Nektar++
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Friends | List of all members
Nektar::APE Class Reference

#include <APE.h>

Inheritance diagram for Nektar::APE:
Inheritance graph
[legend]
Collaboration diagram for Nektar::APE:
Collaboration graph
[legend]

Public Member Functions

virtual ~APE ()
 Destructor. More...
 
NekDouble GetCFLEstimate ()
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
boost::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT
LibUtilities::SessionReaderSharedPtr 
GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
 Evaluates a function as specified in the session file. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, Array< OneD, NekDouble > > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::vector< std::string > pFieldNames, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const std::string &pName, const NekDouble &pTime=0.0, const int domain=0)
 Populate given fields with the function from session. More...
 
SOLVER_UTILS_EXPORT void EvaluateFunction (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT std::string DescribeFunction (std::string pFieldName, const std::string &pFunctionName, const int domain)
 Provide a description of a function for a given field name. More...
 
SOLVER_UTILS_EXPORT void InitialiseBaseFlow (Array< OneD, Array< OneD, NekDouble > > &base)
 Perform initialisation of the base flow. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array
< OneD, NekDouble
ErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionGreensDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\nabla \phi \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionDivergenceForm (const Array< OneD, Array< OneD, NekDouble > > &F, Array< OneD, NekDouble > &outarray)
 Compute the inner product $ (\phi, \nabla \cdot F) $. More...
 
SOLVER_UTILS_EXPORT void WeakAdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, bool UseContCoeffs=false)
 Compute the inner product $ (\phi, V\cdot \nabla u) $. More...
 
f SOLVER_UTILS_EXPORT void AdvectionNonConservativeForm (const Array< OneD, Array< OneD, NekDouble > > &V, const Array< OneD, const NekDouble > &u, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wk=NullNekDouble1DArray)
 Compute the non-conservative advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGAdvection (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false, int nvariables=0)
 Calculate the weak discontinuous Galerkin advection. More...
 
SOLVER_UTILS_EXPORT void WeakDGDiffusion (const Array< OneD, Array< OneD, NekDouble > > &InField, Array< OneD, Array< OneD, NekDouble > > &OutField, bool NumericalFluxIncludesNormal=true, bool InFieldIsInPhysSpace=false)
 Calculate weak DG Diffusion in the LDG form. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void ScanForHistoryPoints ()
 Builds map of which element holds each history point. More...
 
SOLVER_UTILS_EXPORT void WriteHistoryData (std::ostream &out)
 Probe each history point and write to file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array
< OneD,
MultiRegions::ExpListSharedPtr > & 
UpdateFields ()
 
SOLVER_UTILS_EXPORT
LibUtilities::FieldMetaDataMap
UpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const
Array< OneD, int > 
GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const
std::string 
GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetNumElmVelocity ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &fluxX, Array< OneD, Array< OneD, NekDouble > > &fluxY)
 
SOLVER_UTILS_EXPORT void GetFluxVector (const int i, const int j, Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &flux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
SOLVER_UTILS_EXPORT void NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
SOLVER_UTILS_EXPORT void NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
SOLVER_UTILS_EXPORT void NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int NoCaseStringCompare (const std::string &s1, const std::string &s2)
 Perform a case-insensitive string comparison. More...
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 

Protected Member Functions

 APE (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
virtual void v_InitObject ()
 Initialization object for the APE class. More...
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the right-hand side. More...
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
 Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection. More...
 
void GetFluxVector (const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
 Return the flux vector for the APE equations. More...
 
virtual bool v_PreIntegrate (int step)
 v_PostIntegrate More...
 
virtual bool v_PostIntegrate (int step)
 v_PostIntegrate More...
 
void GetStdVelocity (Array< OneD, NekDouble > &stdV)
 Compute the advection velocity in the standard space for each element of the expansion. More...
 
virtual void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetNormals ()
 Get the normal vectors. More...
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetVecLocs ()
 Get the locations of the components of the directed fields within the fields array. More...
 
const Array< OneD, const Array
< OneD, NekDouble > > & 
GetBasefield ()
 Get the baseflow field. More...
 
NekDouble GetGamma ()
 Get the heat capacity ratio. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoSolve ()
 Solves an unsteady problem. More...
 
virtual SOLVER_UTILS_EXPORT void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary (SummaryList &s)
 Print a summary of time stepping parameters. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble > > &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumericalFlux (Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, NekDouble > > &numfluxX, Array< OneD, Array< OneD, NekDouble > > &numfluxY)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforScalar (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &uflux)
 
virtual SOLVER_UTILS_EXPORT void v_NumFluxforVector (const Array< OneD, Array< OneD, NekDouble > > &ufield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &qfield, Array< OneD, Array< OneD, NekDouble > > &qflux)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble > > &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_SteadyStateCheck (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble > > vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession)
 Initialises EquationSystem class members. More...
 
int nocase_cmp (const std::string &s1, const std::string &s2)
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Virtual function for the L_inf error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT
NekDouble 
v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Virtual function for the L_2 error computation between fields and a given exact solution. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionExp (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionFld (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void EvaluateFunctionPts (std::string pFieldName, Array< OneD, NekDouble > &pArray, const std::string &pFunctionName, const NekDouble &pTime=0.0, const int domain=0)
 
SOLVER_UTILS_EXPORT void LoadPts (std::string funcFilename, std::string filename, Nektar::LibUtilities::PtsFieldSharedPtr &outPts)
 
SOLVER_UTILS_EXPORT void SetUpBaseFields (SpatialDomains::MeshGraphSharedPtr &mesh)
 
SOLVER_UTILS_EXPORT void ImportFldBase (std::string pInfile, SpatialDomains::MeshGraphSharedPtr pGraph)
 
virtual SOLVER_UTILS_EXPORT void v_Output (void)
 
virtual SOLVER_UTILS_EXPORT
MultiRegions::ExpListSharedPtr 
v_GetPressure (void)
 

Protected Attributes

SolverUtils::AdvectionSharedPtr m_advection
 
std::vector
< SolverUtils::ForcingSharedPtr
m_forcing
 
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
Array< OneD, Array< OneD,
NekDouble > > 
m_traceBasefield
 
Array< OneD, Array< OneD,
NekDouble > > 
m_vecLocs
 
NekDouble m_gamma
 Isentropic coefficient, Ratio of specific heats (APE) More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_bf
 
MultiRegions::ExpListSharedPtr m_bfField
 
std::vector< std::string > m_bfNames
 
int m_cflsteps
 dump cfl estimate More...
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationWrapperSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
LibUtilities::TimeIntegrationSolutionSharedPtr m_intSoln
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
std::vector< int > m_intVariables
 
std::vector< FilterSharedPtrm_filters
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
std::map< std::string,
FieldUtils::Interpolator
m_interpolators
 Map of interpolator objects. More...
 
std::map< std::string,
std::pair< std::string,
LibUtilities::PtsFieldSharedPtr > > 
m_loadedPtsFields
 pts fields we already read from disk: {funcFilename: (filename, ptsfield)} More...
 
std::map< std::string,
std::pair< std::string,
loadedFldField > > 
m_loadedFldFields
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_fields
 Array holding all dependent variables. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_base
 Base fields. More...
 
Array< OneD,
MultiRegions::ExpListSharedPtr
m_derivedfields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD,
NekDouble > > 
m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_gradtan
 1 x nvariable x nq More...
 
Array< OneD, Array< OneD,
Array< OneD, NekDouble > > > 
m_tanbasis
 2 x m_spacedim x nq More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Private Member Functions

void SetBoundaryConditions (Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
 Apply the Boundary Conditions to the APE equations. More...
 
void WallBC (int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
 Wall boundary conditions for the APE equations. More...
 

Friends

class MemoryManager< APE >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D, eHomogeneous2D, eHomogeneous3D, eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 

Detailed Description

Definition at line 50 of file APE.h.

Constructor & Destructor Documentation

Nektar::APE::~APE ( )
virtual

Destructor.

Destructor for APE class.

Definition at line 199 of file APE.cpp.

200 {
201 
202 }
Nektar::APE::APE ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Initialises UnsteadySystem class members.

Definition at line 58 of file APE.cpp.

60  : UnsteadySystem(pSession)
61 {
62 }
SOLVER_UTILS_EXPORT UnsteadySystem(const LibUtilities::SessionReaderSharedPtr &pSession)
Initialises UnsteadySystem class members.

Member Function Documentation

static EquationSystemSharedPtr Nektar::APE::create ( const LibUtilities::SessionReaderSharedPtr pSession)
inlinestatic

Creates an instance of this class.

Definition at line 57 of file APE.h.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

59  {
61  p->InitObject();
62  return p;
63  }
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
boost::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.
void Nektar::APE::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the projection and call the method for imposing the boundary conditions in case of discontinuous projection.

Definition at line 384 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_fields, SetBoundaryConditions(), and Vmath::Vcopy().

Referenced by v_InitObject().

387 {
388  int nvariables = inarray.num_elements();
389  int nq = m_fields[0]->GetNpoints();
390 
391  // deep copy
392  for (int i = 0; i < nvariables; ++i)
393  {
394  Vmath::Vcopy(nq, inarray[i], 1, outarray[i], 1);
395  }
396 
397  SetBoundaryConditions(outarray, time);
398 }
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
Apply the Boundary Conditions to the APE equations.
Definition: APE.cpp:404
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061
void Nektar::APE::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble > > &  inarray,
Array< OneD, Array< OneD, NekDouble > > &  outarray,
const NekDouble  time 
)
protected

Compute the right-hand side.

Definition at line 355 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTotPoints(), m_advection, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_time, and Vmath::Neg().

Referenced by v_InitObject().

358 {
359  int nVariables = inarray.num_elements();
360  int nq = GetTotPoints();
361 
362  // WeakDG does not use advVel, so we only provide a dummy array
363  Array<OneD, Array<OneD, NekDouble> > advVel(m_spacedim);
364  m_advection->Advect(nVariables, m_fields, advVel, inarray, outarray, time);
365 
366  // Negate the LHS terms
367  for (int i = 0; i < nVariables; ++i)
368  {
369  Vmath::Neg(nq, outarray[i], 1);
370  }
371 
372  std::vector<SolverUtils::ForcingSharedPtr>::const_iterator x;
373  for (x = m_forcing.begin(); x != m_forcing.end(); ++x)
374  {
375  (*x)->Apply(m_fields, outarray, outarray, m_time);
376  }
377 }
SolverUtils::AdvectionSharedPtr m_advection
Definition: APE.h:75
NekDouble m_time
Current time of simulation.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Definition: APE.h:76
SOLVER_UTILS_EXPORT int GetTotPoints()
int m_spacedim
Spatial dimension (>= expansion dim).
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:396
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetBasefield ( )
protected

Get the baseflow field.

Definition at line 661 of file APE.cpp.

References m_bf, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, and m_traceBasefield.

Referenced by v_InitObject().

662 {
663  for (int i = 0; i < m_spacedim + 2; i++)
664  {
665  m_fields[0]->ExtractTracePhys(m_bf[i], m_traceBasefield[i]);
666  }
667  return m_traceBasefield;
668 }
Array< OneD, Array< OneD, NekDouble > > m_traceBasefield
Definition: APE.h:78
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
Array< OneD, Array< OneD, NekDouble > > m_bf
Definition: APE.h:82
NekDouble Nektar::APE::GetCFLEstimate ( )

Definition at line 205 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetNumExpModesPerExp(), GetStdVelocity(), Nektar::SolverUtils::EquationSystem::m_comm, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_timestep, Nektar::SolverUtils::UnsteadySystem::MaxTimeStepEstimator(), Nektar::LibUtilities::ReduceMax, and Vmath::Vmax().

Referenced by v_PostIntegrate().

206 {
207  int nElm = m_fields[0]->GetExpSize();
208  const Array<OneD, int> expOrder = GetNumExpModesPerExp();
209 
210  Array<OneD, NekDouble> cfl(nElm, 0.0);
211  Array<OneD, NekDouble> stdVelocity(nElm, 0.0);
212 
213  // Get standard velocity to compute the time-step limit
214  GetStdVelocity(stdVelocity);
215 
216  // Factors to compute the time-step limit
218  NekDouble cLambda = 0.2; // Spencer book-317
219 
220  // Loop over elements to compute the time-step limit for each element
221  for (int el = 0; el < nElm; ++el)
222  {
223  NekDouble lambdaMax = stdVelocity[el] * cLambda
224  * (expOrder[el] - 1) * (expOrder[el] - 1);
225  cfl[el] = m_timestep * lambdaMax / alpha;
226  }
227 
228  // Get the minimum time-step limit and return the time-step
229  NekDouble maxCFL = Vmath::Vmax(nElm, cfl, 1);
230  m_comm->AllReduce(maxCFL, LibUtilities::ReduceMax);
231 
232  return maxCFL;
233 }
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:779
NekDouble m_timestep
Time step size.
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp()
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator()
Get the maximum timestep estimator for cfl control.
LibUtilities::CommSharedPtr m_comm
Communicator.
void GetStdVelocity(Array< OneD, NekDouble > &stdV)
Compute the advection velocity in the standard space for each element of the expansion.
Definition: APE.cpp:510
double NekDouble
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Nektar::APE::GetFluxVector ( const Array< OneD, Array< OneD, NekDouble > > &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &  flux 
)
protected

Return the flux vector for the APE equations.

Parameters
physfieldFields.
fluxResulting flux. flux[eq][dir][pt]

Definition at line 242 of file APE.cpp.

References ASSERTL1, m_bf, m_gamma, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Vadd(), Vmath::Vdiv(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by v_InitObject().

245 {
246  int nq = physfield[0].num_elements();
247  Array<OneD, NekDouble> tmp1(nq);
248  Array<OneD, NekDouble> tmp2(nq);
249 
250  ASSERTL1(flux[0].num_elements() == m_spacedim,
251  "Dimension of flux array and velocity array do not match");
252 
253  // F_{adv,p',j} = \gamma p_0 u'_j + p' \bar{u}_j
254  for (int j = 0; j < m_spacedim; ++j)
255  {
256  Vmath::Zero(nq, flux[0][j], 1);
257 
258  // construct \gamma p_0 u'_j term
259  Vmath::Smul(nq, m_gamma, m_bf[0], 1, tmp1, 1);
260  Vmath::Vmul(nq, tmp1, 1, physfield[j+1], 1, tmp1, 1);
261 
262  // construct p' \bar{u}_j term
263  Vmath::Vmul(nq, physfield[0], 1, m_bf[j+2], 1, tmp2, 1);
264 
265  // add both terms
266  Vmath::Vadd(nq, tmp1, 1, tmp2, 1, flux[0][j], 1);
267  }
268 
269  for (int i = 1; i < flux.num_elements(); ++i)
270  {
271  ASSERTL1(flux[i].num_elements() == m_spacedim,
272  "Dimension of flux array and velocity array do not match");
273 
274  // F_{adv,u'_i,j} = (p'/ \bar{rho} + \bar{u}_k u'_k) \delta_{ij}
275  for (int j = 0; j < m_spacedim; ++j)
276  {
277  Vmath::Zero(nq, flux[i][j], 1);
278 
279  if (i - 1 == j)
280  {
281  // contruct p'/ \bar{rho} term
282  Vmath::Vdiv(nq, physfield[0], 1, m_bf[1], 1, flux[i][j], 1);
283 
284  // construct \bar{u}_k u'_k term
285  Vmath::Zero(nq, tmp1, 1);
286  for (int k = 0; k < m_spacedim; ++k)
287  {
288  Vmath::Vvtvp(nq, physfield[k + 1], 1, m_bf[k + 2 ], 1, tmp1, 1, tmp1, 1);
289  }
290 
291  // add terms
292  Vmath::Vadd(nq, flux[i][j], 1, tmp1, 1, flux[i][j], 1);
293  }
294  }
295  }
296 }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:241
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
int m_spacedim
Spatial dimension (>= expansion dim).
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:81
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
Array< OneD, Array< OneD, NekDouble > > m_bf
Definition: APE.h:82
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:299
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
NekDouble Nektar::APE::GetGamma ( )
protected

Get the heat capacity ratio.

Definition at line 674 of file APE.cpp.

References m_gamma.

Referenced by v_InitObject().

675 {
676  return m_gamma;
677 }
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:81
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetNormals ( )
protected

Get the normal vectors.

Definition at line 643 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_traceNormals.

Referenced by v_InitObject().

644 {
645  return m_traceNormals;
646 }
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void Nektar::APE::GetStdVelocity ( Array< OneD, NekDouble > &  stdV)
protected

Compute the advection velocity in the standard space for each element of the expansion.

Parameters
stdVStandard velocity field.

Definition at line 510 of file APE.cpp.

References ASSERTL1, Nektar::SpatialDomains::eDeformed, m_bf, Nektar::SolverUtils::EquationSystem::m_fields, m_gamma, Nektar::SolverUtils::EquationSystem::m_spacedim, Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), Vmath::Vvtvp(), and Vmath::Zero().

Referenced by GetCFLEstimate().

511 {
512  int nElm = m_fields[0]->GetExpSize();
513 
514  ASSERTL1(stdV.num_elements() == nElm, "stdV malformed");
515 
516  Array<OneD, Array<OneD, NekDouble> > stdVelocity(m_spacedim);
517  Array<OneD, Array<OneD, NekDouble> > velocity(m_spacedim+1);
519 
520  // Zero output array
521  Vmath::Zero(stdV.num_elements(), stdV, 1);
522 
523  int cnt = 0;
524 
525  for (int el = 0; el < nElm; ++el)
526  {
527  ptsKeys = m_fields[0]->GetExp(el)->GetPointsKeys();
528 
529  // Possible bug: not multiply by jacobian??
530  const SpatialDomains::GeomFactorsSharedPtr metricInfo =
531  m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo();
532  const Array<TwoD, const NekDouble> &gmat =
533  m_fields[0]->GetExp(el)->GetGeom()->GetMetricInfo()
534  ->GetDerivFactors(ptsKeys);
535 
536  int nq = m_fields[0]->GetExp(el)->GetTotPoints();
537 
538  for (int i = 0; i < m_spacedim; ++i)
539  {
540  stdVelocity[i] = Array<OneD, NekDouble>(nq, 0.0);
541 
542  velocity[i] = Array<OneD, NekDouble>(nq, 0.0);
543  for (int j = 0; j < nq; ++j)
544  {
545  // The total advection velocity is v+c, so we need to scale c by
546  // adding it before we do the transformation.
547  NekDouble c = sqrt(m_gamma * m_bf[0][cnt+j] / m_bf[1][cnt+j]);
548  velocity[i][j] = m_bf[i+2][cnt+j] + c;
549  }
550  }
551 
552  // scale the velocity components
553  if (metricInfo->GetGtype() == SpatialDomains::eDeformed)
554  {
555  // d xi/ dx = gmat = 1/J * d x/d xi
556  for (int i = 0; i < m_spacedim; ++i)
557  {
558  Vmath::Vmul(nq, gmat[i], 1, velocity[0], 1, stdVelocity[i], 1);
559  for (int j = 1; j < m_spacedim; ++j)
560  {
561  Vmath::Vvtvp(nq, gmat[m_spacedim * j + i], 1, velocity[j],
562  1, stdVelocity[i], 1, stdVelocity[i], 1);
563  }
564  }
565  }
566  else
567  {
568  for (int i = 0; i < m_spacedim; ++i)
569  {
570  Vmath::Smul(nq, gmat[i][0], velocity[0], 1, stdVelocity[i], 1);
571  for (int j = 1; j < m_spacedim; ++j)
572  {
573  Vmath::Svtvp(nq, gmat[m_spacedim * j + i][0], velocity[j],
574  1, stdVelocity[i], 1, stdVelocity[i], 1);
575  }
576  }
577  }
578 
579  // compute the max absolute velocity of the element
580  for (int i = 0; i < nq; ++i)
581  {
582  NekDouble pntVelocity = 0.0;
583  for (int j = 0; j < m_spacedim; ++j)
584  {
585  pntVelocity += stdVelocity[j][i] * stdVelocity[j][i];
586  }
587  pntVelocity = sqrt(pntVelocity);
588 
589  if (pntVelocity > stdV[el])
590  {
591  stdV[el] = pntVelocity;
592  }
593  }
594 
595  cnt += nq;
596  }
597 }
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:242
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:485
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
int m_spacedim
Spatial dimension (>= expansion dim).
double NekDouble
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:81
boost::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:373
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode...
Definition: ErrorUtil.hpp:228
Geometry is curved or has non-constant factors.
Array< OneD, Array< OneD, NekDouble > > m_bf
Definition: APE.h:82
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:183
const Array< OneD, const Array< OneD, NekDouble > > & Nektar::APE::GetVecLocs ( )
protected

Get the locations of the components of the directed fields within the fields array.

Definition at line 652 of file APE.cpp.

References m_vecLocs.

Referenced by v_InitObject().

653 {
654  return m_vecLocs;
655 }
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
Definition: APE.h:79
void Nektar::APE::SetBoundaryConditions ( Array< OneD, Array< OneD, NekDouble > > &  physarray,
NekDouble  time 
)
private

Apply the Boundary Conditions to the APE equations.

Definition at line 404 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetTraceTotPoints(), Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_session, and WallBC().

Referenced by DoOdeProjection().

406 {
407  std::string varName;
408  int nvariables = m_fields.num_elements();
409  int cnt = 0;
410  int nTracePts = GetTraceTotPoints();
411 
412  // Extract trace for boundaries. Needs to be done on all processors to avoid
413  // deadlock.
414  Array<OneD, Array<OneD, NekDouble> > Fwd(nvariables);
415  for (int i = 0; i < nvariables; ++i)
416  {
417  Fwd[i] = Array<OneD, NekDouble>(nTracePts);
418  m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
419  }
420 
421  // loop over Boundary Regions
422  for(int n = 0; n < m_fields[0]->GetBndConditions().num_elements(); ++n)
423  {
424  // Wall Boundary Condition
425  if (boost::iequals(m_fields[0]->GetBndConditions()[n]->GetUserDefined(),"Wall"))
426  {
427  WallBC(n, cnt, Fwd, inarray);
428  }
429 
430  // Time Dependent Boundary Condition (specified in meshfile)
431  if (m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
432  {
433  for (int i = 0; i < nvariables; ++i)
434  {
435  varName = m_session->GetVariable(i);
436  m_fields[i]->EvaluateBoundaryConditions(time, varName);
437  }
438  }
439  cnt +=m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
440  }
441 }
void WallBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
Wall boundary conditions for the APE equations.
Definition: APE.cpp:447
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
void Nektar::APE::v_ExtraFldOutput ( std::vector< Array< OneD, NekDouble > > &  fieldcoeffs,
std::vector< std::string > &  variables 
)
protectedvirtual

Reimplemented from Nektar::SolverUtils::EquationSystem.

Definition at line 600 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::GetNcoeffs(), m_bf, m_bfField, m_bfNames, m_forcing, Nektar::SolverUtils::EquationSystem::m_session, and Nektar::SolverUtils::EquationSystem::m_spacedim.

603 {
604  for (int i = 0; i < m_spacedim + 2; i++)
605  {
606  Array<OneD, NekDouble> tmpC(GetNcoeffs());
607 
608  // ensure the field is C0-continuous
609  m_bfField->IProductWRTBase(m_bf[i], tmpC);
610  m_bfField->MultiplyByElmtInvMass(tmpC, tmpC);
611  m_bfField->LocalToGlobal(tmpC, tmpC);
612  m_bfField->GlobalToLocal(tmpC, tmpC);
613 
614  variables.push_back(m_bfNames[i]);
615  fieldcoeffs.push_back(tmpC);
616  }
617 
618  int f = 0;
619  std::vector<SolverUtils::ForcingSharedPtr>::const_iterator x;
620  for (x = m_forcing.begin(); x != m_forcing.end(); ++x)
621  {
622  for (int i = 0; i < (*x)->GetForces().num_elements(); ++i)
623  {
624  Array<OneD, NekDouble> tmpC(GetNcoeffs());
625 
626  m_bfField->IProductWRTBase((*x)->GetForces()[i], tmpC);
627  m_bfField->MultiplyByElmtInvMass(tmpC, tmpC);
628  m_bfField->LocalToGlobal(tmpC, tmpC);
629  m_bfField->GlobalToLocal(tmpC, tmpC);
630 
631  variables.push_back("F_" + boost::lexical_cast<string>(f) +
632  "_" + m_session->GetVariable(i));
633  fieldcoeffs.push_back(tmpC);
634  }
635  f++;
636  }
637 }
MultiRegions::ExpListSharedPtr m_bfField
Definition: APE.h:83
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Definition: APE.h:76
int m_spacedim
Spatial dimension (>= expansion dim).
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT int GetNcoeffs()
Array< OneD, Array< OneD, NekDouble > > m_bf
Definition: APE.h:82
std::vector< std::string > m_bfNames
Definition: APE.h:84
void Nektar::APE::v_InitObject ( )
protectedvirtual

Initialization object for the APE class.

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 68 of file APE.cpp.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::MultiRegions::eDiscontinuous, Nektar::SolverUtils::EquationSystem::EvaluateFunction(), Nektar::SolverUtils::GetAdvectionFactory(), GetBasefield(), GetFluxVector(), GetGamma(), GetNormals(), Nektar::SolverUtils::GetRiemannSolverFactory(), Nektar::SolverUtils::EquationSystem::GetTotPoints(), Nektar::SolverUtils::EquationSystem::GetTraceNpoints(), GetVecLocs(), Nektar::SolverUtils::Forcing::Load(), m_advection, m_bf, m_bfField, m_bfNames, m_cflsteps, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, m_forcing, m_gamma, Nektar::SolverUtils::EquationSystem::m_graph, Nektar::SolverUtils::UnsteadySystem::m_homoInitialFwd, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::SolverUtils::EquationSystem::m_projectionType, m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_time, m_traceBasefield, m_vecLocs, and Nektar::SolverUtils::UnsteadySystem::v_InitObject().

69 {
71 
72  // TODO: We have a bug somewhere in the 1D boundary conditions. Therefore 1D
73  // problems are currently disabled. This should get fixed in the future.
74  ASSERTL0(m_spacedim > 1, "1D problems currently not supported by the APE class.");
75 
77  "Only Projection=DisContinuous supported by the APE class.");
78 
79  // Load isentropic coefficient, Ratio of specific heats
80  m_session->LoadParameter("Gamma", m_gamma, 1.4);
81 
82  m_session->LoadParameter("IO_CFLSteps", m_cflsteps, 0);
83 
84  // Define Baseflow and source term fields
85  switch (m_spacedim)
86  {
87  case 1:
88  {
89  for (int i = 0; i < m_spacedim + 2; ++i)
90  {
93  }
94  break;
95  }
96 
97  case 2:
98  {
99  for (int i = 0; i < m_spacedim + 2; ++i)
100  {
103  }
104  break;
105  }
106 
107  case 3:
108  {
109  for (int i = 0; i < m_spacedim + 2; ++i)
110  {
111  m_bfField = MemoryManager < MultiRegions::ContField3D >::
112  AllocateSharedPtr(m_session, m_graph);
113  }
114  break;
115  }
116 
117  default:
118  {
119 
120  ASSERTL0(false, "Expansion dimension not recognised");
121  break;
122  }
123  }
124 
125  m_bfNames.push_back("p0");
126  m_bfNames.push_back("rho0");
127  m_bfNames.push_back("u0");
128  m_bfNames.push_back("v0");
129  m_bfNames.push_back("w0");
130 
131  // Resize the advection velocities vector to dimension of the problem
132  m_bfNames.resize(m_spacedim + 2);
133 
134  // Initialize basefield
135  m_bf = Array<OneD, Array<OneD, NekDouble> >(m_spacedim + 2);
136  for (int i = 0; i < m_bf.num_elements(); ++i)
137  {
138  m_bf[i] = Array<OneD, NekDouble>(GetTotPoints());
139  }
140  EvaluateFunction(m_bfNames, m_bf, "Baseflow", m_time);
141 
143 
144  // Do not forwards transform initial condition
145  m_homoInitialFwd = false;
146 
147  // Define the normal velocity fields
148  if (m_fields[0]->GetTrace())
149  {
150  m_traceBasefield = Array<OneD, Array<OneD, NekDouble> > (m_spacedim + 2);
151  for (int i = 0; i < m_spacedim + 2; i++)
152  {
153  m_traceBasefield[i] = Array<OneD, NekDouble>(GetTraceNpoints());
154  }
155  }
156 
157  // Set up locations of velocity and base velocity vectors.
158  m_vecLocs = Array<OneD, Array<OneD, NekDouble> >(1);
159  m_vecLocs[0] = Array<OneD, NekDouble>(m_spacedim);
160  for (int i = 0; i < m_spacedim; ++i)
161  {
162  // u', v', w'
163  m_vecLocs[0][i] = 1 + i;
164  }
165 
166  string riemName;
167  m_session->LoadSolverInfo("UpwindType", riemName, "APEUpwind");
169  riemName);
170  m_riemannSolver->SetVector("N", &APE::GetNormals, this);
171  m_riemannSolver->SetVector("basefield", &APE::GetBasefield, this);
172  m_riemannSolver->SetAuxVec("vecLocs", &APE::GetVecLocs, this);
173  m_riemannSolver->SetParam("Gamma", &APE::GetGamma, this);
174 
175  // Set up advection operator
176  string advName;
177  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
179  .CreateInstance(advName, advName);
180  m_advection->SetFluxVector(&APE::GetFluxVector, this);
181  m_advection->SetRiemannSolver(m_riemannSolver);
182  m_advection->InitObject(m_session, m_fields);
183 
185  {
188  }
189  else
190  {
191  ASSERTL0(false, "Implicit APE not set up.");
192  }
193 }
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
Get the normal vectors.
Definition: APE.cpp:643
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:198
SolverUtils::AdvectionSharedPtr m_advection
Definition: APE.h:75
bool m_homoInitialFwd
Flag to determine if simulation should start in homogeneous forward transformed state.
tBaseSharedPtr CreateInstance(tKey idKey BOOST_PP_COMMA_IF(MAX_PARAM) BOOST_PP_ENUM_BINARY_PARAMS(MAX_PARAM, tParam, x))
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:162
static boost::shared_ptr< DataType > AllocateSharedPtr()
Allocate a shared pointer from the memory pool.
MultiRegions::ExpListSharedPtr m_bfField
Definition: APE.h:83
NekDouble m_time
Current time of simulation.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
Definition: APE.h:79
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Definition: APE.h:76
static SOLVER_UTILS_EXPORT std::vector< ForcingSharedPtr > Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields=0)
Definition: Forcing.cpp:86
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble > > &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &flux)
Return the flux vector for the APE equations.
Definition: APE.cpp:242
SOLVER_UTILS_EXPORT int GetTotPoints()
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
NekDouble GetGamma()
Get the heat capacity ratio.
Definition: APE.cpp:674
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
Get the locations of the components of the directed fields within the fields array.
Definition: APE.cpp:652
Array< OneD, Array< OneD, NekDouble > > m_traceBasefield
Definition: APE.h:78
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the right-hand side.
Definition: APE.cpp:355
RiemannSolverFactory & GetRiemannSolverFactory()
int m_cflsteps
dump cfl estimate
Definition: APE.h:86
int m_spacedim
Spatial dimension (>= expansion dim).
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:46
virtual SOLVER_UTILS_EXPORT void v_InitObject()
Init object for UnsteadySystem class.
SOLVER_UTILS_EXPORT void EvaluateFunction(Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
Evaluates a function as specified in the session file.
NekDouble m_gamma
Isentropic coefficient, Ratio of specific heats (APE)
Definition: APE.h:81
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefield()
Get the baseflow field.
Definition: APE.cpp:661
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
Definition: APE.h:77
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT int GetTraceNpoints()
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
Definition: APE.cpp:384
SpatialDomains::MeshGraphSharedPtr m_graph
Pointer to graph defining mesh.
Array< OneD, Array< OneD, NekDouble > > m_bf
Definition: APE.h:82
std::vector< std::string > m_bfNames
Definition: APE.h:84
bool Nektar::APE::v_PostIntegrate ( int  step)
protectedvirtual

v_PostIntegrate

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 337 of file APE.cpp.

References GetCFLEstimate(), m_cflsteps, Nektar::SolverUtils::EquationSystem::m_comm, and Nektar::SolverUtils::UnsteadySystem::v_PostIntegrate().

338 {
339  if (m_cflsteps && !((step + 1) % m_cflsteps))
340  {
341  NekDouble cfl = GetCFLEstimate();
342  if (m_comm->GetRank() == 0)
343  {
344  cout << "CFL: " << cfl << endl;
345  }
346  }
347 
348  return UnsteadySystem::v_PostIntegrate(step);
349 }
LibUtilities::CommSharedPtr m_comm
Communicator.
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate(int step)
int m_cflsteps
dump cfl estimate
Definition: APE.h:86
double NekDouble
NekDouble GetCFLEstimate()
Definition: APE.cpp:205
bool Nektar::APE::v_PreIntegrate ( int  step)
protectedvirtual

v_PostIntegrate

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 302 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::EvaluateFunction(), Nektar::SolverUtils::EquationSystem::GetNcoeffs(), m_bf, m_bfField, m_bfNames, m_forcing, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_time, and Nektar::SolverUtils::UnsteadySystem::v_PreIntegrate().

303 {
304  EvaluateFunction(m_bfNames, m_bf, "Baseflow", m_time);
305 
306  Array<OneD, NekDouble> tmpC(GetNcoeffs());
307  std::vector<SolverUtils::ForcingSharedPtr>::const_iterator x;
308  for (x = m_forcing.begin(); x != m_forcing.end(); ++x)
309  {
310  for (int i = 0; i < (*x)->GetForces().num_elements(); ++i)
311  {
312  m_bfField->IProductWRTBase((*x)->GetForces()[i], tmpC);
313  m_bfField->MultiplyByElmtInvMass(tmpC, tmpC);
314  m_bfField->LocalToGlobal(tmpC, tmpC);
315  m_bfField->GlobalToLocal(tmpC, tmpC);
316  m_bfField->BwdTrans(tmpC, (*x)->UpdateForces()[i]);
317  }
318  }
319 
320  for (int i = 0; i < m_spacedim + 2; ++i)
321  {
322  // ensure the field is C0-continuous
323  m_bfField->IProductWRTBase(m_bf[i], tmpC);
324  m_bfField->MultiplyByElmtInvMass(tmpC, tmpC);
325  m_bfField->LocalToGlobal(tmpC, tmpC);
326  m_bfField->GlobalToLocal(tmpC, tmpC);
327  m_bfField->BwdTrans(tmpC, m_bf[i]);
328  }
329 
330  return UnsteadySystem::v_PreIntegrate(step);
331 }
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate(int step)
MultiRegions::ExpListSharedPtr m_bfField
Definition: APE.h:83
NekDouble m_time
Current time of simulation.
std::vector< SolverUtils::ForcingSharedPtr > m_forcing
Definition: APE.h:76
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT void EvaluateFunction(Array< OneD, Array< OneD, NekDouble > > &pArray, std::string pFunctionName, const NekDouble pTime=0.0, const int domain=0)
Evaluates a function as specified in the session file.
SOLVER_UTILS_EXPORT int GetNcoeffs()
Array< OneD, Array< OneD, NekDouble > > m_bf
Definition: APE.h:82
std::vector< std::string > m_bfNames
Definition: APE.h:84
void Nektar::APE::WallBC ( int  bcRegion,
int  cnt,
Array< OneD, Array< OneD, NekDouble > > &  Fwd,
Array< OneD, Array< OneD, NekDouble > > &  physarray 
)
private

Wall boundary conditions for the APE equations.

Definition at line 447 of file APE.cpp.

References Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::SolverUtils::EquationSystem::m_traceNormals, Vmath::Smul(), Vmath::Vcopy(), and Vmath::Vvtvp().

Referenced by SetBoundaryConditions().

450 {
451  int nVariables = physarray.num_elements();
452 
453  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
454 
455  // Adjust the physical values of the trace to take
456  // user defined boundaries into account
457  int id1, id2, nBCEdgePts;
458  int eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
459 
460  for (int e = 0; e < eMax; ++e)
461  {
462  nBCEdgePts = m_fields[0]->GetBndCondExpansions()[bcRegion]->
463  GetExp(e)->GetTotPoints();
464  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
465  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt+e]);
466 
467  // For 2D/3D, define: v* = v - 2(v.n)n
468  Array<OneD, NekDouble> tmp(nBCEdgePts, 0.0);
469 
470  // Calculate (v.n)
471  for (int i = 0; i < m_spacedim; ++i)
472  {
473  Vmath::Vvtvp(nBCEdgePts,
474  &Fwd[1+i][id2], 1,
475  &m_traceNormals[i][id2], 1,
476  &tmp[0], 1,
477  &tmp[0], 1);
478  }
479 
480  // Calculate 2.0(v.n)
481  Vmath::Smul(nBCEdgePts, -2.0, &tmp[0], 1, &tmp[0], 1);
482 
483  // Calculate v* = v - 2.0(v.n)n
484  for (int i = 0; i < m_spacedim; ++i)
485  {
486  Vmath::Vvtvp(nBCEdgePts,
487  &tmp[0], 1,
488  &m_traceNormals[i][id2], 1,
489  &Fwd[1+i][id2], 1,
490  &Fwd[1+i][id2], 1);
491  }
492 
493  // Copy boundary adjusted values into the boundary expansion
494  for (int i = 0; i < nVariables; ++i)
495  {
496  Vmath::Vcopy(nBCEdgePts,
497  &Fwd[i][id2], 1,
498  &(m_fields[i]->GetBndCondExpansions()[bcRegion]->UpdatePhys())[id1], 1);
499  }
500  }
501 }
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:442
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*y.
Definition: Vmath.cpp:213
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1061

Friends And Related Function Documentation

friend class MemoryManager< APE >
friend

Definition at line 54 of file APE.h.

Member Data Documentation

string Nektar::APE::className
static
Initial value:
"APE", APE::create,
"APE1/APE4 (Acoustic Perturbation Equations)")

Name of class.

Definition at line 65 of file APE.h.

SolverUtils::AdvectionSharedPtr Nektar::APE::m_advection
protected

Definition at line 75 of file APE.h.

Referenced by DoOdeRhs(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_bf
protected
MultiRegions::ExpListSharedPtr Nektar::APE::m_bfField
protected

Definition at line 83 of file APE.h.

Referenced by v_ExtraFldOutput(), v_InitObject(), and v_PreIntegrate().

std::vector<std::string> Nektar::APE::m_bfNames
protected

Definition at line 84 of file APE.h.

Referenced by v_ExtraFldOutput(), v_InitObject(), and v_PreIntegrate().

int Nektar::APE::m_cflsteps
protected

dump cfl estimate

Definition at line 86 of file APE.h.

Referenced by v_InitObject(), and v_PostIntegrate().

std::vector<SolverUtils::ForcingSharedPtr> Nektar::APE::m_forcing
protected

Definition at line 76 of file APE.h.

Referenced by DoOdeRhs(), v_ExtraFldOutput(), v_InitObject(), and v_PreIntegrate().

NekDouble Nektar::APE::m_gamma
protected

Isentropic coefficient, Ratio of specific heats (APE)

Definition at line 81 of file APE.h.

Referenced by GetFluxVector(), GetGamma(), GetStdVelocity(), and v_InitObject().

SolverUtils::RiemannSolverSharedPtr Nektar::APE::m_riemannSolver
protected

Definition at line 77 of file APE.h.

Referenced by v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_traceBasefield
protected

Definition at line 78 of file APE.h.

Referenced by GetBasefield(), and v_InitObject().

Array<OneD, Array<OneD, NekDouble> > Nektar::APE::m_vecLocs
protected

Definition at line 79 of file APE.h.

Referenced by GetVecLocs(), and v_InitObject().