRTBase_SumFacKernel(dbase0,base1,wsp0,outarray,wsp1);
1592  IProductWRTBase_SumFacKernel(base0,dbase1,wsp2,wsp1, wsp0);
1593 
1594  // outarray = outarray + wsp1
1595  // = L * u_hat
1596  Vmath::Vadd(m_ncoeffs,wsp1.get(),1,outarray.get(),1,outarray.get(),1);
1597  }
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:285
void Nektar::LocalRegions::TriExp::v_MassLevelCurvatureMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1509 of file TriExp.cpp.

1512  {
1513  StdExpansion::MassLevelCurvatureMatrixOp_MatFree(inarray,outarray,mkey);
1514  }
void Nektar::LocalRegions::TriExp::v_MassMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1467 of file TriExp.cpp.

1470  {
1471  StdExpansion::MassMatrixOp_MatFree(inarray,outarray,mkey);
1472  }
void Nektar::LocalRegions::TriExp::v_NormVectorIProductWRTBase ( const Array< OneD, const NekDouble > &  Fx,
const Array< OneD, const NekDouble > &  Fy,
const Array< OneD, const NekDouble > &  Fz,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 541 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::LocalRegions::Expansion2D::GetLeftAdjacentElementExp(), Nektar::LocalRegions::Expansion2D::GetLeftAdjacentElementFace(), Nektar::StdRegions::StdExpansion::IProductWRTBase(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Svtsvtp(), Vmath::Svtvp(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

546  {
547  int nq = m_base[0]->GetNumPoints()*m_base[1]->GetNumPoints();
548  Array<OneD, NekDouble > Fn(nq);
549 
550  const Array<OneD, const Array<OneD, NekDouble> > &normals =
551  GetLeftAdjacentElementExp()->GetFaceNormal(
553 
554  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
555  {
556  Vmath::Vvtvvtp(nq,&normals[0][0],1,&Fx[0],1,
557  &normals[1][0],1,&Fy[0],1,&Fn[0],1);
558  Vmath::Vvtvp (nq,&normals[2][0],1,&Fz[0],1,&Fn[0],1,&Fn[0],1);
559  }
560  else
561  {
562  Vmath::Svtsvtp(nq,normals[0][0],&Fx[0],1,
563  normals[1][0],&Fy[0],1,&Fn[0],1);
564  Vmath::Svtvp (nq,normals[2][0],&Fz[0],1,&Fn[0],1,&Fn[0],1);
565  }
566 
567  IProductWRTBase(Fn,outarray);
568  }
void IProductWRTBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
this function calculates the inner product of a given function f with the different modes of the expa...
Definition: StdExpansion.h:629
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:471
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
Expansion3DSharedPtr GetLeftAdjacentElementExp() const
Definition: Expansion2D.h:223
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:523
void Svtsvtp(int n, const T alpha, const T *x, int incx, const T beta, const T *y, int incy, T *z, int incz)
vvtvvtp (scalar times vector plus scalar times vector):
Definition: Vmath.cpp:577
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Nektar::LocalRegions::TriExp::v_NormVectorIProductWRTBase ( const Array< OneD, const Array< OneD, NekDouble > > &  Fvec,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 570 of file TriExp.cpp.

References Nektar::StdRegions::StdExpansion::NormVectorIProductWRTBase().

573  {
574  NormVectorIProductWRTBase(Fvec[0], Fvec[1], Fvec[2], outarray);
575  }
void NormVectorIProductWRTBase(const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:727
void Nektar::LocalRegions::TriExp::v_PhysDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0,
Array< OneD, NekDouble > &  out_d1,
Array< OneD, NekDouble > &  out_d2 = NullNekDouble1DArray 
)
protectedvirtual

Calculate the derivative of the physical points.

$ \frac{\partial u}{\partial x_1} = \left . \frac{2.0}{1-\eta_2} \frac{\partial u}{\partial d\eta_1} \right |_{\eta_2}$

$ \frac{\partial u}{\partial x_2} = \left . \frac{1+\eta_1}{1-\eta_2} \frac{\partial u}{\partial d\eta_1} \right |_{\eta_2} + \left . \frac{\partial u}{\partial d\eta_2} \right |_{\eta_1} $

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 106 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Smul(), Vmath::Vmul(), and Vmath::Vvtvp().

110  {
111  int nquad0 = m_base[0]->GetNumPoints();
112  int nquad1 = m_base[1]->GetNumPoints();
113  int nqtot = nquad0*nquad1;
114  const Array<TwoD, const NekDouble>& df
115  = m_metricinfo->GetDerivFactors(GetPointsKeys());
116 
117  Array<OneD,NekDouble> diff0(2*nqtot);
118  Array<OneD,NekDouble> diff1(diff0+nqtot);
119 
120  StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
121 
122  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
123  {
124  if(out_d0.num_elements())
125  {
126  Vmath::Vmul (nqtot,df[0],1,diff0,1, out_d0, 1);
127  Vmath::Vvtvp (nqtot,df[1],1,diff1,1, out_d0, 1, out_d0,1);
128  }
129 
130  if(out_d1.num_elements())
131  {
132  Vmath::Vmul (nqtot,df[2],1,diff0,1, out_d1, 1);
133  Vmath::Vvtvp (nqtot,df[3],1,diff1,1, out_d1, 1, out_d1,1);
134  }
135 
136  if(out_d2.num_elements())
137  {
138  Vmath::Vmul (nqtot,df[4],1,diff0,1, out_d2, 1);
139  Vmath::Vvtvp (nqtot,df[5],1,diff1,1, out_d2, 1, out_d2,1);
140  }
141  }
142  else // regular geometry
143  {
144  if(out_d0.num_elements())
145  {
146  Vmath::Smul (nqtot, df[0][0], diff0, 1, out_d0, 1);
147  Blas::Daxpy (nqtot, df[1][0], diff1, 1, out_d0, 1);
148  }
149 
150  if(out_d1.num_elements())
151  {
152  Vmath::Smul (nqtot, df[2][0], diff0, 1, out_d1, 1);
153  Blas::Daxpy (nqtot, df[3][0], diff1, 1, out_d1, 1);
154  }
155 
156  if(out_d2.num_elements())
157  {
158  Vmath::Smul (nqtot, df[4][0], diff0, 1, out_d2, 1);
159  Blas::Daxpy (nqtot, df[5][0], diff1, 1, out_d2, 1);
160  }
161  }
162  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:199
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_PhysDeriv ( const int  dir,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  out_d0 
)
protectedvirtual

Calculate the derivative of the physical points in a given direction.

See also
StdRegions::StdExpansion::PhysDeriv

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 165 of file TriExp.cpp.

References ASSERTL1, Nektar::NullNekDouble1DArray, and Nektar::StdRegions::StdExpansion::PhysDeriv().

168  {
169  switch(dir)
170  {
171  case 0:
172  {
174  }
175  break;
176  case 1:
177  {
179  }
180  break;
181  case 2:
182  {
184  }
185  break;
186  default:
187  {
188  ASSERTL1(false,"input dir is out of range");
189  }
190  break;
191  }
192  }
static Array< OneD, NekDouble > NullNekDouble1DArray
void PhysDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
void Nektar::LocalRegions::TriExp::v_PhysDirectionalDeriv ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  direction,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Physical derivative along a direction vector.

See also
StdRegions::StdExpansion::PhysDirectionalDeriv

D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 194 of file TriExp.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::m_base, Nektar::LocalRegions::Expansion::m_geom, Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vmul(), and Vmath::Vvtvp().

198  {
199  if(! out.num_elements())
200  {
201  return;
202  }
203 
204  int nquad0 = m_base[0]->GetNumPoints();
205  int nquad1 = m_base[1]->GetNumPoints();
206  int nqtot = nquad0*nquad1;
207 
208  const Array<TwoD, const NekDouble>& df =
209  m_metricinfo->GetDerivFactors(GetPointsKeys());
210 
211  Array<OneD,NekDouble> diff0(2*nqtot);
212  Array<OneD,NekDouble> diff1(diff0+nqtot);
213 
214  // diff0 = du/d_xi, diff1 = du/d_eta
215  StdTriExp::v_PhysDeriv(inarray, diff0, diff1);
216 
217  if(m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
218  {
219  Array<OneD, Array<OneD, NekDouble> > tangmat(2);
220 
221 
222  // D^v_xi = v_x*d_xi/dx + v_y*d_xi/dy + v_z*d_xi/dz
223  // D^v_eta = v_x*d_eta/dx + v_y*d_eta/dy + v_z*d_eta/dz
224  for (int i=0; i< 2; ++i)
225  {
226  tangmat[i] = Array<OneD, NekDouble>(nqtot,0.0);
227  for (int k=0; k<(m_geom->GetCoordim()); ++k)
228  {
229  Vmath::Vvtvp(nqtot,&df[2*k+i][0],1,&direction[k*nqtot],1,&tangmat[i][0],1,&tangmat[i][0],1);
230  }
231  }
232 
233  /// D_v = D^v_xi * du/d_xi + D^v_eta * du/d_eta
234  Vmath::Vmul (nqtot,&tangmat[0][0],1,&diff0[0],1, &out[0], 1);
235  Vmath::Vvtvp (nqtot,&tangmat[1][0],1,&diff1[0],1, &out[0], 1, &out[0],1);
236  }
237  else
238  {
239  ASSERTL1(m_metricinfo->GetGtype() == SpatialDomains::eDeformed,"Wrong route");
240  }
241  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:428
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:191
Array< OneD, LibUtilities::BasisSharedPtr > m_base
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
NekDouble Nektar::LocalRegions::TriExp::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

This function is a wrapper around the virtual function v_PhysEvaluate()

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates $ \mathbf{x_c}$ given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array $\mathbf{u}$ (implemented as the attribute #m_phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion2D.

Definition at line 624 of file TriExp.cpp.

References ASSERTL0, and Nektar::LocalRegions::Expansion::m_geom.

625  {
626  Array<OneD,NekDouble> Lcoord = Array<OneD,NekDouble>(2);
627 
628  ASSERTL0(m_geom,"m_geom not defined");
629  m_geom->GetLocCoords(coord,Lcoord);
630 
631  return StdTriExp::v_PhysEvaluate(Lcoord, physvals);
632  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:161
SpatialDomains::GeometrySharedPtr m_geom
Definition: Expansion.h:125
void Nektar::LocalRegions::TriExp::v_ReduceOrderCoeffs ( int  numMin,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray 
)
protectedvirtual

Function is used to compute exactly the advective numerical flux on theinterface of two elements with different expansions, hence an appropriate number of Gauss points has to be used. The number of Gauss points has to be equal to the number used by the highest polynomial degree of the two adjacent elements. Furthermore, this function is used to compute the sensor value in each element.

Parameters
numMinIs the reduced polynomial order
inarrayInput array of coefficients
dumpVarOutput array of reduced coefficients.

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1729 of file TriExp.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::LibUtilities::eOrtho_A, Nektar::LibUtilities::eOrtho_B, Nektar::StdRegions::StdExpansion::GetBasisType(), and Nektar::StdRegions::StdExpansion::m_base.

1733  {
1734  int n_coeffs = inarray.num_elements();
1735  int nquad0 = m_base[0]->GetNumPoints();
1736  int nquad1 = m_base[1]->GetNumPoints();
1737  int nqtot = nquad0*nquad1;
1738  int nmodes0 = m_base[0]->GetNumModes();
1739  int nmodes1 = m_base[1]->GetNumModes();
1740  int numMin2 = nmodes0, i;
1741 
1742  Array<OneD, NekDouble> coeff(n_coeffs,0.0);
1743  Array<OneD, NekDouble> phys_tmp(nqtot,0.0);
1744  Array<OneD, NekDouble> tmp, tmp2;
1745 
1746  const LibUtilities::PointsKey Pkey0 = m_base[0]->GetPointsKey();
1747  const LibUtilities::PointsKey Pkey1 = m_base[1]->GetPointsKey();
1748 
1749  LibUtilities::BasisKey b0(
1750  m_base[0]->GetBasisType(), nmodes0, Pkey0);
1751  LibUtilities::BasisKey b1(
1752  m_base[1]->GetBasisType(), nmodes1, Pkey1);
1753  LibUtilities::BasisKey bortho0(
1754  LibUtilities::eOrtho_A, nmodes0, Pkey0);
1755  LibUtilities::BasisKey bortho1(
1756  LibUtilities::eOrtho_B, nmodes1, Pkey1);
1757 
1758  // Check if it is also possible to use the same InterCoeff routine
1759  // which is also used for Quadrilateral and Hexagonal shaped
1760  // elements
1761 
1762  // For now, set up the used basis on the standard element to
1763  // calculate the phys values, set up the orthogonal basis to do a
1764  // forward transform, to obtain the coefficients in orthogonal
1765  // coefficient space
1766  StdRegions::StdTriExpSharedPtr m_OrthoTriExp;
1768 
1770  ::AllocateSharedPtr(b0, b1);
1771  m_OrthoTriExp = MemoryManager<StdRegions::StdTriExp>
1772  ::AllocateSharedPtr(bortho0, bortho1);
1773 
1774  m_TriExp ->BwdTrans(inarray,phys_tmp);
1775  m_OrthoTriExp->FwdTrans(phys_tmp, coeff);
1776 
1777  for (i = 0; i < n_coeffs; i++)
1778  {
1779  if (i == numMin)
1780  {
1781  coeff[i] = 0.0;
1782  numMin += numMin2 - 1;
1783  numMin2 -= 1.0;
1784  }
1785  }
1786 
1787  m_OrthoTriExp->BwdTrans(coeff,phys_tmp);
1788  m_TriExp ->FwdTrans(phys_tmp, outarray);
1789  }
boost::shared_ptr< StdTriExp > StdTriExpSharedPtr
Definition: StdTriExp.h:267
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
Principle Orthogonal Functions .
Definition: BasisType.h:47
Principle Orthogonal Functions .
Definition: BasisType.h:46
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:165
Array< OneD, LibUtilities::BasisSharedPtr > m_base
NekDouble Nektar::LocalRegions::TriExp::v_StdPhysEvaluate ( const Array< OneD, const NekDouble > &  Lcoord,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Given the local cartesian coordinate Lcoord evaluate the value of physvals at this point by calling through to the StdExpansion method

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 616 of file TriExp.cpp.

619  {
620  // Evaluate point in local (eta) coordinates.
621  return StdTriExp::v_PhysEvaluate(Lcoord,physvals);
622  }
void Nektar::LocalRegions::TriExp::v_SVVLaplacianFilter ( Array< OneD, NekDouble > &  array,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1791 of file TriExp.cpp.

References Nektar::SpatialDomains::eDeformed, Vmath::Fill(), Nektar::StdRegions::StdExpansion::GetPointsKeys(), Nektar::StdRegions::StdExpansion::GetTotPoints(), Nektar::LocalRegions::Expansion::m_metricinfo, Vmath::Vdiv(), Vmath::Vmul(), and Vmath::Vsqrt().

1794  {
1795  int nq = GetTotPoints();
1796 
1797  // Calculate sqrt of the Jacobian
1798  Array<OneD, const NekDouble> jac =
1799  m_metricinfo->GetJac(GetPointsKeys());
1800  Array<OneD, NekDouble> sqrt_jac(nq);
1801  if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed)
1802  {
1803  Vmath::Vsqrt(nq,jac,1,sqrt_jac,1);
1804  }
1805  else
1806  {
1807  Vmath::Fill(nq,sqrt(jac[0]),sqrt_jac,1);
1808  }
1809 
1810  // Multiply array by sqrt(Jac)
1811  Vmath::Vmul(nq,sqrt_jac,1,array,1,array,1);
1812 
1813  // Apply std region filter
1814  StdTriExp::v_SVVLaplacianFilter( array, mkey);
1815 
1816  // Divide by sqrt(Jac)
1817  Vmath::Vdiv(nq,array,1,sqrt_jac,1,array,1);
1818  }
const LibUtilities::PointsKeyVector GetPointsKeys() const
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
Definition: Vmath.cpp:394
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:46
SpatialDomains::GeomFactorsSharedPtr m_metricinfo
Definition: Expansion.h:126
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:227
int GetTotPoints() const
This function returns the total number of quadrature points used in the element.
Definition: StdExpansion.h:141
Geometry is curved or has non-constant factors.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:169
void Nektar::LocalRegions::TriExp::v_WeakDerivMatrixOp ( const int  i,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdTriExp.

Definition at line 1492 of file TriExp.cpp.

1496  {
1497  StdExpansion::WeakDerivMatrixOp_MatFree(i,inarray,outarray,mkey);
1498  }
void Nektar::LocalRegions::TriExp::v_WeakDirectionalDerivMatrixOp ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 1501 of file TriExp.cpp.

1504  {
1505  StdExpansion::WeakDirectionalDerivMatrixOp_MatFree(inarray,outarray,mkey);
1506  }

Member Data Documentation

LibUtilities::NekManager<MatrixKey, DNekScalMat, MatrixKey::opLess> Nektar::LocalRegions::TriExp::m_matrixManager
private
LibUtilities::NekManager<MatrixKey, DNekScalBlkMat, MatrixKey::opLess> Nektar::LocalRegions::TriExp::m_staticCondMatrixManager
private