43 "Axisymmetric NavierStokes equations in conservative variables.");
61 for (
int i = 0; i < nVariables; ++i)
74 int nvariables = inarray.size();
78 for (
int i = 0; i < nvariables; ++i)
96 int nPts = physfield[0].size();
101 for (
int i = 0; i < 3; i++)
105 m_fields[0]->GetCoords(coords[0], coords[1], coords[2]);
106 for (
int i = 0; i < nPts; ++i)
114 invR[i] = 1.0 / coords[0][i];
129 thermalConductivity);
132 Vmath::Vadd(nPts, derivativesO1[0][0], 1, derivativesO1[1][1], 1, divVel,
134 Vmath::Vvtvp(nPts, physfield[0], 1, invR, 1, divVel, 1, divVel, 1);
148 for (i = 0; i < 2; ++i)
150 for (j = i; j < 2; ++j)
152 Vmath::Vadd(nPts, derivativesO1[i][j], 1, derivativesO1[j][i], 1,
153 viscousTensor[i][j + 1], 1);
155 Vmath::Vmul(nPts, mu, 1, viscousTensor[i][j + 1], 1,
156 viscousTensor[i][j + 1], 1);
161 Vmath::Vadd(nPts, viscousTensor[i][j + 1], 1, divVel, 1,
162 viscousTensor[i][j + 1], 1);
168 viscousTensor[j][i + 1], 1);
176 Vmath::Vmul(nPts, physfield[0], 1, invR, 1, viscousTensor[2][3], 1);
177 Vmath::Smul(nPts, 2.0, viscousTensor[2][3], 1, viscousTensor[2][3], 1);
178 Vmath::Vmul(nPts, mu, 1, viscousTensor[2][3], 1, viscousTensor[2][3],
180 Vmath::Vadd(nPts, viscousTensor[2][3], 1, divVel, 1,
181 viscousTensor[2][3], 1);
184 Vmath::Vmul(nPts, physfield[2], 1, invR, 1, viscousTensor[2][1], 1);
185 Vmath::Smul(nPts, -1.0, viscousTensor[2][1], 1, viscousTensor[2][1], 1);
186 Vmath::Vadd(nPts, derivativesO1[0][2], 1, viscousTensor[2][1], 1,
187 viscousTensor[2][1], 1);
188 Vmath::Vmul(nPts, mu, 1, viscousTensor[2][1], 1, viscousTensor[2][1],
190 Vmath::Vcopy(nPts, viscousTensor[2][1], 1, viscousTensor[0][3], 1);
193 Vmath::Vmul(nPts, mu, 1, derivativesO1[1][2], 1, viscousTensor[2][2],
195 Vmath::Vcopy(nPts, viscousTensor[2][2], 1, viscousTensor[1][3], 1);
205 Vmath::Vvtvp(nPts, physfield[j], 1, viscousTensor[i][j + 1], 1,
230 Vmath::Vsub(nPts, viscousTensor[0][1], 1, viscousTensor[2][3], 1,
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
void v_InitObject(bool DeclareFields=true) override
Initialization object for CompressibleFlowSystem class.
void v_DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
Array< OneD, Array< OneD, NekDouble > > m_viscousForcing
void v_GetViscousFluxVector(const Array< OneD, const Array< OneD, NekDouble > > &physfield, TensorOfArray3D< NekDouble > &derivatives, TensorOfArray3D< NekDouble > &viscousTensor) override
Return the flux vector for the LDG diffusion problem.
NavierStokesCFEAxisym(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
static std::string className
void v_InitObject(bool DeclareField=true) override
Initialization object for CompressibleFlowSystem class.
void v_DoDiffusion(const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const Array< OneD, Array< OneD, NekDouble > > &pFwd, const Array< OneD, Array< OneD, NekDouble > > &pBwd) override
void GetViscosityAndThermalCondFromTemp(const Array< OneD, NekDouble > &temperature, Array< OneD, NekDouble > &mu, Array< OneD, NekDouble > &thermalCond)
Update viscosity todo: add artificial viscosity here.
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetNpoints()
Base class for unsteady solvers.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
EquationSystemFactory & GetEquationSystemFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Zero(int n, T *x, const int incx)
Zero vector.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.